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Abstract. The property of a one-parameter C*- (or W*-) dynamical system that the
spectral subspaces corresponding to the three subsets (—0, 0), {0}, and (0, +o0) add
up to the whole algebra is reformulated. If the C*-algebra is prime (or the W*-
algebra is a factor), an equivalent property is that the spectrum is finite.

0. Introduction
One of the classical examples of a non-complemented closed linear subspace of a
Banach space is the following (see e.g. [10]):

Let T={ZeC;|¢{|=1}, C(T)=the Banach space of all complex continuous func-
tions on T, and A(T)=the set of all fe C(T) allowing a continuous extension to
the disk {¢ € C; |£| = 1} which is analytic on the interior. Then A(T) is a closed linear
subspace of C(T) without topological complement. C(T) is also a C*-algebra, and,
if one defines the strongly continuous one-parameter group 7 of *-automorphisms
of C(T) by

(r (N =f(e™"¢),

then A(T) is exactly the spectral subspace C(T)"((—o0, 0]) of 7 (see [1]). Thus, the
above example suggests that if (A, «) is a one-parameter C*-dynamical system (see
[12]), then the spectral subspace A®((—0, 0]) seldom has a topological complement.

The purpose of this paper is to give a complete description of all one-parameter
C*-dynamical systems (A, a), resp. W*.dynamical systems (M, a), for which
A“((—00, 0]), resp. M*((—0,0]), has a topological complement. Using the tech-
niques developed in [5], we prove that a necessary and sufficient condition for this
to hold, at least, in the case of a C*-dynamical system, after passing to an invariant
essential closed two-sided ideal, is that, locally, in a certain sense, « has finite
spectrum, and, moreover, the cardinality of the local spectrum of a is uniformly
bounded (§ 3). In the case that A is prime, resp. M is a factor, the spectral subspace
of a corresponding to (—o00, 0] has a topological complement if and only if the
spectrum of « is finite (§ 2).
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1. Preliminaries
In this paragraph we recall some general facts concerning one-parameter groups of
operators.

We will call a dual pair of Banach spaces any pair (X, %) of complex Banach
spaces, together with a bilinear functional X X 3 (x, ¢)—(x, ¢)eC, such that:

(i) |lx[| =supygy=i Kx, #)| for any xe X;

(i) [|6]|=supyxj=1 [(x, #)] for any ¢ € F;

(iii) the convex hull of any relatively o(X, ¥)-compact subset of X is relatively
o(X, ¥)-compact;

(iv) the convex hull of any relatively o (%, X)-compact subset of ¥ is relatively
o(%, X)-compact.

If X is a complex Banach space and X™* its dual, then the pairs (X, X*) and
(X*, X), endowed with the natural pairing between X and X*, are dual pairs of
Banach spaces.

If (X, %) is a dual pair of Banach spaces, then the uniform boundedness principle
holds in X with respect to o(X, F) ([9, th. 2.8.6]) ; moreover, quite general X-valued
maps, defined on a locally compact space endowed with a Radon measure, are
o(X, F)-integrable ([1, prop. 1.2]; [2, prop. 1.4]). Let us denote by Bsz(X)
the Banach algebra of all o(X, ¥)-continuous linear operators on X. For each
T € Bg(X) the adjoint T* € Bx(%) of T in % is defined by

T*(¢)=¢°T, ¢ec&
In the cases = X* and X = * we use the usual notation T* for TZ.

Let (X, %) be a dual pair of Banach spaces. A one-parameter group U in Bz(X)
is a mapping U: R - Bs(X) such that

U, = identity map of X,

U= U, U, t, LER.

U is called o(X, %)-continuous if for each x € X the mapping
Rat—>Ul(x)e X
is (X, %)-continuous. In this case one can define the dual group UZ in Bx(F) by
U?=(U)%, teR,

and U is o(%, X)-continuous. We note that if = X* then a o(X, %)-continuous
one-parameter group U in B(X)= Bz(X) is always strongly continuous. In this
case we use the notation U* for U~

For bounded, or even certain non-quasianalytic o(X, %)-continuous one-para-
meter groups in Bg(X) a valid theory of spectral subspaces can be developed ([1],
[11], [4], [3]). Since we have C*- and W*-dynamical systems in view, we shall deal
in the sequel only with one-parameter groups of isometries in Bs(X):

Let (X, ) be a dual pair of Banach spaces and U a o(X, ¥)-continuous

one-parameter group of isometries in Bg(X). For each fe L'(R) one can define
Uf € Bg:(X) by

+00

(Us(x), ¢)=j SUuXU(x), ¢} dl, xeX pe

—0Q0
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With f denoting the inverse Fourier transform of f, defined by

+00

f(s)= j f(t)e™ds,  seR,

the spectral subspace of U, associated to a closed set F< R, is given by
XY(F)={xe X; U{(x)=0 forall fe L'(R) with F nsupp (H=2,

([1]). Denoting by U, the analytic extension of U in z € C ([2]) one has for each A eR,

XY ((~o, A])={x€-: M Dy, Tim | U_k.-(x)ll”"se‘}
k=0 —> 00

Im z=0

{xe N 9y | < e*l™™ =l x| forImz<0}

XU(, +oo)>={xe N Dy, :Tm | Uk.-<x)u'/"se**}
k=0 >0

{xe N Dy, |U.(x)]|=e ™| x| forIm z>0}

Im z=0

([16]). The spectrum of U is the closed set

for each neighbourhood N of A there is
" f~ € L'(R) with supp (fN)c Nand U, #0 }
={reR;forall A,, A,eRwith A, <A <A,, XY([A,, A,]) # 0}

a'(U)—{A R;

([1]). We assume familiarity in handling spectral subspaces and spectra.

