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Abstract

We discuss the separability of the Hamilton-Jacobi equation for the Kerr metric. We
use a recent theorem which says that a completely integrable geodesic equation has a
fully separable Hamilton-Jacobi equation if and only if the Lagrangian is a composite of the
involutive first integrals. We also discuss the physical significance of Carter's fourth constant
in terms of the symplectic reduction of the Schwarzschild metric via 50(3), showing that
the Killing tensor quantity is the remnant of the square of angular momentum.

1. Introduction

Our objective is to provide a partial explanation for the separability of the Hamiltonian-
Jacobi equation for the Kerr metric in general relativity. We recognize that what is a
satisfactory explanation to one reader is uninformative to another, so we will qualify
our objective by saying that our analysis is based upon the Lagrangian formulation of
the geodesic equations and the Hamilton-Jacobi theorem, and that it is centred upon
a theorem which guarantees full separability of the Hamilton-Jacobi equation when
the geodesic equations are completely integrable. (In the general, non-geodesic case,
a completely integrable Lagrangian system will not have a fully separable Hamilton-
Jacobi equation.) The feature of the Kerr metric that we hope to clarify is the relation
between the four involutive integrals produced by the Hamilton-Jacobi separability
and the separable co-ordinates themselves. We will show that the appearance of the
quadratic integral means that these will not be coordinates for the spacetime M, but
for submanifolds of R x TM. We will also briefly explain the relationship of the
quadratic integral with the residual symmetry group after reduction by SO(3) of the
Schwarzschild evolution space.
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The paper is laid out as follows: Section 2 contains a summary of the evolution
space description of second order ordinary differential equations and, in particular, of
geodesic equations. Section 3 covers the Hamilton-Jacobi equation and its separability,
both in the general and geodesic cases. Section 4 deals specifically with the separability
properties for the Kerr metric and Section 5 discusses the interpretation of Carter's
constant. In Section 6 we consider open questions and relations with known results.

Our main reference is the recent paper by Prince, Aldridge and Byrnes [8], where
the theorem for necessary and sufficient conditions on Hamilton-Jacobi separability
is presented. Our tangent bundle approach to ordinary differential equations can
be found in [4, 5] and [12]. The application of these techniques to the geodesic
equations and their symmetries is performed in [10] and [11]. Woodhouse's treatment
of Hamilton-Jacobi separability ([13, 14]) has been influential in our thinking as has
the work of Benenti and Francaviglia (see the review [1]).

2. Preliminaries

We refer the reader to [10] and [11] for details of the Euler-Lagrange formulation
of the geodesic equations involving the Poincare-Cartan form. We will now give a
brief account.

The spacetime (M, g) has generic local coordinates (xa). K x M (the graph space
for geodesies) has local coordinates (s, x"). The evolution space is E := K x TM
with associated local coordinates (s,xa, u"). The geodesic Lagrangian, L : E —> R,
is given by

L(s,x, u) := -zgx^u, u) = -gabu
aub.

The Poincare-Cartan form, 0L e / \ ' ( £ ) , is just the pullback by the Legendre
transformation of the Hamilton-Poincare form padqa — Hds. In local coordinates it
is

where 9" := dxa — uadt are the contact one-forms on E. Its exterior derivative is

where ty" := du° + r%cu
cdxb. The two-form d6L is of maximal rank and its one

dimensional kernel is spanned by the vector field

T := ^ - + ua^- - ra
bcu

buc^-.
ds dx" bc du"
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This is a second order differential equation field on E because its integral curves are
parametrised by s and are solutions of the differential equations

x" = ua, if = F\

where the F" are (in general) functions on E of all 2« + 1 variables. In our geodesic
case F" := Ta

bcu
buc. In fact, the integral curves of F are just the natural lifts from

M to E of the solution curves of the geodesic equations. This is, of course, a direct
result of the variational principle for 6L.

Now we turn to a brief discussion of symmetries. What follows holds for any (not
necessarily autonomous) second order differential equation field F on the evolution
space £ of an arbitrary manifold M of dimension n with independent variable t. E
will have generic natural coordinates (t, x", ua). We refer the reader to [5] and [12]
for details.

A F-basic form (or invariant form of Cartan [2]) is a form a on £ which satisfies
any one of three equivalent conditions:

1. a(F) = 0 a n d r j r f a = 0.
2. -2/r<* = 0 for any smooth function / on E.
3. a is the pullback of a form from the quotient of E by the action of F.

