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SOME NECESSARY AND SUFFICIENT CONDITIONS FOR
p-NILPOTENCE OF FINITE GROUPS

HUAQUAN W E I , YANMING WANG AND XIAOLEI LIU

The purpose of this paper is to give some necessary and sufficient conditions for
p-nilpotent groups. We extend some results, including the well-known theorems of
Burnside and Probenius as well as some very recent theorems. We also apply our
results to determine the structure of some finite groups in terms of formation theory.

1. INTRODUCTION

A well-known theorem of Burnside [1] asserts that if some Sylow p-subgroup P of
a finite G lies in the centre of its normaliser, then G is p-nilpotent, that is, G has a
normal Hall p'-subgroup. Another well-known result due to Frobenius [2] showed that a
finite group is p-nilpotent if and only if the normaliser of any non-trivial p-subgroup is p-
nilpotent; or the quotient group of normaliser by centraliser of any non-trivial p-subgroup
of the group is a p-group.

Some authors have extended the above two theorems in different ways, for example
[3, 4, 5]. In [4], Ballester-Bolinches and Guo extended Burnside's theorem through the
p-focal subgroup. They proved that a finite group G is p-nilpotent if P is a Sylow p-
subgroup of G such that Q(PC\G') is in the centre of the normaliser of P, where Q(PnG')

the subgroup generated by all elements x of P f~l G' with xp — 1 if p > 2 or x4 = 1 if
p = 2. By using the complementation of minimal subgroups of p-focal subgroup, Guo
and Shum in [5] also obtained a result on p-nilpotence of finite groups.

It is easy to show that the conditions in Ballester-Bolinches, Guo and Shum's results
are not necessary. For example, let G = (a, b | a8 = 1,62 = l,b~lab = a"1) be the
dihedral group of order 24; then a6, a4 lie in fi(G') but a6 is not in the centre of G and
(a4) has no complement in G. In this paper, we shall extend the above results through
some well-positioned subgroups of the p-focal subgroup. The conditions in our results
are necessary and sufficient and hence are sharp. We also apply our results to determine
the structure of some finite groups.
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Recall that if P is a Sylow p-subgroup of a finite group G and G' is the commutator
subgroup of G, the subgroup P n G" is called the p-focal subgroup of P in G. A subgroup
H of a finite G is said to be complemented in G if there is a subgroup K of G such that
G = HK and # D if = 1. A formation T is said to be saturated if G/$(G) 6 T implies
that G e f .

Let U be a finite p-group. We denote Q{U) = Q^U) if p > 2 and Q(U) = Q2(U) if
p = 2.

All groups considered in this paper will be finite. Gr will denote the ^-residual of
G; N, Mp and U will denote the class of all nilpotent groups, the class of all p-nilpotent
groups and the class of all supersolvable groups, respectively.

2. MAIN RESULTS

THEOREM 2 . 1 . Let P be a Sylow p-subgroup of a group G and let O
= [P, OP(G)], the commutator subgroup of P and OP{G). Then the following state-
ments are equivalent:

(1) G is p-nilpotent;

(2) Q(P D O) lies in the centre ofNG(P);

(3) For any non-identity subgroup U of fi(P n O), No(U) is p-nilpotent;

(4) For any non-identity subgroup U ofCl(P D O), Nc(U)/Cc(U) is a p-group;

(5) Every minimal subgroup of P D O is complemented in P and Nc{P) is
p-nilpotent.

P R O O F : (1) =» (5): If G is p-nilpotent, then (p, \OP{G)\) = 1, hence PnO = 1 and

statement (5) holds.

(5) => (2): Assume that (5) holds. It is clear that we may assume P n O ^ 1.
Since every minimal subgroup of P D O is complemented in P , P n O is an elementary
Abelian group. As O = [P,OP(G)} < (P,OP(G)) = G, P D O < P. Now let Nt be a
minimal normal subgroup of P contained in P n O. Then Ni ^ Z(P) and jiVx | = p by
the properties of nilpotent groups. By hypothesis, there is a subgroup Pi of P such that
P = NiPi and TVi D Pi = 1. Note that Pi n 0 is still a normal subgroup of P . By using
similar arguments, we have that P n O = Nt x N2 x • • • x N3 and N{ ^ Z(P). Hence
PnO < Z(P). Since NG{P) is p-nilpotent, P n O < Z(NG(P)), therefore statement (2)
holds.