(1.1) THEOREM. Let (X, ¥) be a dual pair of Banach spaces and U a o(X, F)-
continuous one-parameter group of isometries in Bg(X). If A is an isolated point of
o(U) then there is a (unique) projection Py € Bs(X) with

image of P = XY ({A});

kernel of Py = XY (o (U)\{A});
P/ U,=UPY?, teR; and
IPYl=1.

Proof. Replacmg U by Rstr>e U, e Bz(X), we may assume that A =0. Choose
some fy€ L'(R) such that:

fo(s) =1 for s in a neighbourhood of 0,
supp (fo) N (a(U)\{0}) = 2,

and put Py = U, € Bg(X). 1t is easy to see that P{ is a projection with image of
P{ = XY({0}), kernel of PY = XY (a(U)\{0}). Obviously,

PYU=UPY, teRr.

By the arguments from [17, pp. 242, 243] we have

l T
PY(x)=x=norm- lim ﬁj U(x) dt,
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for xe X Y({0}), and
1 T
PY(x)=0= -im — (x) dt
o (x) nomrlTwzr J_T U,(x) dt,

for x € Up<o X “((=%0, u]) or Uu=0 X Y([1e, +00)).
For each x belonging to

U XY(K)e X7({0h+( UOXU((~°0, pD)+ (U XY([u, +00)))

K<R compact n>0
it follows that, successively,
1 T
U — : —
Py(x)= norm-T!LTm 5T J_T U,(x) dt,
1P’ ()]l = |l x]\.
Since the unit ball of |k cr compact X Y(K) is a(X, F)-dense in the closed unit ball
of X and P{ is o(X, F)-continuous, it follows that | P¢’|| < 1. On the other hand,
since 0€ o(U), we have Py #0 and therefore || Pg| = 1. a

For each set S we denote by |S| the cardinal number of S.

(1.2) CoroLLARY. Let (X, #) be a dual pair of Banach spaces and U a o(X, ¥)-
continuous one-parameter group of isometries in Bz(X). If F is a finite set of isolated
points of a(U) then there is a (unique) projection PY € Bg(X) with:

image of P{ = XV (F);

kernel of PE = XY(o(U)\F);

PEU,=UPE, teR; and

1Pl =<|Fl.
Proof. With the notation of theorem (1.1) put PE=Y,.r Py. O

In particular, if o(U) is finite then there exists a bounded linear projection of norm
=|o(U)| onto each spectral subspace of U. The aim of this paper is to prove a
converse of this statement for C*- and W*-dynamical systems: if U is a C*- or
W*.dynamical system and there exists a bounded linear projection onto
X Y((—, 0]) then, ‘locally’, o(U) is finite.

Next we examine in a quite general situation the consequences for U of the
existence of a bounded linear projection onto X Y ((—, 0).

(1.3) THEOREM. Let & be a complex Banach space, X its dual, and U a o(X, F)-
continuous one-parameter group of isometries in Bz(X). Then there exists a linear
mapping
B(X)> P~ PY e B(X)
such that for every P e B(X)
1Pl =PI,
PYU,= UPY, teR;
and
FcR closed, P(x)=x forxe XY(F)
=PY(x)=x forxe XY(F);
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FcRclosed, P(x)=0 forxe XY(F)
=PY(x)=0 forxe XY(F);

F<R closed, P(x)e XY(F) forxe X with R3t— U,(x) € X norm-continuous
=PY(x)e XY(F) for xe X with R> t— U/(x) € X norm-continuous.

Proof. For the proof we adapt an argument from [14]. The additive group R being
commutative, there exists an invariant mean m on the vector space of all bounded
complex functions on R (see for example [7, th. 1.2.1]).
Let Pe B(X). For every xe X and ¢ € ¥ we define f, ,:R->C by
fx’d,(l‘)_—‘(U,PU,,(X), ), teR.
Then

sup [feOI=IPIIx®l, xeX, ¢
te

and x X% 3(x, ¢)—f,, is a bilinear mapping into the vector space of all bounded
complex functions on R. It follows that

X XF3(x,d)>m(fis)

is a bounded bilinear functional of norm = || P|. Since X is the dual space of &,
there exists PY € B(X) with

1Py =PI,
(PY(x), 9)=m(fry), xeX, b

Clearly, PY depends linearly on P.
Let s €R be arbitrary. For every x€ X and ¢ € & we have

Ju,0.u* ) (1) = [ (£—5), teR,
so by the invariance of m we get
(U_PYU,(x), d)=(P U,(x), U*()) = m(fu,x).u*,(s))
=m(fio) =(PY(x), &)
It follows that U_,PYU, = P"Y, and PYU, = U,P".
Let us assume that F<R is a closed set such that P(x) = x for xe X Y(F). Then
we get for each xe X Y(F), successively,

S (D) =(x, &),
(PY(x), d)=m(f.4) =(x, &),
PY(x)=x.
Next let FcR be a closed set such that P(x) =0 for xe X Y(F). Then we get for
each x € X Y(F), successively,

e
de

Sea(t)=0, e F tcR,
(PY(x), d)=m(f,)=0, e,
PY(x)=0.

