EMBEDDING CIRCLE-LIKE CONTINUA IN E^{3}

B. J. BALL AND R. B. SHER

1. Introduction. A space X is locally planar if each point of X has a neighborhood which is embeddable in the plane. If X is a closed, locally planar subset of \mathbf{E}^{3}, we will say that X is locally tame if each point of X has a neighborhood in X which lies on a tame disk in \mathbf{E}^{3}; if every cell-like subset of X has such a neighborhood, we say that X is strongly locally tame.

Our principal result is that every circularly chainable continuum has a strongly locally tame embedding in $\mathbf{E}^{\mathbf{3}}$. (It follows from the argument for Theorem 8 of [6] that every circularly chainable continuum is locally planar.)

As an application, we show that for any pseudosolenoid X, the hyperspace $C(X)$ of subcontinua of X has a particularly nice embedding in \mathbf{E}^{4}, and that (X) is embeddable in \mathbf{E}^{3} if and only if X is embeddable in \mathbf{E}^{2}.
2. Definitions and conventions. Much of our terminology is standard and will not be repeated here. We use the terms chainable and circularly chainable as synonymous with "snake-like" and "circle-like" as defined in [6], and adopt the usual definitions and notations relating to upper semicontinuous decompositions.

We use the term pseudosolenoid, suggested by C. E. Burgess (MR 41, \#9213), for any hereditarily indecomposable, circularly chainable continuum which is not chainable; we do not require that a pseudosolenoid be non-planar. (It follows from [11], however, that the only planar pseudosolenoid is the pseudocircle.)

A subset of \mathbf{E}^{n} is said to be cellular in \mathbf{E}^{n} if it is the intersection of a sequence $\left\{C_{i}\right\}$ of n-cells in \mathbf{E}^{n} with $C_{i+1} \subset$ Int C_{i} for each i; a continuum is cell-like if it can be embedded in some \mathbf{E}^{n} so as to be cellular there. A map is cell-like if the preimage of each point is cell-like, and a decomposition is cell-like if each of its elements is cell-like. Several useful characterizations and many of the basic properties of cell-like spaces and maps are given in [17].

If X is a closed subset of a metric space M and G_{0} is an upper semicontinuous decomposition of X, then the trivial extension of G_{0} (obtained by adding to G_{0} all singletons in $M-X$) is called the decomposition of M generated by G_{0}. As in [1], a cell-like upper semicontinuous decomposition G of a metric space M is said to be simple if $M / G \approx M$, and a closed subset X of M is said to be simply embedded in M if every simple decomposition of X generates a simple

[^0]decomposition of M; if every cell-like upper semicontinuous decomposition of X generates a simple decomposition of M, then X is said to be strongly simply embedded in M.
3. Preliminary remarks and examples. There are two commonly used definitions of "tame" for closed subsets X of \mathbf{E}^{3} : (1) if X is homeomorphic to a polyhedron, then X is tame if there is a homeomorphism $h: \mathbf{E}^{3} \rightarrow \mathbf{E}^{3}$ such that $h(X)$ is a (geometric) polyhedron in \mathbf{E}^{3}, and (2) if X is a subset of a compact 2-manifold with boundary in \mathbf{E}^{3}, then X is tame if it lies on a tame 2-manifold with boundary (see [10, pp. 266, 333]). If X is a closed subset of \mathbf{E}^{3} satisfying the hypothesis of (1) or (2) above, then X is locally tame if each point of X has a neighborhood in X whose closure is tame in the appropriate sense.

Since every subset of a 2 -manifold with boundary is locally planar, our definition of locally tame, as given in the introduction, is an extension of the second of the above definitions of "locally tame" (we do not propose a definition of "tame" applicable to all closed, locally planar subsets of \mathbf{E}^{3}).

It follows from a result due to J. W. Cannon [10, Theorem 11.1.1] that if X is a closed, locally planar subset of \mathbf{E}^{3} which is locally tame (in our sense), then every closed subset of X which lies on a compact 2 -manifold with boundary in \mathbf{E}^{3} is tame. In particular, if X itself lies on a compact 2 -manifold with boundary, then X is strongly locally tame, since every cell-like subset of a tame 2 -manifold with boundary lies on a tame disk. It is shown below, however, that locally tame closed subsets of \mathbf{E}^{3} need not in general be strongly locally tame.

It follows from [1, Theorem 4.2] that every strongly locally tame closed subset of \mathbf{E}^{3} is strongly simply embedded in \mathbf{E}^{3}. Although a locally tame subset of \mathbf{E}^{3} need not be simply embedded (Example 3.2), it is true that for each compact locally tame set X there is a positive number ϵ such that every cell-like upper semicontinuous ϵ-decomposition of X generates a simple decomposition of \mathbf{E}^{3}; it is only necessary to cover X with a finite number of open subsets of X each of which lies in a tame disk, choose ϵ to be a Lebesgue number for this cover, and apply Theorem 4.2 of [$\mathbf{1}]$.
3.1 Example. A locally planar continuum in \mathbf{E}^{3} which is locally tame but not strongly locally tame. Let Y denote the continuum obtained by modifying the construction of the arc of Example 1.1 of [12] by using, in place of the cylinder C, the set C^{\prime} defined by $y^{2}+z^{2} \leqq 2,-1 \leqq x \leqq 1,-1 \leqq z \leqq 1$ and, instead of the ellipsoid $x^{2}+4 y^{2}+4 z^{2} \leqq 4$, the solid K defined by $x^{2}+4 y^{2} \leqq 4$, $-1 \leqq z \leqq 1$. The remainder of the construction is carried out exactly as in [12], with the additional stipulation that for each n, the homeomorphism f_{n} of C^{\prime} onto D_{n} is required to preserve z-coordinates. A comparison of Figures 1 and 2 with the corresponding figures of [12] should make the construction apparent.

