THE ANALYTIC GHARACTER OF THE BIRKHOFF INTERPOLATION POLYNOMIALS

G. G. LORENTZ

1. Introduction. Let E be an $m \times(n+1)$ regular interpolation matrix with elements $e_{i, k}=(E)_{i, k}$ which are zero or one, with $n+1$ ones. Then for each $f \in \mathrm{C}^{n}[a, b]$ and each set of knots $X: a \leqq x_{1}<\ldots<x_{m}$ $\leqq b$, there is a unique interpolation polynomial $P(f, E, X ; t)$ of degree $\leqq n$ which satisfies

$$
\begin{equation*}
P^{(k)}\left(x_{i}\right)=f^{(k)}\left(x_{i}\right), \quad e_{i, k}=1 . \tag{1}
\end{equation*}
$$

A recent paper [1] discussed the continuity of P, as a function of x_{1}, \ldots, x_{m} (with coalescences allowed). We would like to study in this note the analytic character of P as a function of real or complex knots $X: x_{1}, \ldots, x_{m}$. This is easy for the Lagrange or the Hermite interpolation. In this case P is a polynomial in x_{1}, \ldots, x_{m} if f is a polynomial, and an entire function in x_{1}, \ldots, x_{m} if f is entire. This follows, for example, from the Hermite formula, which represents P by means of a contour integral. No formula of this type is known to exist in the general case of Birkhoff, non-Hermite interpolation.

We shall assume that the reader is acquainted with the terminology and the fundamental results of Birkhoff interpolation (see [5], [3], [4]).
For a set of functions $G=\left\{g_{0}, \ldots, g_{n}\right\}$ we have the determinant

$$
D(E, X ; G)=\operatorname{det}\left[g_{0}^{(k)}\left(x_{i}\right), \ldots, g_{n}{ }^{(k)}\left(x_{i}\right) ; e_{i, k}=1\right] ;
$$

its rows are labeled by $n+1$ pairs i, k with $e_{i, k}=1$, and ordered lexicographically. In particular, for the system

$$
G_{s}=\left\{1, \frac{x}{1!}, \ldots, \frac{x^{s-1}}{(s-1)!}, f, \ldots, \frac{x^{n}}{n!}\right\}
$$

we have the determinant $D_{i}(E, X)=D\left(E, X ; G_{s}\right)$

$$
\begin{array}{r}
D_{s}(E, X)=\operatorname{det} \frac{x_{i}^{-k}}{(-k)!}, \ldots, \frac{x_{i}^{s-1-k}}{(s-1-k)!}, f^{(k)}\left(x_{i}\right), \ldots, \frac{x_{i}^{n-k}}{(n-k)!}, \\
e_{i, k}=1,
\end{array}
$$

(terms containing r ! with $r<0$ are to be replaced by zero). We write $D(E, X)$ for the determinant with $G=\left\{1, x / 1!, \ldots, x^{n} / n!\right\}$. The poly-
nomial P given by (1) has the representation

$$
\begin{equation*}
P(f, E, X ; t)=\frac{1}{D(E, X)} \sum_{s=0}^{n} \pm \frac{t^{s}}{s!} D\left(E, X ; G_{s}\right) . \tag{2}
\end{equation*}
$$

It follows from this that if f is a fixed polynomial (of an arbitrary degree), then P is a rational function of X, and if f is an entire function, then P is meromorphic. We would like to improve these statements. It is essential to assume here that the function f remains fixed. For example, if f is a linear function with values c_{1}, c_{2} at x_{1}, x_{2}, then $P=c_{1} l_{1}+c_{2} l_{2}$, where l_{1}, l_{2} are the fundamental Lagrange functions. Here P is only rational, and f depends on x_{1}, x_{2}. We prove:

Theorem 1. In order that P should be a polynomial (or an entire function) in X whenever f is a polynomial (or an entire function), it is necessary and sufficient that the canonical decomposition of E should consist only of Hermite and of two-row matrices.