Finally, let F < R be a closed set such that P(x) € X Y(F) for x e X withR s t— U,(x)
norm-continuous. Then we have for each x € X with R > t— U,(x) norm-continuous
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and for each ¢ € & in the annihilator of X Y(F),
Joa(8)=0, teR,
(PY(x), dY=m(f,4)=0.
By the Hahn—Banach theorem it follows that PY(x)e XY (F) for xe X withR >t
U,(x) norm-continuous. ; a
(1.4) CoroLLARY. Let ¥ be a complex Banach space, X its dual, and U a o(X, F)-
continuous one-parameter group of isometries in Bg(X). If there exist P B(X) and
ApeR, A=pu, such that P(x)=x for x in the norm-closure of
Uk <(—corjcompact X V(K), P(x)e XY((—o0, u]) for xe X with R3t—>Ul(x)eX
norm-continuous, then we have for the spectrum o(U_,) of the analytic generator U_,
of U,
0'( U_.,') #C.
Proof. By theorem (1.3) there exists PY € B(X) such that PY(x)=x for x in the

norm-closure of (Uxc(_oorjcompact X " (K), PY(x)e XY ((—o0, u]) for xe X with
R 3t~ U,(x)e X norm-continuous, and PYU, = UPY, teR. Set

Y={xe X;R>t— U,(x)€ X is norm-continuous}.
By [4, prop. 2.10], Y is a U-invariant norm-closed linear subspace of X, the restriction
U|Y of U to Y is a strongly continuous one-parameter group of isometries in
B(Y), and the closed unit ball of Y is o(X, ¥)-dense in the closed unit ball of X,
Since PY is bounded and commutes with every U, it leaves Y invariant and PY|Y
commutes with every (U|Y),=U,| Y.
For each compact K <R we have
YUIY(K) e YV (K A (=0, 0] + YVIY([A =1, +00)),
S0
(1-PY)YUI(K)c (1-PY)YVIV([A -1, +0)) = YVIY([A - 1, +o0)).
Since Uk cr compser Y7 Y(K) is norm-dense in Y, it follows that
(1-PY)YYc YYIY([A -1, +0)).
Thus
Y=PY(Y)+(1-PY)(Y)
< YV (=00, u]) + YVIY([A 1, +o0))
<Dy, *Dwiv.-
By [18, cor. 24] it follows that o((U|Y)_;)<[0,+). In particular,
—1¢a((U|Y)_;). Set
e=[A+UY))™.
Now let x € X be arbitrary. Since the closed unit ball of Y is (X, ¥)-dense in the
closed unit ball of X, there is a net (,).c; in Y such that |y f|<|x|,c€l y.>x in
o(X, F). Writing
z¢'=(1+(U‘Y)—i)—l(yi), ‘.EI,
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we have _
NI=clxll, <€l

y.=z.+U_(z.), el

But by the Alaoglu theorem there exists a subnet (z;,, ), of (2,).c; which converges
in the o(X, #)-topology to some ze X. Then

U—i(ziA) =Y, Tz, >X—Z ino(X, %),
and since the operator U_; is (X, F)-closed ([2, th. 2.4]), it follows that z€ 9, , and

U.i(z)=x—z

x=(1+U_)(z).
We conclude that 1+ U_; is surjective. By [2, lemma 3.1] it is also injective, so
—1go(U_). O

(1.5) CoroLLARY. Let X be a complex Banach space, ¥ its dual, and U a o(X, F)-
continuous, hence strongly continuous, one-parameter group of isometries in Bg(X) =
B(X). If there exist Pe B(X) and A, ueR, A=pu, such that P(x)=x for
xe XY((—o0,A]), P(X)< XY((—c0, u]), then we have for the spectrum o(U_;) of
the analytic generator U_; of U,
0'( U-i) # C.

Proof. Let us consider the dual group U* = U7 and the adjoint P*= P¥ of P.

Let ¢ € FY" ([ +1, +0)). By [11, prop. 2.3.4] or [4, prop. 3.13] we have forall x e X

(x, P*(¢))=(P(x), $)=0,

(1-P*)(¢)=¢
Now let ¢ € F be arbitrary. If xe XY ((—, A]) then
(x, (1=P*)(¢))=((1- P)(x), $)=0.
Again using [11, prop. 2.3.4] or [4, prop. 3.13], we get
(1—=P*)(¢) e FU([A, +0)).
Applying corollary (1.4) to the group Rat— U*, € Bx(¥%) and to 1- P*e B(¥%),
we deduce that o(U¥) # C. Since U¥ is injective and (U¥) ™' = U*; ([2, th. 2.4]), it
follows that o(U*,) # C. Finally, since U?%, is the adjoint of U_; ([16, th. 1.1]), we
conclude that

SO

O'(U_,')¢C. D

2. The projection problem in the case of factors and prime C*-algebras
We recall that if (X, &) is a dual pair of Banach spaces, U a o(X, %)-continuous
one-parameter group of isometries in Bz(X ), and D < R an open set, then one defines

XY(D)=0o(X, #)-closureof | XY(F).