The closed, F-basic 1-forms are locally just the exterior derivatives of first integrals
ofT.

A symmetry of the differential equation is a local one-parameter Lie group action on
E which permutes the integral curves of F and, by projection, the solution curves on the
base M (although this induced action will not in general be that of a Lie group on M).
If an action is generated by a vector field X onE then it is a symmetry of F if and only
if J£XT = XT for some X € C°°(E). Consequently, the symmetries of F do not form
a module over C°°{E), but over the first integrals of F and this module is closed under
the Lie bracket. However, because any C°°(£)-multiple of F is a trivial symmetry of
F, addition of such multiples to generators of symmetries produces further symmetry
generators. The images of the integral curves of F under the original and modified
actions differ only by parametrisation. For this reason we define a transverse field,
[X], to be the equivalence class of symmetries differing from X by the addition of
a C°°(£)-multiple of F. As an example of selection from the equivalence class, we
could choose X e [X] so that X(t) = 0 by setting X = X - X(t)F, with X any
element of [X]. There is an important one-to-one correspondence between transverse
fields on E and vector fields on the quotient of E by the action of F. This results
from the identification of [X] with the representative X € [X] which passes to the
quotient (this X generates an action leaving the parametrisation of the integral curves
of F unchanged because Jfx F = 0).

Now suppose that we have a regular, non-zero (but not necessarily a free-particle)
Lagrangian on E. (Given a regular Lagrangian, bounded below on E, we can always
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add a constant so as to make it non-zero.) The Poincare-Cartan form in this general
case has coordinate representation

6L = Ldt + — (dxa - uadi).
dua

The second order differential equation field resulting from the Euler-Lagrange equa-
tions will be called F, that is,

It is shown in Proposition 1 of [9] that symmetries of dOL are also symmetries of F
(but the converse is not true). The generators of such symmetries satisfy J£xd9L = 0
as do all other elements of their transverse field. It will be important for us to consider
those elements X with 0L (X) = 0 (Proposition 1 of [9] guarantees the existence of this
element). Because L is regular, d6L has maximal rank and the 2-form ddL provides
a bijection X t-> Xj d0L between those vector fields on E satisfying Jfxd9L = 0,
6L[X) = 0 and closed, F-basic 1-forms. This well-known result is a special case of
the Noether-Cartan theorem (see [9] for a proof)-

THEOREM (Noether-Cartan). The map [X] h* Xj d0L is a bijection of symmetries
ofddL (that is, Jfxd6L = 0) to closed basic 1-forms for F.

We will restrict ourselves to the bijection ®L : X i-> X J d6L between symmetries
of d9L with 6L(X) = 0 and closed F-basic 1-forms. We can use this map to define
involutive first integrals in a natural way which corresponds to the Poisson bracket
involution of Hamiltonian mechanics: two smooth first integrals / , g on E with
df A dg ^ 0 on E are said to be in involution with respect to L if ddL{Xf, Xg) = 0.
Here Xf := ®l\df) and Xg := ®~L\dg), that is, for example, S£XldQL = 0,
6L{Xf) = 0 and df = Xfj d9L. We remark that the map (f, g) (-• -dOL(Xf,Xg)
does not turn E into a Poisson manifold as it is only well-defined on first integrals.
However, it does turn the quotient of E by F into a symplectic manifold.

The important properties of involutive first integrals are given in the following
propositions from [9]:

PROPOSITION 1. The following conditions are equivalent:

(a) / and g are involutive first integrals with respect to L,
(b) Xf(g)=0 = Xg(f),
(c) [Xf,Xg] = 0.

PROPOSITION 2. Iff and g are involutive first integrals and if Yf € [Xf] and
Yg e [Xg] are defined by

Yf := Xf - Xf(t)r and Yg := Xg - Xg(t)r
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then

[Yf,Yt] = 0.

We can now define a Lagrangian system to be completely integrable with respect
to L if there exist n first integrals / a with df' A • • • A df " ^ 0 which are in involution
with respect to L.