Figure 1

Y
Figure 2
If p is a point of one of the limit intervals A, B of Figure 2, there is a small closed neighborhood of p in Y which consists of a sequence of tame arcs converging nicely to an interval, and which may be taken into the $x z$-plane by a space homeomorphism. It follows that Y is locally tame.

If a cell-like subset of \mathbf{E}^{3} lies on a tame disk, it is cellular in \mathbf{E}^{3}; since Y is homeomorphic to a "double sin $(1 / x)$ " curve, it is cell-like, and since $\mathbf{E}^{3}-Y$ is homeomorphic to the complement of the arc of Example 1.1 of [12], Y is not cellular in \mathbf{E}^{3}. It follows that Y is not strongly locally tame.

We note that Y is not strongly simply embedded in \mathbf{E}^{3} since the cell-like decomposition of Y whose only element is Y itself does not generate a simple decomposition of \mathbf{E}^{3}. If G_{0} is any simple decomposition of Y, however, then G_{0} has only a countable number of nondegenerate elements, each of which is a tame arc, and it follows from [5, Theorem 3] that G_{0} generates a simple
decomposition of \mathbf{E}^{3}. Hence Y is simply embedded in $\mathbf{E}^{\mathbf{3}}$; using the continuum Y, however, it is easy to construct a non-simply embedded example.
3.2 Example. A locally planar continuum in \mathbf{E}^{3} which is locally tame but not simply embedded. Let K_{1}, K_{2}, \ldots be a sequence of disjoint copies of the solid K used in the construction of Y, each having its upper and lower bases on the planes $z=1$ and $z=-1$, respectively, such that $\left\{K_{i}\right\}$ converges to a vertical interval Z. For each i, let Y_{i} be a continuum constructed in K_{i} exactly as Y was constructed in K, and let α_{i} be a horizontal interval on the x-axis irreducible from K_{i} to K_{i+1}. Let

$$
X=Z \cup \bigcup_{i=1}^{\infty} Y_{i} \cup \bigcup_{i=1}^{\infty} \alpha_{i} .
$$

It is not difficult to see that X is locally tame, and it is clear that X / Y_{2} is homeomorphic to X. If G_{0} is the decomposition of X generated by $\left\{Y_{2}\right\}$, then G_{0} is a simple decomposition of X which does not generate a simple decomposition of \mathbf{E}^{3} (since Y_{2} is not cellular), and hence X is not simply embedded in \mathbf{E}^{3}.

Since X and Y are embeddable in the plane, it is clear that these continua can be strongly simply embedded in \mathbf{E}^{3} [1, Lemma 4.1]. It would be interesting to know whether every locally planar continuum which is embeddable in \mathbf{E}^{3} has a simple embedding, or a locally tame embedding. We do not know the answer even for locally planar tree-like continua. In the next section, however, it is shown that every circularly chainable continuum has a strongly locally tame (and therefore a strongly simple) embedding in \mathbf{E}^{3}.
4. Embedding circle-like continua in E^{3}. A solid torus is a homeomorphic image of $B^{2} \times S^{1}$. Whenever we speak of a solid torus T we shall always assume given a particular homeomorphism $h: B^{2} \times S^{1} \rightarrow T$. The core of T is $h\left(\{0\} \times S^{1}\right)$ and a cross-section of T is a 2 -cell of the form $h\left(B^{2} \times\{p\}\right)$ for some $p \in S^{1}$. Notice that the core and cross-sections depend on the choice of h and that distinct cross-sections are disjoint. A section of T is a 3-cell of the form $h\left(B^{2} \times A\right)$ where A is an arc in S^{1}. If p and q are the endpoints of A, then $B^{2} \times\{p\}$ and $B^{2} \times\{q\}$ are the ends of the section. A choice of $n \geq 3$ distinct points $a_{1}, a_{2}, \ldots, a_{n}$ of S^{1} determines a collection $L_{1}, L_{2}, \ldots, L_{n}$ of sections of T whose union is T and such that if $1 \leqq i<j \leqq n$, then $L_{i} \cap L_{j}$ is either empty or an end of each of $L i$ and $L j$. Such a choice is called a sectioning of T into $L_{1}, L_{2}, \ldots, L_{n}$. We shall usually deal with sectioned solid tori and, when a sectioning of T into $L_{1}, L_{2}, \ldots, L_{n}$ has been given, we shall simply refer to $L_{1}, L_{2}, \ldots, L_{n}$ as "the sections" of T. Suppose T has been assigned a metric and that ϵ is a positive number. Then a sectioning of T is said to be an ϵ-sectioning provided each of its sections has diameter less than ϵ. Finally, an annular web of T is an annulus A in T such that if $D=h\left(B^{2} \times\{p\}\right)$ is a cross-section of $T, A \cap D$ is an arc spanning D and $h((0, p)) \in A \cap D$.