F< D closed

We begin with an adaptation of [5, th. 2.3] to the present frame:

(2.1) LEMMA. Let (M, a) be a one-parameter W*-dynamical system and let us assume
that there exists Pe B(M) with P(x)=x for x in the norm-closure of
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UKC(—OO,O) compact MH(K)a P(x) € Ma((—m’ 0]) fOT xeM with R> tHa,(X) EM
norm-continuous. Then for each compact set K < (~0, 0) and each x € M*(K) with
Ixll <1 we have

I (1-x)| < =P,
where In:C\ (-0, 0] C is the analytic function defined by
In(re®)=Inr+i6, r>0,|0|<g.

Proof. By theorem (1.3) there exists P* € B(M) such that:
|Pl=]Pl;
P%a,=a,P% teR;
P*(x)=x for x in the norm-closure of |_Jx (-0 compact M “(K),
P*(x)e M*((—o0, 0]) for x€ M with R>t— a,(x) € M norm-continuous.

Let K = (—o0,0) be compact and let xe M*(K) with [x||<1. Using the von
Neumann inequality ([13, § 153, th. B or Appendix, § 4]) as in the proof of [5, th.
2.3], we deduce that /2+ImIn (1 —x)=0. Therefore

| Im In (1 —x)"sg.

On the other hand, by known properties of the spectral subspaces of a we have
xke M (K +---+K), (x*) e M*(-K—--+-—K), k=1.
—_— ———
k k
Since K +-+ -+ K< (-0, 0) for all k=1, we have
~——————

k

ao

P(In (1 —x))-—*él -;; P*(x*) =k§] —l,;xk =1In (1 —x).

Further, since for each k=1, R> 1~ a,((x*)*) e M is norm-continuous, P* com-
mutes with all «,, and P is bounded, we have

P*((x*)*) e M*((-,0) nM*(~K —- - - — K)={0}, k=1.
k

Thus

Pe((n (1=x)") = I £ P*((x")") =0,
We conclude that

In(1-x)=P*(In(1-x)—(In(1—x))*)

=2iP*(ImIn (1 —x)),
and so
n (1 -x)[| =<2||P*|| {Im In (1= x)]|
= 7| P|. 0
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Next we characterize all one-parameter W*-dynamical systems (M, a), with M a
factor, which allow bounded linear projections onto M “((—o0, 0]):

(2.2) THEOREM. Let (M, a) be a one-parameter W*-dynamical system with M a
Jactor. Then the following statements are equivalent:

(1) there exists Pc B(M) such that P(x)=x for x in the norm-closure of
Uk e(—w,0) compace M*(K), P(x)e M*((—00,0]) for xe M with Rat—>a,(x)e M
norm-continuous

(ii) for every closed subset F of R there exists a projection Pf.€ By, (M) with:

image of Py = M°(F);
kernel of P = M*(R\ F);
Pra,= a,Pf, teR; and
SUP FeR closed || PF[| < +00;

(iii) o(a) is finite.
Moreover, if the above equivalent statements hold then

sup | P%|l=|o(a)|=e’exp (27| P|).

F<R closed
Proof. The implication (iii)=>(ii) and the inequality

sup [|PE| <lo(a)|

F<Rclosed

follow immediately from corollary 1.2. Since the implication (ii)=>(i) is trivial, it
remains to show (i)=>(iii) and

lo(a)|= e exp 2| P|)).

Let us therefore assume that (i) holds, and show that |o(a)|< e exp (27| P|). By
corollary 1.4, o(a_;) #C, so by [5, cor. 3.4], a is uniformly continuous. It follows
that there exists a self-adjoint a e M with

a,(x) =exp (ita)x exp (—ita), teR, xe M,

(see e.g. [12, 8.5.5]). Since o(a) < o(a)—o(a) (see e.g. [4, 6.19(iii)]), it suffices to
show that
|o(a)|= e exp (7| P|)).

Thus, let distinct points A| <A, <<- - - <A, be in the spectrum o(a) of a. Choose some
0< £ <% . min . (/\j+l _A])'
=j=n—

For each 1 =j = n let ¢; be the spectral projection of a corresponding to the interval
[Aj—& A;+€]. Then 0# ¢ M, 1<j=<n, the projections e,,..., e, are mutually
orthogonal, and by the comparability theorem (see e.g. [15, theorem 2.1.3]), there
is a permutation r of {1,..., n} with

ey < ey )<< elyn)
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Consequently there are projections fi, ..., f, € M such that
fl~f2_~' v~ fa~ €,y #0.
N IA A
€ € €n
For any 1=j=n-1, let y;e M be a partial isometry with
ufu;=fi, wuf =f,

and put

n—1
u=7y yeM
j=1

j=
Foreach 1=j=n-1 and k=1 we have

le_xi(u;)]| = llexp (ka)eu;e;.. exp (—ka)]|

=<|lexp (ka)e;|| [lexp (—ka)e;. ||

Sek()‘1+£) e—k(z\jﬂ—s):e—-k()\jﬂ—)\j—Zs)Se—ks,

and, similarly,
“aki(uj)” < ek(Aj+l_)‘j+2e)S ek(,\"—A|+2s).

By [2, cor. 5.7] it follows that w;e€ M*([—(A,— A, +2¢), —¢]), 1=j=n-1, so
ue M*([—(A,— A, +2¢), —¢]). Using lemma 2.1 we obtain for every 0< 8 <1,

[in (1 - éu)|| = =|| P|.
But 4" =0, so

82 8n—l

ln(1—6u)=6u+?u2+---+ un', o< <l,

n—

and letting 8 increase to 1 in the above inequality, we get

n—1

u

= x| PJ.