(2) => (3): Assume that (2) holds and (3) is false. Then NG(U) is not p-nilpotent
and so NQ(U) has a minimal non-p-nilpotent subgroup H for some non-identity sub-
group U of ft(P n O). By results of Ito [9, IV, Sata 5.4] and Schmidt [9, III, Satz 5.2],
H has a normal Sylow p-subgroup Hp and a cyclic Sylow g-subgroup Hq such that H

— [Hp]Hq. Moreover, Hp is of exponent p if p > 2 and of exponent at most 4 if p = 2.
Since P < NG(U), without loss of generality, we may assume that Hp ^ P . On the
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other hand, the minimality of H implies tha t Hp = [Hp,Hq] = [HP,O"(H)]. Hence Hp

^ P n [P,OP(G)] = PnO. It follows that Hp ^ fl(PnO) ^ Z(NG(P)). Furthermore,
NC(P) ^ CG{HP). Denote N = NG{HP). As CG(HP) < NG(HP) = N, by the Frattini
argument, N = NG(HP) = CG{HP)NN(P). Note that NN{P) ^ NG{P) ^ CG(HP),
so NG(HP) — CG{HP), this implies that H = Hp x Hg. This contradiction shows that
statement (3) holds if (2) is true.

(3) => (4): Let K be the normal p-complement of NG(U). Then KU = K x U.
Hence K ^ CG(U) and statement (4) holds.

(4) =>• (1): Assume that (4) holds and (1) is false. Then G is not p-nilpotent and so
it has a minimal non-p-nilpotent subgroup H. By results of Ito and Schmidt, H has a
normal Sylow p-subgroup Hp and a cyclic Sylow g-subgroup Hq such that H = [Hp\Hq.
Moreover, Hp is of exponent p if p is odd and of exponent at most 4 if p = 2. Without
loss of generality, we may assume that Hp ^ P. On the other hand, the minimality of
H implies that Hp = [Hp,Hg] = [Hp,O"{H)]. Hence Hp < P n [P,O?(G)] =PnO. It
follows that 1 ̂  Hp ^ Q(P n O). Since

H/CH(HP) = H/(CG(Hp)nH) S* HCG(HP)/CG(HP) ^ NG(HP)/CG(HP),

H/CH(HP) is a p-group, which implies that OP(H) ^ CH{HP). Note that OP(H) = H,
hence CH(HP) = H and so H = Hp x Hq. This is a contradiction.

The proof of Theorem 2.1 is now complete. D
The Sylow p-subgroup P fl O of O is in fact quite familiar to us and the properties

of O are essential to p-nilpotency of a group. We state the following theorem:

THEOREM 2 . 2 . Let P be a Sylow p-subgroup of a group G and let O
= [P,Op(G)], the commutator subgroup ofP and OP{G). Then

(1) G/O is p-nilpotent;

(2) P n O = PnO"(G) = PnGA f = P n G ^ .

PROOF: (1) First we have the fact that OP{G/N) = OP(G)N/N for any normal
subgroup N of G. In fact, it is easy to see that OP{G)N/N < OP(G/N) and we
have that {G/N)/(OP{G)N/N) S G/OP(G)N is a p-group, this implies that 0"{G/N)
< Op{G)N/N. The above equality implies that [PO/O,OP{G/O)] = [PO/O,OP(G)/O]
= [P,Op(G)]O/O = 1. By Theorem 2.1, G/O is p-nilpotent.

(2) If AT is a normal subgroup of G such that G/N is p-nilpotent, then

PN/Nn OP(G/N) = PAT//V n 0"{G)N/N = (Pfl Op{G)N)N/N = 1,

hence P n 0"{G)N ^ W. This immediately implies that PnN = Pn Op(G)N. Note
that O, G^ and G^" are all contained in OP(G) and so (2) holds. D

The following Corollary 2.3 shows that whether a group G is p-nilpotent can be
determined from the properties of the minimal subgroups of the Sylow p-subgroups of
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the p-nilpotent residual of G. Actually our result is a direct consequence of Theorem 2.1
and Theorem 2.2.

COROLLARY 2 . 3 . Let P be a Sylow p-subgroup of a group G. Then the following
are equivalent:

(1) G is p-nilpotent;

(2) Q(P n GM") lies in the centre ofNG(P);
(3) For any non-identity subgroup U ofQ(P D G**), NG{U) is p-nilpotent;
(4) For any non-identity subgroup U of Q{P D GM"), NG(U)/CG(U) is a p-

group;
(5) Every minimal subgroup of P D G^v is complemented in P and Nc{P) is

p-nilpotent.
In particular, if one of the following conditions holds, then G is p-nilpotent:

(i) Q(P n G') is contained in the centre of NG(P) ([4, Theorem l]j;
(ii) Every minimal subgroup of Pf\G' is complemented in NG(P) and NG(P)

is p-nilpotent ([5, Theorem 2.1]).