In other words, P has this property if and only if the matrix E is complex regular. This follows from a theorem of Lorentz and Riemenschneider [6], which is a natural generalization of D. Ferguson's theorem [2].
2. Proof of the theorem. The sufficiency of the conditions is easy to establish. From [7] it follows that the determinants $D=D(E, X)$ and $D_{s}=D\left(E, X ; G_{s}\right)$ are divisible by $\left(x_{i}-x_{j}\right)^{\alpha_{i j}}, i, j=1, \ldots, m, i \neq j$, if $\alpha_{i j}$ is the collision number of rows i and j. In the case when f is entire, the latter statement means that D_{s} is a product of $\left(x_{i}-x_{j}\right)^{\alpha i j}$ with an entire function of X. The polynomial $D(E, X)$ is divisible by the product

$$
\Pi=\prod_{1 \leqq i<j \leqq m}\left(x_{i}-x_{j}\right)^{\alpha^{\alpha j}} .
$$

On the other hand, it is known ([3], [5]) that the degree of $D(E, X)$ in one of the variables x_{i} is at most δ_{i}, which is the collision number of row i in E with the rest of the matrix E. Under the assumptions of Theorem 1 (see [6]), $\delta_{i}=\sum_{j \neq i} \alpha_{i j}$. This shows that $D=$ Const Π. Therefore, the denominator in (2) cancels out.

The necessity requires a careful treatment of determinants $D(E, X ; G)$ and of their derivatives. For the minors of $D=D(E, X ; G)$ we use the notation

$$
D(E, X ; G)_{(i, k), s} .
$$

This is the signed subdeterminant of D corresponding to its row, labelled (i, k) (with $e_{i, k}=1$), and the column $s, s=0, \ldots, n$.

For the derivatives of D we have the following (see [5], [7]). The
simplest formula is
(3a) $\frac{d}{d x_{i}} D(E, X ; G)=\sum_{e i, k=1} U_{i, k} D(E, X ; G)$,
where $U_{i, k}$ is the operation of differentiation of the row of D which corresponds to $e_{i, k}=1$. A shift Λ of row i in E moves a one, $e_{i, k}=1$ of this row to the next position $(i, k+1)$. This shift is permissible if $e_{i, k+1}=0$. As a variation of (3a) we have
(3b) $\frac{d}{d x_{i}} D=\sum_{\Lambda} D(\Lambda E, X ; G)$.
For higher derivatives we shall use
(4) $\frac{d^{r}}{d x_{i}{ }^{r}} D=\sum_{\Lambda^{*}} D\left(\Lambda^{*} E, X ; G\right)$,
(5) $\frac{d^{r+1} D}{d x_{i}^{r+1}}=\sum_{\Lambda^{*}} \sum_{\left(\Lambda^{*} E_{i}, k=1\right.} U_{i, k} D\left(\Lambda^{*} E, X ; G\right)$
where Λ^{*} are multiple shifts of row i of G of order r, that is, products of r permissible simple shifts. After these preparations we can state and prove

Lemma 2. Let x_{1}, \ldots, x_{n} be fixed. If for each polynomial f, all determinants $D_{s}=D\left(E, X ; G_{s}\right)$ satisfy
(6) $\frac{d^{\tau} D_{s}}{d x_{1}^{r}}=0, \quad s=0, \ldots, n$,
then
(7) $\frac{d^{r+1}}{d x_{1}^{r+1}} D(E, X)=0$.