1
u+sui+ o+
n—1

We may consider M as a von Neumann algebra in some complex Hilbert space H
([15, theorem 1.16.7]). Choosing &, € f,H with ||¢,| =1 and defining

E=uu;,, - u,_((&,), I=j=n-1,

) 1
we have &€ fH and [ §] =1, [ <j =< n, so the norm of§=J—:(§,+- -+ +¢£,) is equal
n

to 1. Hence
+IuPE+ o+ gl =w|P.
ug+pug e+ —— g =< | P|
But by an easy computation (see the end of the proof of [5, prop. 2.6]) we get
uf +utE+ -+ u"'¢ zlnf,
n+l1 e

and it follows that In n/e=< || P||, i.e. n= e exp (|| P|)). This proves that |o(a)|=

e exp (7| P||), from which it follows as shown above that |o(a)| =< e’ exp (27| P|).
O
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Now we consider one-parameter C*-dynamical systems on separable prime C*-
algebras:

(2.3) CoroLLARY. Let (A, a) be a one-parameter C*-dynamical system with A a
separable prime C*-algebra and let us assume that there exists P € B(A) such that

P(x)=x forxe A®((—0, 0)),
P(A)c A%((—0, 0]).

Then o(a) is finite and

|lo(a)|= e exp (27| P|).
Proof. By a theorem of Dixmier (see e.g. [12, prop. 4.3.6]) A is primitive, so it has
a faithful irreducible *-representation 7: A -> B(H).

By corollary 1.5 and by [5, prop. 2.2], @ can be extended to a o(A**, A*)-
continuous one-parameter group a** of *-automorphisms of A**, with o((a**)_;) =
o(a_;) #C. It is easy to verify that the second adjoint P** € B,.«( A**) of P satisfies
the conditions

P**(x)=x

fOI' xXe (A**)a“(('"w’ 0)) = U(A**; A*)'01osure Of UKC(—-O0,0) compact (A**)a“(K)a
and
P**(A**) c (A**)*7((~, 0]).

Now 7 can be extended to a normal *-representation 7: A** > B(H), and there is
a central projection p of A** such that
ker (7) = A**(1-p),
#|A**p: A**p > B(H) is a *-isomorphism

(see the proof of [15, prop. 1.16.2]). By [5, cor. 2.4] (a**),(p)=p, t€R, so there
exists a one-parameter W*-dynamical system (B(H), B) with

wo(a**),=B,°7, teR.
The linear map
Q: B(H) = #(A**p) > w(xp)— #(P**(xp)) € B(H)
clearly satisfies the conditions
IRl ={1P**||=|Pl,
Q(y)=y  forye B(H)?((-,0)),

Q(B(H)) <= B(H)P((—, 0),
so by theorem 2.2, o(B) is finite and

lo(B)]= e exp 27| Ql) < €* exp (27| P])).

Finally, since = is injective and 7w a, =8, ° 7, teR, we have o(a) < o(B8) and the
above statement concerning o(8) yields the required one. 0
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Finally we prove the C*-algebra counterpart to theorem 2.2 in full generality:

(2.4) THEOREM. Let (A, a) be a one-parameter C*-dynamical system with A a prime
C*-algebra. Then the following statements are equivalent:
(j) there exists Pe B(A) such that
P(x)=x  forxe A*((—,0)),
P(A)<= A%((—0,0]);
(jj) for every closed subset F of R there exists a projection P§ € B(A) with:
image of Pr= A"(F);
kernel of P = A*(R\\ F);
ra, = a, P, teR; and
supFCIR closed IIP;” < +CD;
(jij) o(a) is finite.
Moreover, if the above equivalent statements hold then
sup ||Pg|=lo(a)|=e’exp x| Pl).
F<R closed
Proof. As in the proof of theorem 2.2, the implication (jjj)=>(jj) and the inequality
SUP Fer closed || PE|| = | ()| follow by corollary 1.2, and the implication (jj)=>(j) is
trivial. In order to prove (j)=>(jjj) and the inequality

|o(a)|=e” exp (27| P},

let us assume that (j) holds and show that |o(a)|< e’ exp (27| P||). Thus, consider
n distinct points in o(a). Then by the definition of o/(a) there are f;, ..., f, € L'(R)
with

I<juj2=n,  ji#j:=>supp (f,) ~supp (f,) =2
and x,,..., x, € A such that

as(x)#0 foralll<j<n.

By [5, cor. 3.2] there exists an a-invariant separable prime C*-subalgebra B, of A
with B,>{x,,..., x,}. Next, again by [5, cor. 3.2], there exists an a-invariant
separable prime C*-subalgebra B, of A with B, > B, u P(B,). Continuing in this
way we get a sequence B, c B,c - - - of a-invariant separable prime C*-subalgebras
of A such that

{x1,...,x.} < By,

BkUP(Bk)CBk+| forkzl.

Then the closure B of | i~ Bi is an a-invariant separable prime C*-subalgebra
of Asuchthat{x,,..., x,} = Band P(B)c B. Applying corollary 2.3 to the restriction
a|B of a to B and to P|B, we get

|lo(a| B)| = e” exp (2| P| B||) < € exp (27| P|)).

