Teaching Notes

On the bounds for the perimeter of an ellipse

Let $L(a, b)$ denote the perimeter of an ellipse with semi-axes a, b. It is well known that $\pi(a+b) \leqslant L(a, b) \leqslant 2 \pi \sqrt{\frac{a^{2}+b^{2}}{2}}$, with equality if, and only if, $b=a$. There are several proofs of this remarkable fact in the literature; see, for example, [1], [2] and [3]. The aim of this note is to compile a proof suitable for high school students as much as possible. We start with the standard parametrisation $x=a \cos t, y=b \sin t$ which gives rise to

$$
L(a, b)=4 \int_{0}^{\frac{\pi}{2}} \sqrt{a^{2} \cos ^{2} t+b^{2} \sin ^{2} t} d t
$$

Using the substitution $u=\frac{\pi}{2}-t$ we get $L(a, b)=L(b, a)$, hence

$$
L(a, b)=2 \int_{0}^{\frac{\pi}{2}}\left(\sqrt{a^{2} \cos ^{2} t+b^{2} \sin ^{2} t}+\sqrt{a^{2} \sin ^{2} t+b^{2} \cos ^{2} t}\right) d t
$$

Since $\quad\left(a^{2} \cos ^{2} t+b^{2} \sin ^{2} t\right)+\left(a^{2} \sin ^{2} t+b^{2} \cos ^{2} t\right)=a^{2}+b^{2} \quad$ and
$\frac{A+B}{2} \leqslant \sqrt{\frac{A^{2}+B^{2}}{2}}$ for all non-negative real A, B with equality if, and only if, $B=A$, we have

$$
\sqrt{a^{2} \cos ^{2} t+b^{2} \sin ^{2} t}+\sqrt{a^{2} \sin ^{2} t+b^{2} \cos ^{2} t} \leqslant 2 \sqrt{\frac{a^{2}+b^{2}}{2}}
$$

for each t, with equality for each t if, and only if, $b=a$. Therefore

$$
L(a, b)=2 \int_{0}^{\frac{\pi}{2}}\left(\sqrt{a^{2} \cos ^{2} t+b^{2} \sin ^{2} t}+\sqrt{a^{2} \sin ^{2} t+b^{2} \cos ^{2} t}\right) d t \leqslant 2 \pi \sqrt{\frac{a^{2}+b^{2}}{2}}
$$

with equality if, and only if, $b=a$.
Also since $\left(\cos ^{2} t+\sin ^{2} t\right)^{2}=1$ we get $\cos ^{4} t+\sin ^{4} t=1-2 \cos ^{2} t \sin ^{2} t$, whence

$$
\begin{aligned}
& \left(a^{2} \cos ^{2} t+b^{2} \sin ^{2} t\right)\left(a^{2} \sin ^{2} t+b^{2} \cos ^{2} t\right) \\
= & a^{2} b^{2}\left(1-2 \cos ^{2} t \sin ^{2} t\right)+\left(a^{4}+b^{4}\right) \cos ^{2} t \sin ^{2} t \\
= & a^{2} b^{2}+\left(a^{2}-b^{2}\right)^{2} \cos ^{2} t \sin ^{2} t,
\end{aligned}
$$

and hence

$$
\begin{aligned}
& \left(\sqrt{a^{2} \cos ^{2} t+b^{2} \sin ^{2} t}+\sqrt{a^{2} \sin ^{2} t+b^{2} \cos ^{2} t}\right)^{2} \\
= & a^{2}+b^{2}+2 \sqrt{a^{2} b^{2}+\left(a^{2}-b^{2}\right)^{2} \cos ^{2} t \sin ^{2} t} \geqslant(a+b)^{2}
\end{aligned}
$$

for each t, with equality for each t if, and only if, $b=a$, giving

$$
L(a, b)=2 \int_{0}^{\frac{\pi}{2}}\left(\sqrt{a^{2} \cos ^{2} t+b^{2} \sin ^{2} t}+\sqrt{a^{2} \sin ^{2} t+b^{2} \cos ^{2} t}\right) d t \geqslant \pi(a+b)
$$

with equality if, and only if, $b=a$. Thus

$$
\pi(a+b) \leqslant L(a, b) \leqslant 2 \pi \sqrt{\frac{a^{2}+b^{2}}{2}}
$$

with equality if, and only if, $b=a$ as required.

References

1. M. S. Klamkin, Elementary approximations to the area of n-dimensional ellipsoids, Amer. Math. Monthly, Vol. 78, No. 3 (March 1971) pp. 280283.
2. R. E. Pfiefer, Bounds on the perimeter of an ellipse via Minkowski sums, The College Mathematics Journal, Vol. 19, No. 4 (Sept. 1988), pp. 348-350.
3. G. J. O. Jameson, Inequalities for the perimeter of an ellipse, Math. Gaz. 98 (July 2014) pp. 227-234.
doi:10.1017/mag.2015.102
IVICA GUSIĆ
Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia e-mail: igusic@fkit.hr

Cauchy-Schwarz via collisions

Consider a line of n railway trucks with masses $m_{1}, m_{2}, \ldots, m_{n}$ moving on a smooth straight track with velocities $v_{1}>v_{2}>\ldots>v_{n}$ (with negative velocities allowed) and spaced so that they successively couple together in the order Truck $n-1$ to Truck n, Truck $n-2$ to Trucks $n-1$ and n, Truck $n-3$ to Trucks $n-2$ and $n-1$ and n, etc. If, when all n trucks are coupled together, their common velocity is V, conservation of momentum shows that $V=\frac{\sum m_{i} v_{i}}{\sum m_{i}}$. But kinetic energy cannot be gained in the collisions, so

$$
\frac{1}{2} \sum m_{i} v_{i}^{2} \geqslant \frac{1}{2}\left(\sum m_{i}\right) V^{2}=\frac{1}{2} \frac{\left(\sum m_{i} v_{i}\right)^{2}}{\sum m_{i}}
$$

and thus

$$
\begin{equation*}
\left(\sum m_{i} v_{i}\right)^{2} \leqslant\left(\sum m_{i}\right)\left(\sum m_{i} v_{i}^{2}\right) . \tag{*}
\end{equation*}
$$

Moreover, physical intuition suggests that no kinetic energy will be lost only in the special case in which $v_{1}=v_{2}=\ldots=v_{n}$ where there are no collisions and the total kinetic energy is the same whether the trucks are viewed individually or en masse.