The proof of the following fact is implicit in [6]. (In particular, see [6, Theorems 4 and 8 and the remarks in the first paragraph on p. 120].)
4.1 Theorem (Bing). If X is a circularly chainable continuum, then there exists a homeomorphic image X^{\prime} of X in \mathbf{E}^{3} such that $X^{\prime}=\bigcap_{i=1}^{\infty} T_{i}$ where
(1) if $i=1,2, \ldots$, then T_{i} is a smooth solid torus whose interior contains T_{i+1},
(2) if $i=1,2, \ldots$, then T_{i} has an ϵ_{i}-sectioning where $\lim _{i \rightarrow \infty} \epsilon_{i}=0$, and
(3) if $i=1,2, \ldots$ and L is a section of T_{i}, then $L \cap T_{i+1}$ is a union of sections of T_{i+1}.

We now state the main result of this section.
4.2 Theorem. Every circularly chainable continuum can be embedded in \mathbf{E}^{3} as a strongly locally tame subset; in fact, any such continuum can be embedded so that every closed proper subset lies on a tame disk.

Remarks. It is well-known that every chainable continuum is embeddable in \mathbf{E}^{2}, and hence it is sufficient to consider only those circularly chainable continua X which are not chainable; we shall construct, for each such continuum, a homeomorphic image X^{\prime} of X in \mathbf{E}^{3} as the intersection of a sequence of solid tori having properties (1)-(3) of Theorem 4.1. However, this in itself will not be enough to guarantee that the theorem is true. For example, the simple closed curve J of [4] is constructed as the intersection of such a sequence, yet $n o$ subcontinuum of J can be pushed into the $x y$-plane by a homeomorphism of \mathbf{E}^{3} onto itself. Thus, we shall need to require much more of the sequence defining X^{\prime}. We also note that Bing showed [6, Theorem 8] that there is a homeomorphic image of X lying in Z, where Z is the union of the $x y$-plane and the upper half of the $x z$-plane. But this is again insufficient to obtain the conclusion of Theorem 4.2 since there is, for example, a simple closed curve J which lies in Z and contains a wild arc.

Proof of Theorem 4.2. Suppose X is a circularly chainable continuum which is not chainable and let $\mathscr{C}_{1}, \mathscr{C}_{2}, \ldots$ be a sequence of circular chains defining X whose meshes converge rapidly to 0 (see the proof of Theorem 4 of [6]). Let n_{i} denote the number of links in \mathscr{C}_{i}.
(1) The construction of T_{1}. Let J_{1} be a smooth simple closed curve in the $x y$-plane which is the union of n_{1} arcs, pairwise disjoint except possibly for endpoints and each of diameter less than 1 . To simplify the construction at later stages, we require that J_{1} contain a straight segment parallel to the x-axis. T_{1} is a small tubular neighborhood of J_{1}, chosen so that there is a circular chain \mathscr{T}_{1} having n_{1} links, each of diameter less than 1 , such that the union of the links of \mathscr{T}_{1} is $\operatorname{Int} T_{1}$. The core of T_{1} is J_{1} and the cross-sections of T_{1} are circular disks lying in planes normal to J_{1}. The intersection of T_{1} with the $x y$-plane is an annular web of T_{1}, which we denote by A_{1}. We further suppose that T_{1} has a 1 -sectioning and that some section, which we denote by
K_{1}, intersects J_{1} in a straight segment parallel to the x-axis and has the property that $K_{1} \cap$ Int T_{1} lies in a link of \mathscr{T}_{1}.

Remarks. The section K_{1} singled out in the above construction is the "crossing-section" of T_{1}. Each T_{i} we construct will have a smooth core J_{i}, a smooth annular web A_{i}, and a crossing-section K_{i} such that $K_{i} \cap A_{i}$ lies in the $x y$-plane and $K_{i} \cap J_{i}$ is a straight segment parallel to the x-axis. Furthermore, we will have $K_{i} \supset$ Int $K_{i} \supset K_{i+1}$, mesh $K_{i} \rightarrow 0$, and $X^{\prime}-K_{i} \subset A_{i}$.
(2) The construction of T_{2}. Let $T_{1}{ }^{\prime}$ denote a small tubular neighborhood of J_{1} lying in Int T_{1} and having a $\frac{1}{2}$-sectioning such that if L is a section of T_{1}, then $L \cap T_{1}{ }^{\prime}$ is a union of sections of $T_{1}{ }^{\prime} . J_{1}$ is the core of $T_{1}{ }^{\prime}$ and the crosssections of $T_{1}{ }^{\prime}$ are the intersections of $T_{1}{ }^{\prime}$ with the cross-sections of T_{1}. $A_{1} \cap T_{1}{ }^{\prime}=A_{1}{ }^{\prime}$ is an annular web of $T_{1}{ }^{\prime}$.

We will construct J_{2}, a smooth simple closed curve circling \mathscr{T}_{1} just as \mathscr{C}_{2} circles \mathscr{C}_{1}. J_{2} will be the union of n_{2} arcs, pairwise disjoint except possibly for endpoints and each of diameter less than $\frac{1}{2}$. J_{2} will lie in Int T_{1}^{\prime} and will pierce the ends of the sections of $T_{1}{ }^{\prime}$ normally. Also, $J_{2}-K_{1}$ will lie in $A_{1}{ }^{\prime}$.