But we have for each 1=<j=n, (a|B),(x) = a;(x;) #0, (a|B); #0, so
a(a|B)nsupp (f;) #D.
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Thus o(a|B) contains at least n distinct points, and so
n=e’exp 27| P|),
as desired. 0

3. The projection problem in the general case

Let M be a W*-algebra, Z its centre and () the maximal ideal space of Z. Following
[6], we consider for each w € () the norm-closed (automatically two-sided) ideal [@]
of M generated by w. Denote by x, the canonical image of xe€ M in the quotient
C*.algebra M/[w]. We recall that by the formula from [6, p. 232],

Ixlt=sup [|Ix.[,  xeM,
weld

and by [6, lemma 10], 3w+~ | x,]|| is continuous for each xe€ M. We note also,
even if we do not use it, that each M/[w] is a primitive C*-algebra ([8, theorem 4.7]).
Theorem 2.2 can be extended to general one-parameter W*-dynamical systems:

(3.1) THEOREM. Let (M, a) be a one-parameter W*-dynamical system, Z the centre
of M, and Q) the maximal ideal space of Z. Then the following statements are equivalent:

(i) there exists Pe B(M) such that P(x)=x for x in the norm-closure of
Uk c(-20.0) compace M*(K), P(x)e M*((—0,0]) for xe M with R>t—>a,(x)e M
norm-continuous

(ii) there exists Qe B(M) such that Q(x)=x for x in the norm-closure
of Ukc(-w.0)compacs M*(K), Q(x)=0 for x in the norm-closure of
UKc(0,+oo) compact Ma(K);

(iii) for every closed subset F of R there exists a projection Pf.€ By (M) with:

image of Pr.= M*(F);

kernel of P =M~ (R\ F);
ra,=a,P%, teR; and

SUPFcR closed || PF]| < +00;

(iv) there exists a dense open subset %@ of Q such that, for each we 9, [w]
is a-invariant and « induces a uniformly continuous one-parameter group a* of
*-automorphisms of the quotient C*-algebra M /[w], and sup,. 5 |a(a"’)| < 4003

(v) for each xe M and each ¢ € M,,

sup
0<e <8< +00

< +00;

1
J —(a,(x), ) dt
e<|t|=5 t

(vi) a has the Hilbert transform property from [18, § 3] in every x € M ; that is, the
limit

0<e—>0
8> +00

j 1
H"‘(x)=—la'(M, M,)— lim J - a,(x) dt
m e=<|if=s ! -

exists for each xes M
(vii) a has the global Hilbert transform property from [18, § 3]; that is, it has the
Hilbert transform property in every x€ M and H® € By (M).
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Moreover, if the above equivalent statements hold then:

sup ||PE]=sup |o(a*)|=e” exp (2] PI);
we

Fc<R closed

for given Q, P can be chosen with || P|| < || Q||; Q can be chosen with || Q|| <3(1 +||H*||);
[ H || =2|| Poo,gpll-
Proof. (i)=>(iv) and the inequality sup, .o |o(a®)|< e’ exp 27 ||P|):

By corollary 1.4, o(a_;) #C, so by [5, theorem 4.4), there exists a family (p;);e;
of mutually orthogonal central projections in M with }_, p.= 1 such that, for each
cel, p; is fixed by a and a induces a uniformly continuous one-parameter group
a|M,, of *-automorphisms of M,. It follows that for each ;eI there exists a
self-adjoint a,e M with

a,(x) =exp (ita;)x exp (—ita,), teR,xe M,
(see e.g. [12, 8.5.5]). Each p, corresponds to the characteristic function of some
closed and open subset K, of {2, and the open set @ =,.; K, is dense in Q.

Let w e D be arbitrary. Then there exists an (e I with w e K,. Plainly, [@] is
a-invariant and a induces a uniformly continuous one-parameter group a“ of
*-automorphisms of M/[w]. Since

o(a®)c o((a).)—o((a).)

(see e.g. [4, 6.19(iii)]), |o(a®)|=e’exp (27| P|) will follow from the inequality
lo((a.),)| =< e exp (= P]).

In order to prove the last inequality, we proceed much as in the proof of theorem
2.2; therefore we only sketch the reasoning:

Consider n distinct points A; <A, <- - -<A, in the spectrum of («,),. Choosing
some

0<eg <% min . (Aj+l —Aj),

I1=j=n—

for each 1=<j=mn, let ¢, M be the spectral projection of a, corresponding to
[A; — &, A; +£]. Then the projections e, . . ., e, are mutually orthogonal and (¢;),, #0,
1=j=n. By the comparability theorem (see e.g. [15, theorem 2.1.3]) there exists,
for any distinct 1=<j,,j,=<n, a projection p; ;,<p. in Z, corresponding to the
characteristic function of some closed and open set containing , such that either
€ Dj.i»<©,Dj j» OT €p; .>ep, .. Consequently, there is a permutation 7 of
{1,..., n} and a projection p =< p, in Z, corresponding to the characteristic function
of some closed and open set containing w, such that

P <ep<'--<epp.
Hence there exist projections fi, ..., f, € M such that
i~~~ fo~eqypglwl

A IA IA
€, € €n

For any 1=j=n—1, let u;e€ M be a partial isometry with

uft; = fiu, uuf = f
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and put
n—1
u= uj € M
j-1
Using [2, cor. 5.7], it is easy to see that u;€ M*([—(A, — A, +2¢), —e]), 1=j=n-1,
so ue M*([—(A,—A;+2¢), —¢]). By lemma 2.1 it follows that

1
U, +3(u,) 2+ -+ ()" | <llu+1u?+- -+ yn
n—1 n_1
= Jim_ lin (1-8uw)|==|P|.

But on the other hand, each (f;), being non-zero, considering M/[w] as a C*-
subalgebra of B(H) for some complex Hilbert space H (see e.g. [15, theorem 1.16.6])
and computing as at the end of the proof of theorem 2.2, we get

(uw)n—l

U, +3(u,) -+

n
=Iln-.
n—1 e

Thus In n/e=< 7| P||, n=<eexp (w| P|), as desired.