3. The Hamilton-Jacobi equation

To define the Hamilton-Jacobi equation for the arbitrary Lagrangian system de-
scribed above we will completely bypass the usual canonical transformation approach.
Instead we will define it by the way it appears in the proof of the the Liouville-Arnol'd
theorem (see [9]). Consider n (local) first integrals h", not necessarily in involution,
with dhl A • • • A dh" ^ 0. Change coordinates from (t, x", ua) to (t, xa, h") by locally
inverting the expressions for the h" in terms of the u" and set

Ec:={v e E \ ha(v) = ca, a = 1 , . . . , / » } .

We denote the exterior derivative on these level sets by dD (really the foliated derivative
so that D is an integrable distribution of dimension (n +1) tangent to Ec; see [9]). Now
if v e Ec then 9L(v) e T*EC because 9L has no dh" components in the coordinates
(t, x", h") or any other such coordinate map needed in an atlas for Ec. The Hamilton-
Jacobi equation for a local function G on E is

dDG = 9L.

(Note that dDG{v) e T^EC for v € Ec.)
This equation can be made less local by only asking that 6L be closed on Ec, however
the real restrictions lie with the level sets Ec themselves. For the remainder of the
paper all considerations are local in the sense that 9L will be assumed exact on such
level sets.

We define a pair ({/i1,. . . , h"}, G) or equivalently (D, G) to be a complete solution
of the Hamilton-Jacobi equation if it satisfies

dDG = 9L.

Proposition 3 below shows that the first integrals h" in a complete solution are in
involution.

In the coordinates (r, xa, h") the Hamilton-Jacobi equation becomes

dL dG
Ldt + —(dxa - uadt) = T{G)dt + (dxa - uadt),

dua dxa
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where the u" are of course functions of /, xa and the values of the h" on each leaf. In
the (t, x", h") coordinates we have

3 8
dt dxa

and the equations

_
dxa du°

are just the Hamilton-Jacobi equations pulled back to R x TM from K x T*M by
the Legendre transformation. Finding the function G thus means finding a complete
solution of the Hamilton-Jacobi equation.

The proof given in [9] of Liouville-Arnol'd theorem shows that complete integra-
bility guarantees a complete solution of the Hamilton-Jacobi equation. We will now
show that the inverse is also true.

PROPOSITION 3. The existence of a complete solution of the Hamilton-Jacobi equa-
tion guarantees complete integrability.

PROOF. Let G be a complete solution of the Hamilton-Jacobi equation. This implies
the existence of n local first integrals ha satisfying dhx A • • • A dh" ^ 0 such that
dDG = GL. So

dG = &L -\ dha

Adh"""(£)
in coordinates (t, x", h") related by local inversion of the expressions for the h" to the
coordinates (t, x", u"). Hence

d6L(Xlt.,Xh>) = 0

and so the ha are in involution and the system is completely integrable.

From now on we will assume that our system is completely integrable with respect
to L and that the n first integrals / " are in involution.

We now turn to the definitions of separability. It will be useful to adopt a notation
for declaring functional dependency. Here is an example of what we will use: let
K be a function on E with local coordinates (t, xa, ua) then K[t, ua] will be used in
place of K to indicate that the coordinate representation of K does not depend on the
functions x". It will also be useful to have some generic coordinates (x°, xa,f) for
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E. In general the maps x° and xa will not simply be composites of the maps t arid x"
but will also involve the / " (and hence the ua).

A complete solution G of the Hamilton-Jacobi equation is separable with respect
to coordinates (x°, xa,f) if

G[x°,xa,f] = Go[*0,/"] + • • • + Gn[xn,fa].

A complete solution G of the Hamilton-Jacobi equation is fully separable with respect
to coordinates (x°, xa,f) if

G[x°,x"Ja] = G0[x°,fa] + J2 Gb[xb]fb.
b=l

The following lemma indicates the relationship between fully separable coordinates
associated with a given set of involutive integrals. It is proved in [8].

LEMMA 1. If the Hamilton-Jacobi equation admits a solution of the form:

G[xo,xa,fa] = Go[xo,f]-fcxc

then it also admits a solution of the form

G[yo,ya,fa] = Go[yo,fa]-fcyc

in coordinates (x°, ya,f) where T(G0) = L and T{ya) = 0.

The dt-iree Cartan symmetries corresponding to a set of involutive first integrals
commute amongst themselves and with F, moreover they (along with F) form a basis
for tangent spaces of the common level sets of the first integrals. Consequently, these
n+1 fields are coordinate fields for the level sets. The obvious question then is whether
or not these coordinates provide separability for the corresponding Hamilton-Jacobi
equation.