Establish polar coordinates (r, θ) in $A_{1}{ }^{\prime}$ so that $1 \leqq r \leqq 3,0 \leqq \theta<2 \pi$, J_{1} is the set $\{(r, \theta) \mid r=2\}$, and $K_{1} \cap A_{1}{ }^{\prime}$ is the set

$$
\{(r, \theta) \mid 1 \leqq r \leqq 3, \pi / 4 \leqq \theta \leqq 3 \pi / 4\}
$$

We can suppose that for each $k \in[1,3]$, the simple closed curve $\{(r, \theta) \mid r=k\}$ intersects K_{1} in a segment parallel to the x-axis and that for each $k \in[\pi / 4$, $3 \pi / 4]$, the $\operatorname{arc} \theta=k$ intersects K_{1} in a segment perpendicular to the x-axis. We begin the construction of J_{2} by constructing the smooth arc $J_{2} \cap A_{1}{ }^{\prime}$. $J_{2} \cap A_{1}{ }^{\prime}$ circles \mathscr{T}_{1} as \mathscr{C}_{2} circles \mathscr{C}_{1}, and has its endpoints in Int K_{1}. The construction of J_{2} will be completed by joining the endpoints of $J_{2} \cap A_{1}{ }^{\prime}$ by an arc in $T_{1}{ }^{\prime} \cap$ Int $K_{1} . J_{2} \cap A_{1}{ }^{\prime}$ is constructed as the image of a smooth nonsingular path $\alpha:[0,1] \rightarrow A_{1}{ }^{\prime}$.

We construct the path so that if $0 \leqq s<t \leqq 1$, then $r(\alpha(s))$, the r-coordinate of $\alpha(s)$, is not smaller than $r(\alpha(t))$. We also require that

$$
r(\alpha(0))=r(\alpha(1 / 20))=5 / 2, r(\alpha(1 / 10))<5 / 2, r(\alpha(9 / 10))>2
$$

and $r(\alpha(19 / 20))=r(\alpha(1))=2$. In addition, if $\theta(p)$ denotes the θ-coordinate of p, then $\theta \alpha$ is increasing on $[0,1 / 10]$ and on $[9 / 10,1]$ with $\theta \alpha(0)=5 \pi / 8$, $\theta(\alpha(1 / 10))=3 \pi / 4, \theta(\alpha(9 / 10))=\pi / 4$, and $\theta(\alpha(1))=3 \pi / 8$ (See Figure 3). We then complete the construction of J_{2} by adding the $\operatorname{arc} B$ as shown in Figure 3. The interior of B lies above the $x y$-plane and the projection π of \mathbf{E}^{3} onto the $x y$-plane carries B homeomorphically onto $\pi(B)$. These special properties are possible to obtain since $K_{1} \cap$ Int T_{1}^{\prime} lies in a link of \mathscr{T}_{1}.
T_{2} will be a small tubular neighborhood of $J_{2} . J_{2}$ is the core of T_{2}, and the cross-sections of T_{2} lie in planes normal to J_{2}. We also choose T_{2} so that if p is a point in the closure of $T_{2} \cap A_{1}^{\prime}-K_{1}$, then $2<r$-coordinate of $p<5 / 2$. Also, there is a circular chain \mathscr{T}_{2} having n_{2} links, each of diameter less than $\frac{1}{2}$,

Figure 3
and circling \mathscr{T}_{1} as \mathscr{C}_{2} circles \mathscr{C}_{1}, such that the union of the links of \mathscr{T}_{2} is Int T_{2}.
(3) The construction of A_{2}. We section T_{2} so that the intersection of T_{2} with any section of $T_{1}{ }^{\prime}$ is a union of sections of T_{2}. This is possible since J_{2} pierces the ends of the sections of $T_{1}{ }^{\prime}$ normally. Note that this gives us a $\frac{1}{2}$-sectioning of T_{2}. We may suppose that the sectioning is such that there are four adjacent sections K_{2}, M_{1}, N, and M_{2} such that

$$
K_{2} \cap J_{2}=\alpha([19 / 20,39 / 40]), M_{1} \cap J_{2}=\alpha([39 / 40,1]), N \cap J_{2}=B
$$

and $M_{2} \cap J_{2}=\alpha([0,1 / 20])$.
Now we are ready to define $A_{2} . A_{2}$ is chosen so that

$$
A_{2} \cap\left(T_{2}-M_{1} \cup N \cup M_{2}\right)=A_{1}^{\prime} \cap\left(T_{2}-M_{1} \cup N \cup M_{2}\right)
$$

We may suppose that K_{2} lies in a link of \mathscr{T}_{2}, so that K_{2} becomes the crossingsection of T_{2}. Now, $A_{2} \cap\left(M_{1} \cup N \cup M_{2}\right)$ is constructed as in Figure 4.
A_{2} is twisted inside M_{1} and M_{2} and the part of A_{2} inside N is constructed so that π carries $A_{2} \cap N$ homeomorphically into the $x y$-plane. The reason for twisting A_{2} inside M_{1} and M_{2} will become clear in (4) below.
(4) The homeomorphisms h_{L}. Let L be a section of T_{2} which does not lie in K_{1}. Then there is a homeomorphism h_{L} of \mathbf{E}^{3} onto itself such that h_{L} is fixed outside $T_{1}{ }^{\prime}, h_{L}$ carries each cross-section of T_{1}^{\prime} onto itself, and h_{L} carries the closure of $A_{2}-L$ into A_{1}. The construction of h_{L} is perhaps best indicated by Figures 5-8.
$L \cup M_{2}$ separates T_{2} into two components, R_{1} and R_{2}, one of which, say R_{1},