PROOF: By Theorem 2.2, the equivalent conditions are direct results. Note that
G/N is Abelian => G/N is nilpotent => G/N is p-nilpotent. We have that G' < GM

^ G"'. (2) implies (i), (5) implies (ii). D
Furthermore, if p is the smallest prime divisor of |G|, then the assumption that

NG(P) is p-nilpotent in Theorem 2.1 (4) (or Theorem 2.3 (4)) can be removed.

THEOREM 2 . 4 . Let p be the smallest prime divisor of the order of a finite group
G and P be a Sylow p-subgroup of the group G. Then G is p-nilpotent if and only if
every .minimal subgroup of P C\O is complemented in NG(P), where O = [P, OP(G)].

PROOF: We only need to prove the 'if part.
Write N = NG{P) and assume that N <G. Since P n [P,OP(N)] ^ P n O , every

minimal subgroup of P n [P,OP(N)] is complemented in NN(P) — NG(P). We may
using induction to assume that N is p-nilpotent since N satisfies all the hypothesis of G.
This implies that G is p-nilpotent by [6, Lemma 1(1)] and Theorem 2.1.

Now we consider the case where NG(P) = G. If further P C\O = O ^ 1, then we
can take an element x in O of order p. By hypothesis, there is a subgroup M such that
G — {x)M and (x)C\M = 1. Since \G : M\ = p and p the smallest prime divisor of \G\, we
see that M is a normal subgroup of G. Now G/M = (x) is cyclic, so (x) ^ O < G' ^ M,
a contradiction. Hence O — [P, OP(G)] = 1 and so G is p-nilpotent by Theorem 2.1.

This completes the proof of Theorem 2.4. D
The following Corollary 2.5 is a direct result of Theorem 2.4.

COROLLARY 2 . 5 . ([5, Theorem 2.2].) Let p be the smallest prime divisor of \G\
and P be a Sylow p-subgroup of the group G. Then G is p-nilpotent if every minimal
subgroup of the p-focal subgroup PC\G' is complemented in NG{P).
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R E M A R K 2.6. The assumption that every minimal subgroup of P n O is complemented
in NC(P) in Theorem 2.4 can not be replaced by every minimal subgroup of P 0 O is
complemented in P. For example, let P be the Sylow 2-subgroup of A», the alternating
group of degree 4; then every minimal subgroup of P f~l O = P is complemented in P,

but A4 is not 2-nilpotent.

In the case p = 2, the following theorem generalises [4, Theorem 2] and the proof of
our result is better than that in [4, Theorem 2].

THEOREM 2 . 7 . Let P be a Sylow 2-subgroup of a group G and assume that P is
quaternion-free. Then G is 2-nilpotent if and only iffli(PnO) is contained in Z(P) and
NG(P) is 2-nilpotent, where O = [P,O2{G)].

PROOF: It is sufficient to prove the 'if part.
Assume it is false and let G be a counter-example of minimal order. Then G has a

minimal non-2-nilpotent subgroup H. According to results of Ito and Schmidt, H has a
normal Sylow 2-subgroup H2 and a cyclic Sylow g-subgroup Hq such that H — [H2]Hq,
where q / 2. Moreover, by the minimality of H, H2 — [H2, Hq\ = [H2,0

2(H)], so H2 can
be considered as a subgroup o f P n O . Now, 1 / fti(#2) ^ &i{P n O) ^ Z{P). Hence
P is contained in CG(Cli(H2)), which is a normal subgroup of N = NG(fli(H2)). By the
Frattini argument, N = NG(Qi{H2)) = CG(Qi(H2))NN{P). Since NN(P) ^ NG(P) and
NG(P) is 2-nilpotent, NN{P) is 2-nilpotent. Let K be a 2-complement of NN{P). Then
K centralises P and so does Qi(H2). Thus P and K are both contained in Ca(^i{H2)).
Therefore N = NG(Qi{H2)) = CG{Sli{H2)). If N is a proper subgroup of G, then
by the minimality of G, N is 2-nilpotent as N satisfies the hypothesis of the theorem.
But H lies in TV, so H is 2-nilpotent, a contradiction. Consequently, N = G, that is,
Qi(H2) < Z{G). Hence fii(#2) ^ Z(H). On the other hand, HM ^ 1, otherwise H is
nilpotent, also a contradiction. Note that H/H2 is nilpotent, so H* < H2- Now we have
that 1 # fii{HM) < H2 n HM n Z{H), this contrary to a result of Dornhoff ([8, Theorem
2.8]). Therefore H2f\H

Mr\ Z{H) = 1.