The answer is generally no (the two dimensional Kepler problem is easily shown
to be a counter-example). The same observations can be made for the 0/,-free Cartan
symmetries and they also are inappropriate for the task (9L annihilates all these fields).
However, as it happens the appropriate coordinate fields, when they exist, are elements
of the transverse fields of Cartan symmetries of the involutive integrals.

For the sake of brevity we will write Xa := &~[l(df) for each of our involutive
integrals / " . We will write Ya for the df-free elements of [Xa] described in Proposi-
tion 2. In the following theorem we look for Wa € [Xa] with Wa = Ya+aaF so that,
along with F, these fields provide coordinate fields for coordinates (y°, ya) on the
level sets of the / " in which the solution of the Hamilton-Jacobi equation separates.
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THEOREM (Hamilton-Jacobi separability). The Hamilton-Jacobi equation admits a
solution of the form:

G[x°,xa,fb] = Go[x\fb}-fxa

if and only if

r(«fl) = o,

where the aa are defined by aaL := —f — 6L(Ya).

The proof is given in [8].

COROLLARY 1. If the Hamilton-Jacobi equation has a solution of the form:

G[y°,ya,fb] = Go[yo,fb]-fcyc

then there exists an equivalent solution of the form

G[y°,ya,fb] = Go[yo]-fcyc-

Again, we refer the reader to [8] for a proof.
The separability theorem takes on a simple form when the Lagrangian is itself a first

integral, in particular when it is a composite of the involutive integrals. The following
corollary shows that the Lagrangian is always a composite of the involutive integrals
associated with a fully separable solution.

COROLLARY 2 (Geodesic motion). Let T be the Euler field for geodesic motion
on an n-dimensional (pseudo-) Riemannian manifold M with Lagrangian L. If
{/',...,/"} are an involutive set with respect to L then the Hamilton-Jacobi equation
is fully separable with respect to this set if and only ifL is a composite of the f " 's.

PROOF. The condition of the separability theorem becomes T(aaL) = 0 since
F(L) = 0 by assumption. Using aaL = —f - 6L(Ya) this condition is

0 = r(6L(Ya)) = V(Ya(G)) = Y"{r(L)) = Ya(L),

where the second equality follows since the Y" are tangent to the level sets of the
/ a ' s . Now Y"(L) — 0 for a = 1 , . . . , n if and only if L is a composite of the / " ' s
because of the complete integrability and the assumption that f(L) = 0. Hence the
result follows.
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This result has broader applicability: suppose that L is one of the f's and that
we pose the question of separability with respect to the complementary involutive
integrals, the | £ 's (in the coordinates (y°, ya,f) for example). Because L is certainly
not a composite of these complementary integrals the corollary tells us that the system
is not separable with respect to these involutive integrals. The principle here is that
complete separability is probably in general a function of the involutive integrals
appearing in a given complete solution of the Hamilton-Jacobi equation. For this
reason it is rather difficult to formulate results claiming complete separability or its
absence based on the equations of motion alone.

4. Hamilton-Jacobi separability for the Kerr metric

Let I x M k the extended configuration space of the Kerr spacetime (M, g). We
will use Boyer-Lindquist coordinates (s, x°,xl,x2, JC3) := (5, t, r, 9, <j>) for R x M
where s is the proper time (we make this choice for cosmetic reasons). The remaining
natural coordinates for R. x TM are («").

The geodesic equations are completely integrable and the responsible involutive
integrals are

/ ' : = l-gabu
aub, f3: = -giau

a,

f2 : = -goaW, f4 : = X-Kabu°ub.

/ ' is just the geodesic Lagrangian L and K is Carter's Killing tensor [3]. The
corresponding rfr-free Cartan symmetries (see [10] and [11]) are

Y2 l , y4 ^ v r ( ^ V ) .
We can immediately apply Corollary 3 and say that the system is separable with

respect to this involutive set because / ' := L. It is a straightforward matter to show
that the corresponding or's are

f4

0(1 = 1, 0(2 = 0, « 3 = 0 , <X4 = —

(which are indeed all constant along the integral curves of F) so that the separable
coordinate fields for the level sets of the / 's are

T, Wl := A w2 := - , W3 := —, WA := Y4 + f—T.
as ot d<p L
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It is clear that these coordinates are not adapted to K x TM and full separability is
not achievable with coordinates from R x M although Carter [3] shows that ordinary
separability is possible. The relation between KxM separability and R x TM is dis-
cussed in general terms in [8]. We confess to not having computed the fully separable
coordinates (this is done by computing the J-£) although it would be interesting to
discuss the geodesic deviation in terms of the projected action of W4. From the point
of view of this paper the Kerr metric is important because it provides an example of a
fully separable system with T(L) = 0 which further has a hidden symmetry.