Figure 4

Figure 5

Figure 6

Figure 7
fails to contain K_{2}. We first move R_{1} "out from under B " by "untwisting" at M_{2} via a homeomorphism τ_{1} of \mathbf{E}^{3} onto itself fixed outside $T_{1}{ }^{\prime}$ and carrying each cross-section of $T_{1}{ }^{\prime}$ onto itself. In each cross-section Q of $T_{1}{ }^{\prime}, R_{1} \cap Q$ is rotated by τ_{1} about the point of $A_{1}{ }^{\prime} \cap Q$ with r-coordinate $5 / 2$ while $R_{2} \cap Q$ remains fixed. τ_{1} carries $A_{2} \cap\left(R_{1} \cup M_{2}\right)$ into $A_{1}{ }^{\prime}$; See Figure 6; the homeomorphism τ_{1} introduces a half-twist in the part of A_{2} lying inside L, but this is not indicated in the figure. The next move is similar. $M_{1} \cup \tau_{1}(L)$ separates $\tau_{1}\left(T_{2}\right)$ into two components, S_{1} and S_{2}, one of which, say S_{1}, fails to intersect

K_{2}. We "untwist" at M_{1} via a homoemorphism τ_{2} which is fixed on S_{2} and carries $\tau_{1}\left(A_{2}-(L \cup N)\right)$ into $A_{1}{ }^{\prime} . \tau_{2}$ carries $A_{2} \cap N$ below the $x y$-plane; see Figure 7. τ_{2} introduces another half-twist in the part of $\tau_{1}\left(A_{2}\right)$ lying inside $\tau_{1}(L)$, so that $\tau_{2} \tau_{1}\left(A_{2}\right)$ has two half-twists inside $\tau_{2} \tau_{1}(L)$. There are now no twists in $\tau_{2} \tau_{1}\left(A_{2}\right)$ outside $\tau_{2} \tau_{1}(L)$, however, and hence we can press $\tau_{2} \tau_{1}\left(A_{2} \cap N\right)$ into the $x y$-plane via a homeomorphism τ_{3} which is fixed outside $T_{1}{ }^{\prime}$, fixed on $\tau_{2} \tau_{1}\left(T_{2}-N\right)$, and carries cross-sections of $T_{1}{ }^{\prime}$ onto themselves; see Figure 8 . Then $h_{L}=\tau_{3} \tau_{2} \tau_{1}$. We note that the image, under h_{L}, of any section of T_{2} lies in a section of $T_{1}{ }^{\prime}$, and hence has diameter less than $\frac{1}{2}$.

Remarks. Had we begun with a δ-sectioning of $T_{1}{ }^{\prime}$ we would have obtained a δ-sectioning of T_{2} so that the image under h_{L} of any section of T_{2} has diameter less than δ. This observation is needed for the construction of T_{3}, T_{4}, \ldots. We also note that any homeomorphism of \mathbf{E}^{3} onto itself which is fixed outside T_{2}, and which carries each cross-section of T_{2} onto itself, also carries each section of T_{1} onto itself.
(5) Completing the construction. We continue the process begun above to construct solid tori $T_{1}, T_{2}, T_{3}, \ldots$ such that $T_{i} \supset \operatorname{Int} T_{i} \supset T_{i+1}$ and $X^{\prime}=\bigcap_{i=1}^{\infty} T_{i} \approx X$. Each T_{i} has an associated smooth annular web A_{i} and a ($1 / i$)-sectioning into $K_{i}, L_{1}{ }^{i}, L_{2}{ }^{i}, \ldots, L_{m_{i}}{ }^{i}$. If L is a section of T_{i}, then $L \cap T_{i+1}$ is a union of sections of T_{i+1}.

If $i \geqq 1$ and $L_{j}{ }^{i+1}$ is a section of T_{i+1} not lying in K_{i}, then there is a homeomorphism $h_{j}{ }^{i+1}$ of \mathbf{E}^{3} onto itself which is the identity outside T_{i}, which carries cross-sections of T_{i} onto themselves, and which carries the closure of
$A_{i+1}-L_{j}{ }^{i+1}$ into A_{i}. Using the remark at the end of (4), we may section T_{i+1} finely enough that if $2 \leqq s \leqq i$ and $J_{s}, j_{s+1}, \ldots, j_{i}$ are integers such that $h_{j_{s}}{ }^{s}, h_{j_{s+1}}{ }^{s+1}, \ldots, h_{j_{i}}{ }^{i}$ are defined, then the image of every section of T_{i+1} under the composition $h_{j_{s}}{ }^{s} h_{j_{s+1}}{ }^{s+1} \ldots h_{j_{i}}{ }^{i} h_{j}{ }^{i+1}$ has diameter less than $1 / i+1$. We also note that if $1 \leqq k \leqq i$, then the image of each section of T_{k} under this

(6) The strong local tameness of X^{\prime}. It will be shown that each closed proper subset of X^{\prime} lies on a tame disk, and this will imply, in particular, that X^{\prime} is strongly locally tame in \mathbf{E}^{3}. (If K is a cell-like subset of X^{\prime}, then $K \neq X^{\prime}$, since X^{\prime} is not chainable, and hence some closed neighborhood of K in X^{\prime} is a proper subset of X^{\prime}.)

Suppose Y is a closed proper subset of X^{\prime}. Then there exists an integer $i \geqq 2$ such that not every section of T_{i} intersects Y. If K_{i} fails to intersect Y, then there exists a homeomorphism of \mathbf{E}^{3} onto itself carrying $A_{i}-K_{i}$, and hence Y, into the $x y$-plane.