This completes our proof. D

COROLLARY 2 . 8 . ([4, Theorem 2].) Let P be a Sylow 2-subgroup of a group G
and assume that P is quaternion-free. IfQi(P n G') is contained in Z(P) and NG(P) is
2-nilpotent, then G is 2-nilpotent.

3. APPLICATIONS

LEMMA 3 . 1 . ([7, Theorem 3.1].) Let T be a saturated formation containing 14,
the class of supersolvable groups. Let H be a normal subgroup of a group G such that
G/H 6 T. If for any maximal subgroup M ofG, either F(H) ^ M or F(H) n M is a
maximal subgroup ofF(H), then G lies in T.

THEOREM 3 . 2 . Let T be a saturated formation containing N', the class ofnilpo-
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tent groups. Let H be a normal subgroup of a group G such that G/H 6 T. Let
O = [P, 0"(G)]. IfSl(PnO) < Z(NG{P)) for any prime divisor p of the order of H and
any Sylow p-subgroup P of H, then G lies in T.

PROOF: Suppose that the theorem is false and let G be a counter-example of
minimal order. Let p be a prime divisor of \H\. Since [P, OP(H)] ^ O, we have
that n ( p n [P,OP(#)]) < fi(PnO) ^ Z(NG(P)). Note that NH(P) ^ NG{P), so

n(P(l [P,OP(H)]\ ^ Z{NH{P)). By applying Theorem 2.1, we know that H is p-
nilpotent. The choice of p implies that H is nilpotent. Now let q be a prime divisor of
\H\ different from p and Q a Sylow g-subgroup of H. Then Q is a characteristic subgroup
of H and hence it is a normal subgroup of G. Let G = G/Q and H — H/Q. We shall
show in the following that G satisfies the hypothesis of the theorem.

It is clear that G/H 2* G/H 6 T. For any Sylow p-subgroup P = PQ/Q of ~H,
we have that i%(P) = NG{P)Q/Q, where P G Sylp(#) and p ^ q. Again, P n O =
(P n O)Q/Q. In fact, Or{G/Q) - OP(G)/Q, hence

O = [P,O*(G)] = [PQ/Q,O>(G)/Q] = [P,O"(G)]Q/Q = OQ/Q.

Furthermore,

P n O = PQ/Q n OQ/Q = (p n OQ)Q/Q - (P n'o)Q/Q.

It implies that

Q(PDO) = fi(PnO)Q/Q < Z(NG(P))Q/Q ^ Z(NG{P)Q/Q) = Z(NG(P)).

This implies that G = G/Q satisfies the hypothesis of the theorem.
By the minimality of G, we have that G/Q 6 f . If Q ^ $(G), then G e T as T is

a saturated formation, contrary to the choice of G. Therefore Q 2 ®{G) and hence there
is a maximal subgroup M of G such that G = QM. Let M, be a Sylow g-subgroup of M.
Then G, = QM, is a Sylow g-subgroup of G. Now let Go be a maximal subgroup of G,
containing Mq. Then Go = M,(GonQ) and denote QY = GonQ. Then Go = M,Qi and
Q] n M = Q n M. On the other hand, for any Sylow r-subgroup Mr of M with r ^ q,
since

Q([Q,O«(G)])nQMr ^ Z(G)nQMr < Z(QMr),

QMr is p-nilpotent by Theorem 2.1 and so QMr = Q x Mr. This means that Q\MT is a
group and so is Q!(M,,Mr | Mr € Sylr(M),r ^ g> = Q ^ . Note that Qx n M = Q D M.
We have that QXM < G and so that Q\M = M by the maximality of M in G. Therefore
M, = M,Qi = Go is a maximal subgroup of Gq = QMq\ in particular, Q normalises
Mq. This implies that Q normalises M and so M is a normal subgroup of G. Hence
G/M ^ Q/{Q n M) 6 A/" C T. Consequently, G/(Q nM) G T. Clearly, QnM < Q.
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With the same argument, we know that there exists a normal subgroup Qo of G contained

in Q n $(G) such that G/Qo € T. Thus we have G € T, a. final contradiction.

The proof of Theorem 3.2 is complete. D

THEOREM 3 . 3 . Let T be a saturated formation containing U, the class of super-
solvable groups. Let H be a normal subgroup of a group G such that G/H € T. If for
any prime divisor p of \H\ and any Sylow p-subgroup P of H, every minimal subgroup
ofPHO is complemented in NG(P), then G lies in T, where O = [P,O"(G)}.