(iv)=>(iii) and the inequality suprcg ciosed | P&l = supocq |o(a®)|:

Set no=sup,ca |o(a®)|, and let F be an arbitrary closed subset of R. By [5,
theorem 4.4 and cor. 2.4], a,(z) =z for all ze Z and teR. Using Zorn’s lemma, we
get a maximal family of mutually orthogonal non-zero projections ( p,),.; in Z such
that for each /€ I there exists a projection P‘;'M"-‘e B Mp‘,)*(Mp;) with:

image of PH™":=(Mp,)*™:(F)= M*(F)p;

kernel of PEMP:=(Mp,)*IMP(R\ F)= M*(R\ F)p.;

PE™ (o |Mp,), = (a| Mp)) PF™., teR;

|PEM:| =< o,

If we show that ) ,_, p,=1,then PE=} ., PMP: yould be a projection in By, (M)
with:

image of Pr= M*(F);

kernel of PF= M*(R\\ F);

ra,=a,Pr, teR;

IPE| = no.

Therefore let po=1-—3 __, p, and let us prove that the assumption p,# 0 leads to a
contradiction.

Let us identify each projection p € Z with the characteristic function of the closed
and open subset {w €; p,=1,} of Q. So p, is the characteristic function y, of
some closed and open set J# K,< (). By [5, theorem 4.4] there is a closed and
open set & # K, < K,n @ such that «a My, is uniformly continuous. Set

n, = sup |o(a®)|=< n,.
we K,

Choosing some w, € K, with |o(a“')| = n,, we claim that there is an open neighbout-
hood D c K, of w, with

we D=>|o(a®)=n,.
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Indeed, there are f,, ..., f, € L'(R) with supp ( f,), ...,supp ( fn,) mutually disjoint
and x, ..., x, € Myk, such that

(afl(xl))wp cres (af,,l(xnl))wl # 0’
and by [6, lemma 10] we have for all ® in some open neighbourhood D < K, of w,

(@ (X1 an -« (2, (%)) #O.
It follows that there exists a closed and open set J# K, < K, such that w € K,=
|o(@®)| = n,. For each w € K, set

a(a®)={r(@),..., A, (@)},

where A (w)<---<A,(w). We claim that for each 1=j = n, the function K, >0~
Aj(@) is continuous. To prove this, let w, < K, and let

O<eg <% min : ()tj+|(w2) _)\j(wz))

I=j=n—
be arbitrary. Then there are f,, ..., f, € L'(R) with
supp (f) = (A;(@2) — &, A;(@,) +¢)
and x,,..., X, € Myg, such that
(ag(x1))uys -« - (ozfnl(x,,l)),,,2 #0.
Again by [6, lemma 10], there exists an open neighbourhood D c K, of w, such
that for every we D

(@(X))un - - -, (7, (X)) #O.

For each w € D we get, successively,
o(a®)nsupp (ﬁ-)#@, I=j=n,
a(a”)n(Aj(w2) — &, Aj(w,) +&) # D, l=j=n,

IAj(w)_Aj(w2)|<8’ I=j=n,
For each J<{l1,...,n} and k=1 we set
A(w)e F forjeJ
KJ,k= weKz; . 1 .
d((@), F)=inf [, (@) =Al=+ forjet

Then the K;,’s are closed subsets of K, and (U, K, = K,. Using the Baire
category property of K,, we deduce that there exist Jo<{1,..., n;} and ky=1 such
that the interior of K ;, # . Therefore there is a closed and open subset K; # &
of 0 which is contained in K, , . If fe L'(R) and

supp (f)n(Fu{/\elR; d(A, F)zé}) =,

then we have
(af(x))w—_.(aw)f(xw):o, xeMXK3’w6K3a
SO (a|MxK3)f=0, and consequently,

o-(aIM)(KB)C (FU{A eR:d(A, F)ZIE}).
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Set g = xk, € Z. Then q is a non-zero projection and is orthogonal to all P,. Choosing
some fy€ L'(R) such that

Fols) =1 for s in a neighbourhood of the compact set Fno(a | Mq),

supp (fo)={A eR; d(A, F)<1/ko},
and putting P£™? = (a|Mgq), € Biag) (Mg), itis easy to see that P2M4 s a projection
with:

image of P‘;'M" = (Mq)""Mq(F);

kernel of P&™7 = (Mg)*™I(R\ F) = (Mq)*™¥({r eR; d(A, F)=1/k}),

PMi(a|Mg), = (a|Mq) PE™I, teR.
By corollary 1.2 we have for all xe Mg

I(PE™(x)), | < mllx. | = mollxll,  weKs,

S0

| PE™a(x)] = sup (PE™(x)). || = nollx].

we Ky
It follows that ||PE™4) <n, But the existence of g with the above properties
contradicts the maximality of the family (p.).cr

(iii)=>(vii) and the inequality [|H*| <2||P{wnll:

By [18, theorem 3.5] the existence of P{_, ;and Ppp .., implies the global Hilbert
transform property for a@ and H®=P{ 0~ Pix). Since Py ic)(x)=
(P{lw,0(x*))*, x€ M, we have

IH || = | PCwoll + I Pfo, o)l = 2}| PCco -
The implications (vii)=>(vi)=>(v) are trivial.
(vii)=(ii) and Q can be chosen such that || Q|| <3(1+]H|):
By [18, lemma 3.4], Q=31+H")e By, (M) satisfies the conditions from (ii).