5. Residual actions of 50(3) and Carter's constant

There is a large literature concerning the physical interpretation of Carter's Killing
tensor conserved quantity for the Kerr metric. However, there appears to be nothing
written relating the constant to a corresponding quantity for the Schwarzschild solu-
tion. In [6] the Marsden-Weinstein symplectic reduction procedure is performed on
the Schwarzschild solution. Loosely, the procedure involves restricting the evolution
space action to the common level set of some m known first integrals; because the
corresponding Cartan fields will generally not all be tangent to this level set we look
for a residual symmetry group of dimension r, say, whose generators are tangent to the
set. (See Section 6.3 of Olver [7].) These generators are symmetries of the (restricted)
Cartan 2-form and so we have a reduced Lagrangian system with an r-dimensional
symmetry group and the procedure is then iterated. In the case of the Schwarzschild
metric, an initial choice of first integrals comprising L and the linear integrals cor-
responding to coordinate time translation and rotations (five altogether) produces an
Abelian residual symmetry group generated by ^ , j t , ji and the generator of rota-
tions about the direction of conserved angular momentum. This last generator is
r20-^ + r2tpjr; this field is the Cartan symmetry of (the quadratic integral) J2 so that
the residual symmetry group corresponds to the energy, the linear coordinate time in-
tegral, the z-component of angular momentum and the square of angular momentum
(three of which form the most celebrated set of integrals in mathematical physics).
This Abelian group acts on the 4-dimensional common level sets of the 5 integrals
and it gives a complete reduction of the problem at the next step (that is, a solution
of the geodesic equations). (Of course, the system is completely integrable with re-
spect to the four integrals corresponding to the residual symmetry group and so the
Liouville-Arnol'd theorem can be used to obtain the remaining integrals needed.)

Now the Kerr metric does not enjoy SO(3) invariance but the three symme-
tries £ , Jj, jj do commute and one might ask whether the Cartan symmetry for
Carter's constant reduces to the generator of the square of angular momentum in the
Schwarzschild limit. Godfrey [6] shows that this is the case. This is further evidence
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for the angular momentum at infinity interpretation of Carter's constant, but it also
suggests that the separability of the Hamilton-Jacobi equation for the two problems
are intimately related, with the failure of the Kerr metric to have fully separable co-
ordinates on K x M being due to the fact that the Cartan symmetry for the fourth
constant is not the generator of a residual action of a group action on K x M while
this is true for the Schwarzschild case. Presumably the fully separable coordinates for
the Kerr metric do reduce to the Schwarzschild ones in the limit; we leave this to the
interested reader.

6. Discussion

The relationship of the results presented here to the important theorems of Wood-
house and Benenti is as yet unclear. Woodhouse [14] deduces the existence of local
linear or quadratic first integrals from separability in just one spatial coordinate in
the L = T + U case. The best that we can do at the moment is to deduce from
full separability (in our sense) and the existence of a coordinate field lifted from the
base that a linear or quadratic integral exists (see [8]). The work of Benenti relates
specifically to general relativity and the key theorem for us is the one which guaran-
tees on an n—dimensional Riemannian manifold r ignorable (and hence separable)
coordinates on the spacetime if and only if there exist locally r Killing vectors and
n — r Killing tensors which commute and are independent and moreover there exist
n — r independent, orthogonal, commuting common eigenvector fields of the Killing
tensors which commute with the Killing vectors and are orthogonal to them (Theorem
2.7 of [1]). This theorem raises a number of questions: if the conditions of this
theorem are satisfied (so that clearly the system is completely integrable) then what
is the relationship between the non-projectable coordinate fields amongst our fully
separable basis for TE and the eigenvector fields of the theorem? Secondly, how does
orthogonality appear in our result where the manifold is the evolution space? And
finally, what role is played by the points in E where the coordinate inversion from
(s, x", u") to (s, xa,f) cannot be performed?

We hope to address these questions in detail in the near future.
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