Otherwise, let $L_{j_{i}}{ }^{i}$ be a section of T_{i} which fails to intersect Y. Let $L_{j_{i}}{ }^{i} \supset L_{j_{i+1}}{ }^{i+1} \supset \ldots$ be sections. If $r \geqq i+1$, let f_{r} denote the homeomorphism $h_{j i+1}{ }^{i+1} h_{j_{i+2}}{ }^{i+2} \ldots h_{j_{r}{ }^{\tau}}$. Then the sequence $\left\{f_{r}\right\}_{r=i+1}^{\infty}$ converges to a homeomorphism f of \mathbf{E}^{3} onto itself which carries $X^{\prime}-L_{j_{i}}{ }^{i}$ into $A_{i}-L_{j_{i}}{ }^{i}$. But $A_{i}-L_{j i}{ }^{i}$ can be carried into the $x y$-plane by a homeomorphism of \mathbf{E}^{3} onto itself, and the proof is complete.
5. An application to hyperspaces. For any continuum X, the hyperspace of subcontinua of X (with the Hausdorff metric) will be denoted by $C(X)$. It has been shown recently that if X is a chainable continuum [13] or a circularly chainable plane continuum [19], then $C(X)$ is embeddable in \mathbf{E}^{3}. Earlier, Transue [22] had given a very nice, explicit embedding of $C(X)$ into \mathbf{E}^{3} when X is a pseudoarc (or any hereditarily indecomposable plane continuum which does not separate the plane).

It follows from known results $[\mathbf{2 0} ; \mathbf{1 5}]$ that $C(X)$ is embeddable in \mathbf{E}^{4} if X is any circularly chainable continuum. We show below that if X is a pseudosolenoid, Theorem 4.2 can be used to give an explicit embedding of $C(X)$ in \mathbf{E}^{4}, completely analogous to Transue's embedding into \mathbf{E}^{3} of the hyperspace of a pseudoarc. It is also shown that $C(X)$ is not embeddable in \mathbf{E}^{3} unless X is embeddable in \mathbf{E}^{2}.

Let X be a pseudosolenoid and let $\mu: C(X) \rightarrow[0,1]$ be defined as in [23]. Since $\mu(A)<\mu(B)$ whenever A is a proper subset of B, it follows that $\mu(\{x\})=0$ for each $x \in X$; clearly it may be assumed that $\mu(X)=1$. Since X is hereditarily indecomposable, if $\mu(A)=\mu(B)$ and $A \cap B \neq \emptyset$, then $A=B$; hence for each $t \in[0,1), \mu^{-1}(t)$ is a collection of disjoint proper subcontinua of X which, as shown in [16], forms a continuous decomposition of X. (It is easy to show that $\mu^{-1}(t)$, with the topology it inherits as a subspace of $C(X)$, is homeomorphic to $X / \mu^{-1}(t)$, with the decomposition topology.)

We regard \mathbf{E}^{4} as $\mathbf{E}^{3} \times \mathbf{E}^{1}$, with \mathbf{E}^{3} identified with $\mathbf{E}^{3} \times\{0\}$, and we denote the projection onto the second coordinate by π_{2}.
5.1. Theorem. If X is a pseudosolenoid, there is an embedding $\varphi: C(X) \rightarrow \mathbf{E}^{4}$ such that the diagram

is commutative.
Proof. By Theorem 4.2 and Theorem 4.2 of [1], it may be assumed that X is strongly simply embedded in \mathbf{E}^{3}. Let

$$
F=\left\{(x, t) \in \mathbf{E}^{3} \times \mathbf{E}^{1} \mid x \in X, t \in[0,1]\right\}
$$

and let B be a (spherical) ball in $\mathbf{E}^{3} \times\{1\}$ which contains $X \times\{1\}$. For each $t \in[0,1]$, let $G_{t}=\left\{g \times\{t\} \mid g \in \mu^{-1}(t)\right\}$ and let $G_{1}=\{B\}$. For $t \in[0,1), G_{t}$ is cell-like decomposition of $X \times\{t\}$ and hence, since X is strongly simply embedded in \mathbf{E}^{3}, G_{t} generates a simple decomposition of $E^{3} \times\{t\}$. Let $\left.G=\bigcup\left\{G_{t} \mid t \in[0,1]\right)\right\}$; it is clear that G is an upper semicontinuous decomposition of $F \cup B$. Since for each $t \in[0,1], G_{t}$ generates a simple decomposition of $\mathbf{E}^{3} \times\{t\}$, it follows from the Addendum to Corollary 4 of [21] that G generates a simple decomposition \widetilde{G} of \mathbf{E}^{4} and, in fact, there is a map $f: \mathbf{E}^{4} \rightarrow \mathbf{E}^{4}$ such that $\widetilde{G}=\left\{f^{-1}(p) \mid p \in \mathbf{E}^{4}\right\}$ and such that for each $t \in \mathbf{E}^{1}, f\left(\mathbf{E}^{3} \times\{t\}\right)=$ $\mathbf{E}^{3} \times\{t\}$.

Define $\varphi: \mathrm{C}(X) \rightarrow f(F \cup B)$ by setting $\varphi(X)=f(B)$ and $\varphi(g)=f(g \times\{t\})$ if $\mu(g)=t<1$. It follows exactly as in [22] that φ is a homeomorphism, and it is clear that the desired commutativity condition holds.