P R O O F : Suppose that the theorem is false and let G be a counter-example of minimal
order. Since [P,OP{H)] ^ O and Nn(P) ^ NG(P), by [6, Lemma 1(1)], every minimal
subgroup of P n [P,OP(H)] is complemented in Nn(P). By applying Theorem 2.4, we
know that H has a Sylow tower of supersolvable type. Now let q be the maximal prime
divisor of \H\ and Q a Sylow ^-subgroup of H. Then Q is a normal subgroup of G. Let
G = G/Q and H — H/Q. Then G satisfies the hypothesis of the theorem.

Clearly, G/H € T. For any Sylow p-subgroup P = PQ/Q of ~H, % ( P )
= NG(P)Q/Q and P n O = (P n O)Q/Q, where P € Sylp(H) and p ^ q. Now for
every element x of order p in P n O, we have that x = xQ for some element i s P f l O ,
By hypothesis, there is a subgroup K ofNG(P) such that NG(P) = (x)K and (x)nK = 1.
Then /%(P) = Jx)K. If (x) n KQ ^ 1, then (z) < KQ and so NG(P)Q = /CQ. Conse-
quently, |if|p = \KQ\P = |7VG(P)<2|p = \NG{P)\p. Thus (x) sj P ^ K, a contradiction.
Hence (x) n ATQ = 1 and so Jx) n X = 1.

By the minimality of G, G/Q € .F. For any maximal subgroup M of G, if <5 is not
contained in M, then G = QM. Let M, be a Sylow g-subgroup of M. Then G, = QM,
is a Sylow g-subgroup of G. Now let Go be a maximal subgroup of G, containing Mq;

then Go = Mq(G0 n Q). Write Q! = Go n Q; then Go = M,Qi and M, n Qi - Mq n Q.
Furthermore, |Q : Qi | = |M,Q : MqQi\ — \Gq : Go| = q, that is, Qx is a maximal
subgroup of Q. Now, we consider the following two cases:

(a) [Q,O"(G)) = l.

For any prime divisor r of \M\ with r ^ q and any Sylow r-subgroup Mr of M,
QMr = Q x Mr because [<?, Mr] ^ [<2,O«(G)] = 1. This implies that Q\MT is a group
and so also is Ql(Mq,MT\r ^ q) = QiM. But QiAf < G as Q, n M = Q n M, so
QxM = M, that is, Qi ^ M. Therefore Q f) M = Qi is a. maximal subgroup of Q. By
Lemma 3.1, G lies in T, a contradiction.

(b) [ Q , O « ( G ) ] # 1 .
Since Q and O«(G) are both normal in G, [Q, Oq{G)\ is also normal in G. Let Af be

a minimal normal subgroup of G contained in [Q, Oq(G)] and take an element y in N of
order 9. Then, by the hypothesis, there is a subgroup K of G such that G = (y)K and
(t/) D if = 1. It is clear that N D K is a normal subgroup of G, so N D .ft" = iV or 1 from
the minimal normality of N in G. If N n K = N, then (y) ^ iV ^ K, a contradiction.
Hence i V n / f = l and so N = (y) is a normal subgroup of G of order q. On the other
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hand, K satisfies the hypothesis of the theorem. In fact, K/(Q n i f ) S G/Q 6 T. Note
that [Q D K,Oq(K)] ^ [Q,Oq(G)]. By [6, Lemma 1.1(1)], every minimal subgroup of
[Q n K, O9(K)] is complemented in K. Thus the minimality of G implies that K € T.

Now we have that G/N = K € T. By Lemma 3.1, G e T, a final contradiction.

The proof of Theorem 3.3 is now complete. D

COROLLARY 3 . 4 . ([5, Theorem 2.4].) Let T be a saturated formation containing
U, the class of supersolvable groups. And let H be a normal subgroup of a group G such
that G/H € T. If for any Sylow subgroup P of H, every minimal subgroup of PnG' is
complemented in Nc{P), then G lies in T.

REMARK 3.5. Theorem 3.2 and 3.3 are not true for non-saturated formation. For ex-
ample, let T be the formation composed of all groups G such that Gu', the supersolvable
residual, is elementary Abelian. It is clear that U C T and T is not a saturated for-
mation. Let G = SL{2,3) and H = Z(G). Then G/H .= A,, so G/H € T. Other
hypothesis in Theorem 3.3 are satisfied as is easy to see. But G does not belong to J-.
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