Proof of lemma. From (6) and (3), expanding the determinants with respect to their column s,

$$
\begin{aligned}
0= & \frac{d^{r} D_{s}}{d x_{1}^{r}}=\sum_{\Lambda *} D\left(\Lambda^{*} E, X ; G_{s}\right) \\
& =\sum_{\Lambda^{*}} \sum_{\left(\Lambda^{*} E_{i}, k=1\right.} D\left(\Lambda^{*} E, X ; G_{s}\right)_{(i, k), s} f^{(k)}\left(x_{i}\right) \\
& =\sum_{(i, k)} f^{(k)}\left(x_{i}\right) \sum_{\left(\Lambda^{*}\right)_{i}, k=1} D\left(\Lambda^{*} E, X ; G_{s}\right)_{(i, k), s}
\end{aligned}
$$

The minor in the last line does not contain f and is identical with $D\left(\Lambda^{*} E, X\right)_{(i, k), s}$. For a polynomial f of sufficiently high degree, the values $f^{(k)}\left(x_{i}\right)$ can be prescribed arbitrarily, hence we get from this

$$
\begin{equation*}
\sum_{\left(\Lambda^{*} E\right)_{i, k}=1} D\left(\Lambda^{*} E, X\right)_{(i, k), s}=0, \quad i=1, \ldots, m, k, s=0, \ldots, n \tag{8}
\end{equation*}
$$

For the derivative (7), we use (5):
(9) $\frac{d^{r+1} D}{d x_{1}^{r+1}}=\sum_{\Lambda^{*}} \sum_{\left(\Lambda^{*} E\right)_{1, s}=1} D\left(\Lambda_{s}^{\prime} \Lambda^{*} E, X\right)$.

For a fixed s with $\left(\Lambda^{*} E\right)_{1, s}=1$ and fixed Λ^{*}, we expand the last determinant with respect to the row which contained the old one, $\left(\Lambda^{*} E\right)_{1, s}$. This gives, with $\beta_{k}=x_{1}{ }^{k-s-1} /(k-s-1)!$,

$$
D\left(\Lambda_{s}^{\prime} \Lambda^{*} E, X\right)=\sum_{k=0}^{n} \beta_{k} D\left(\Lambda^{*} E, X\right)_{(1, s), k} .
$$

Rearranging the sum (9) we have

$$
\frac{d^{r+1} D}{d x_{1}^{r+1}}=\sum_{s=0}^{n} \sum_{k=0}^{n} \beta_{k} \sum_{\Lambda^{*}} D\left(\Lambda^{*} E, X\right)_{(1, s), k}=0
$$

by (8). This proves the lemma.
To prove the necessity of the condition of Theorem 1, we assume that it is not satisfied. By the theorem mentioned above, E is complex singular. There exist then distinct complex x_{1}, \ldots, x_{m} for which $D(E, X)=0$. Let $X^{*}=\left(x, x_{2}, \ldots, x_{m}\right)$ with variable x, and let r be the multiplicity of the zero $x=x_{1}$ of the polynomial $D(x)=: D\left(E, X^{*}\right)$. If one of the determinants $D_{s}(x)=: D\left(E, X^{*} ; G_{0}\right)$ has a zero $x=x_{1}$ of order $<r$ for some polynomial f, then it follows from (2) that P is not an entire function. If these zeros are always of order $\geqq r$, then by the lemma, $D^{(r+1)}\left(x_{1}\right)=0$, a contradiction. This completes the proof.

References

1. N. Dyn, G. G. Lorentz and S. D. Riemenschneider, Continuity of the Birkhoff interpolation, in print in SIAM J. Numer. Analysis.
2. D. Ferguson, The question of uniqueness for G. D. Birkhoff interpolation problem, J. Approx. Theory 2 (1969), 1-28.
3. G. G. Lorentz, Birkhoff interpolation problem, CNA report 103, The University of Texas in Austin (1975).
4. -Independent sets of knots and singularity of interpolation matrices, J. Approx. Theory 30 (1980), 208-225.
5. G. G. Lorentz and S. D. Riemenschneider, Recent progress in Birkhoff interpolation, in: Approximation theory and functional analysis (North-Holland Publ. Co., 1979), 187-236.
6. -Birkhoff interpolation: Some applications of coalescence, in : Quantitative approximation (Academic Press, New York, 1980), 197-208.
7. G. G. Lorentz and K. L. Zeller, Birkhoff interpolation problem: coalescence of rows, Arch. Math. 26 (1975), 189-192.

The University of Texas at Austin, Austin, Texas