It is shown in [19] that if X is a nonplanar solenoid, then $C(X)$ is homeomorphic to $K(X)$, the cone over X, and hence [2] $C(X)$ is not embeddable in \mathbf{E}^{3}. We will show that the hyperspace of a nonplanar pseudosolenoid is also not embeddable in \mathbf{E}^{3}; the method of [19] does not apply here since if X is a pseudosolenoid, or any hereditarily indecomposable continuum, then $C(X)$ and $K(X)$ are not homeomorphic. (Let X be a nondegenerate hereditarily indecomposable continuum and define $\pi: X \times I \rightarrow X$ by $\pi(x, t)=x$. If A is an arc in $X \times I$, then $\pi(A)$ is a locally connected continuum in X and hence is a single point. Thus every arc in $X \times I$ lies in $\{p\} \times I$ for some $p \in X$ and it follows that every simple triod in $K(X)$ has the vertex of $K(X)$ as its emanation point. On the other hand, suppose g_{0} is a nondegenerate proper
subcontinuum of X and let x_{1}, x_{2} be points of different composants of g_{0}. If $A_{1}=\left\{g \in C(X) \mid x_{1} \in g \subset g_{0}\right\}, \quad A_{2}=\left\{g \in C(X) \mid x_{2} \in g \subset g_{0}\right\} \quad$ and $A_{3}=\left\{g \in C(X) \mid g_{0} \subset g\right\}$, then $A_{1} \cup A_{2} \cup A_{3}$ is a simple triod in $C(X)$ with emanation point g_{0}. Hence $C(X) \neq K(X)$.)

The proof of the next lemma is a straightforward modification of the argument for Theorem 3 of [3].
5.2. Lemma. If X is a circularly chainable continuum and G is a monotone upper semicontinuous decomposition of X, then X / G is circularly chainable.

Proof. Let $Y=X / G$ and let $P: X \rightarrow Y$ be the projection map. Let ρ and $\bar{\rho}$ be metrics for X and Y, respectively. We will show that for each $\epsilon>0, Y$ can be covered by a circular ϵ-chain of open subsets of Y.

Suppose $\epsilon>0$ and let δ be a positive number such that if $A, B \subset X$ and $\rho(A, B)<\delta$, then $\bar{\rho}(P(A), P(B))<\epsilon / 10$. Let $\mathscr{C}=[C(1), C(2), \ldots C(m)]$ be a circular chain of mesh $<\delta$ covering X; it may be assumed that no element of G intersects every link of \mathscr{C}. For every integer n, define $C(n)$ to be $C(i)$, where $1 \leqq i \leqq m$ and $n \equiv i(\bmod m)$, and for every pair (i, j) of integers with $i \leqq j$ and $j-i<m$, let $\mathscr{C}(i, j)$ denote the (linear) chain

$$
[C(i), \mathrm{C}(i+1), \ldots \mathrm{C}(j)]
$$

Let $1=n_{1}<n_{2}<\ldots<n_{j}=m$ be a sequence of integers such that for $i=1,2, \ldots j-1, n_{i+1}$ is the largest integer $n \leqq m$ such that some element of G intersects every link of the chain $\mathscr{C}\left(n_{i}, n\right)$. If $j \leqq 7$, let $k=0$ and let $\mathscr{U}_{0}=\mathscr{U}_{k}=\mathscr{C}$. If $j>7$, let k be a positive integer such that $j-6 \leqq 4 k+1 \leqq j-3$ and let $\mathscr{U}_{i}=\mathscr{C}\left(n_{4 i+1}, n_{4 i+7}\right), i=0,1, \ldots k-1$, and $\mathscr{U}_{k}=\mathscr{C}\left(n_{4 k+1}, m+n_{3}\right)$. For $0 \leqq i \leqq k$, let U_{i} denote the union of the links of \mathscr{U}_{i} and let $D_{i}=\left\{g \in G \mid g \subset U_{i}\right\}$. Then each D_{i} is an open subset of Y having diameter less than ϵ, and $\left[D_{0}, D_{1}, \ldots D_{k}\right]$ is a circular chain which covers Y.

The next lemma involves the notions of the shape of a compactum $[7 ; 8]$ and of movable compacta [9]. Since we will not make explicit use of the definitions of these terms but will rely on cited theorems concerning them, the definitions will not be repeated here.
5.3. Lemma. If X is a nonplanar circularly chainable continuum and G is a cell-like upper semicontinuous decomposition of X, then X / G is a nonplanar circularly chainable continuum.

Proof. It follows immediately from the statement and proof of Theorem 19 of [18] that X has the shape of a nonplanar solenoid, and since movability is a shape invariant [9 , Corollary 3.11] and nonplanar solenoids are not movable [9, p. 138], it follows that X is not movable.

By Lemma $5.2, X / G$ is circularly chainable; hence $\operatorname{dim}(X / G) \leqq 1$ and it follows from Theorem 11 of [21] that X / G has the shape of X. Thus X / G is
not movable, and since every plane compactum is movable [9, Corollary 5.5], it follows that X / G is not embeddable in the plane.
5.4. Theorem. If X is a pseudosolenoid, then $C(X)$ is embeddable in \mathbf{E}^{3} if and only if X is embeddable in \mathbf{E}^{2}.

Proof. That $C(X)$ is embeddable in \mathbf{E}^{3} if X is embeddable in \mathbf{E}^{2} follows immediately from Theorem 1 of [19].

Suppose then that X is a nonplanar pseudosolenoid. We will show that $C(X)$ cannot be embedded in \mathbf{E}^{3} by an argument closely parallel to that given in [2] to show that the cone over a solenoid cannot be so embedded.

Let $\mu: C(X) \rightarrow[0,1]$ be the Whitney function described earlier. For each $p \in X$, there is a unique $\operatorname{arc} A_{p}$ from $\{p\}$ to X in $C(X)[16]$. Let $F=X \times[0,1]$ and for each $p \in X$, let $F_{p}=\{p\} \times[0,1]$. Let \hat{X} denote the subset of $\mathscr{C}(X)$ consisting of the singleton subsets of X.

We note first that
(1) there is a map $\varphi: F \rightarrow \mathrm{C}(X)$ such that for each $p \in X, \varphi\left(F_{p}\right)=A_{p}$, and
(2) for each $t_{0} \in[0,1]$, there is a retraction $r_{t_{0}}: \mu^{-1}\left(\left[0, t_{0}\right]\right) \rightarrow \mu^{-1}\left(t_{0}\right)$.

To see that (1) is true, it is sufficient to let $\varphi(p, t)$ denote the unique subcontinuum g of X for which $p \in g$ and $\mu(g)=t$. Condition (2) may be obtained by defining $r_{t_{0}}(g)$, for $g \in \mu^{-1}\left(\left[0, t_{0}\right]\right)$, to be the unique subcontinuum g^{\prime} of X for which $g \subset g^{\prime}$ and $\mu\left(g^{\prime}\right)=t_{0}$.

Now suppose $h: \mathrm{C}(X) \rightarrow \mathbf{E}^{3}$ is an embedding, and let S be a 2 -sphere in \mathbf{E}^{3} which separates the point $h(X)$ from the closed set $h(\hat{X})$. Since $\varphi^{-1}\left(h^{-1}(S)\right)$ is a closed subset of F which separates $X \times\{1\}$ from $X \times\{0\}$ in F, it follows from the lemma proved in [2] that $\varphi^{-1} h^{-1}(S)$ contains a continuum B which intersects each $F_{p}, p \in X$. Then $\varphi(B)=B^{\prime}$ is a continuum in $C(X)$ which intersects each $A_{p}, p \in X$. There is a $t_{0} \in[0,1)$ such that $B^{\prime} \subset \mu^{-1}\left(\left[0, t_{0}\right]\right)$; since B^{\prime} intersects each A_{p}, the retraction $r_{t_{0}}$ maps B^{\prime} onto $\mu^{-1}\left(t_{0}\right)$. If G is the decomposition of X whose elements are the continua belonging to $\mu^{-1}\left(t_{0}\right)$, then the decomposition space X / G is homeomorphic to the subspace $\mu^{-1}\left(t_{0}\right)$ of $C(X)$; hence by Lemma 5.3, $\mu^{-1}\left(t_{0}\right)$ is a nonplanar pseudosolenoid. Since $\mu^{-1}\left(t_{0}\right)$ is not locally connected, it follows that $h\left(B^{\prime}\right) \neq S$. But this implies that B^{\prime} is homeomorphic to a plane continuum and therefore [14, Theorem 5] cannot be mapped onto $\mu^{-1}\left(t_{0}\right)$.

References

1. B. J. Ball and R. B. Sher, Extending cell-like maps on manifolds (to appear in Trans. Amer. Math. Soc.).
2. Ralph Bennet and W. R. R. Transue, On embedding cones over circularly chainable continua, Proc. Amer. Math. Soc. 21 (1969), 275-276.
3. R. H. Bing, Concerning hereditarily indecomposable continua, Pacific J. Math. 1 (1951), 43-51.
4. -_ A simple closed curve that pierces no disk, J. Math. Pures Appl. 35 (1956), 337-343.
5. -Upper semicontinuous decompositions of E3, Ann. of Math. 65 (1957), 363-374.
6. - Embedding circle-like continua in the plane, Can. J. Math. 14 (1962), 113-128.
7. Karol Borsuk, Concerning homotopy properties of compacta, Fund. Math. 62 (1968), 223-254.
8. - Concerning the notion of the shape of compacta, Proc. Inter. Symposium on Topology and its Applications, pp. 98-104, Beograd, 1969.
9. - On movable compacta, Fund. Math. 66 (1969), 137-146.
10. C. E. Burgess and J. W. Cannon, Embeddings of surfaces in E^{3}, Rocky Mountain J. Math. 1 (1971) 259-344.
11. Lawrence Fearnley, The pseudo-circle is unique, Trans. Amer. Math. Soc. 149 (1970), 45-63.
12. Ralph H. Fox and Emil Artin, Some wild cells and spheres in three-dimensional space, Ann. of Math. 49 (1948), 979-990.
13. George W. Henderson, On the hyperspace of subcontinua of an arc-like continuum, Proc. Amer. Math. Soc. 27 (1971), 416-417.
14. W. T. Ingram, Concerning nonplanar circle-like continua, Can. J. Math. 19 (1967), 242-250.
15. J. R. Isbell, Embeddings of inverse limits, Ann. of Math. 70 (1959), 73-84.
16. J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22-36.
17. R. C. Lacher, Cell-like mappings, I, Pacific J. Math. 30 (1969), 717-731.
18. Sibe Marešić and Jack Segal, Shapes of compacta and ANR systems, Fund. Math. 72 (1971), 41-59.
19. James T. Rogers, Jr., Embedding the hyperspaces of circle-like plane continua, Proc. Amer. Math. Soc. 29 (1971), 165-168.
20. Jack Segal, Hyperspaces of the inverse limit space, Proc. Amer. Math. Soc. 10 (1959), 706-709.
21. R. B. Sher, Realizing cell-like maps in Euclidean space, General Topology and Appl. 2 (1972), 75-89.
22. W. R. R. Transue, On the hyperspace of subcontinua of the pseudoarc, Proc. Amer. Math. Soc. 18 (1967), 1074-1075.
23. H. Whitney, Regular families of curves, Ann. of Math. 34 (1933), 244-270.

University of Georgia, Athens, Georgia

[^0]: Received March 29, 1972 and in revised form, November 23, 1972. The research of the second named author was partially supported by NSF Grant GP-29585.