(v)=(ii):
For every 0 <e < 8 < +00 we set

1
Te,s-_—J' - a,; dte BM*(M).
ex|t|<8 t

By the uniform boundedness principle, ¢ = $UPg<.<s<+wo || Tr.5]| < +00. Now let Z be
the complex linear space of all continuous functions f:R\ {0} > C with

I f(t)det
ex|t|=38

< +00,

p(f)= sup

O0<e<8<+00

Then p is a semi-norm on %,

@={f€%; lim J
0<e->0 e

8-+

f(t) de exists}

=<|t}=8
a linear subspace of &, and

@lafHOLimOJ’ f(t) dt

5>+
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a linear functional on % with

lim J f(t)dt
e<|t|=8

=p(f), fed.

0<e=0
8->+

By the Hahn-Banach theorem there exists a linear functional
x sfHOLIM()J f(t) dr,

8—:{-& €

which extends the above linear functional on % and for which

LIMJ- fdil=pn, fez
0<e=>0 J o <s|<5

8->+

For any xe M and ¢ € M_, the function
1
Foo R0} 3 1> (a0 (x), 6)
belongs to & and p(f.,)=c| x| ||¢]. Thus

M xM, >(x, ¢)|—>0]_<,II\/IOJ

8>+00

<sfw(t) dt

=t

is a bilinear functional of norm = c. Since M is the dual space of M,, it follows
that there exists T € B(M) such that

(T(x), ¢)= OLIMO I Jes(1) dt, xeM,peM,.
<£20 Jez|t|<s
§—>+00

In particular,

0<eg->0
8- +00

1
T(x)=0(M, M,)— lim J 7 a,(x) dt
ex|tj=8

whenever the limit at the right side exists. But if x € M ((—00, —a]) for some a >0,
then lim,_, .o ||a@_si(x)]| =0, so by [18, lemma 3.1],

1
o(M, M,)— lim Sa(x)di="x.
%<5"0 es|t|sat 1
- +00

Thus T(x)=(a/i)x for x in the norm-closure of |k c(-c,0)compact M*(K). One
deduces similarly that T(x)=-—(w/i)x for x in the norm-closure of
U k <(0,40) compact M *(K ). We conclude that Q =3(1+(iT/))e B(M) satisfies the
conditions from (ii).

Finally we prove that

(ii)=(i) and, for given Q, P can be chosen with ||P|| < Q||

By theorem 1.3 there exists Q* € B(M) such that |Q*| = || Q]l, Q%a, = a,Q°, t R,
Q“*(x) = x for x in the norm-closure of Uk c (-«,0) compact M “(K), and Q*(x) =0 for
x in the norm-closure of |k c (o +) compact M “(K).
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Let us assume that there exists xe M with R 3 ¢t— a,(x) norm-continuous and
Q%(x) g M*((—00, 0]). Then there is some f L'(R) such that supp (f) < (0, +00) is
compact, a;(Q(x))# 0. But this is not possible, because as a,(x) e M“(supp (f))
one has a;(Q*(x})= Q%(ay(x))=0. Thus Q*(x)e M*((—0,0]) for xe M with
R 3t~ a,(x) norm-continuous, so (i) holds with P = Q°. ad

(3.2) CoroLLARY. Let (M, a) be a one-parameter W*-dynamical system, N an
a-invariant W*-subalgebra of M, and a | N the restriction of a to N. If (M, «) satisfies
the equivalent conditions from theorem 3.1, then (N, a|N) also satisfies them and

PN = PE|N, F <R closed.

Proof. If (M, a) satisfies one of the conditions (v), (vi), (vii}) from theorem 3.1,
then it is plainly satisfied also by (N, a|N). Further, if F<R is closed and
x € N, then PZN(x)e N*N(F)c M*(F), x— P&V (x)e N*N(R\ F)< M*(R\\ F),
so PEN(x) = P(x). - O

For one-parameter C*-dynamical systems we have two non-equivalent natural
counterparts to theorem 3.1; one of them corresponds to condition (v) from theorem
3.1, and the second one to the conditions (vi) and (vii).

Let us recall that if A is a C*-algebra and Prim (A) is the set of all primitive
closed two-sided ideals of A, then Prim (A) is usually endowed with the Jacobson
topology (see e.g. [12, 4.1.4]). By a theorem of Dixmier Prim (A) is a Baire space
(see e.g. [12, theorem 4.3.5).

(3.3) LEMMA. Let (A, a) be a one-parameter C*-dynamical system such that any
closed two-sided ideal of A is a-invariant. For each closed two-sided ideal $ of A we
denote by o the strongly continuous one-parameter group of *-automorphisms of the
quotient C*-algebra A/ $. Then the set

{#ePrim(A); o(a?)c F}
is closed in Prim (A) for any closed F — R.

Proof. Let F<R be closed and let us assume that there is some _#, in the closure
of {#ePrim (A); o(a?)< F} in Prim (A) such that o(a®)¢ F. Choosing some
Ao€ o(a®)\ F, and an fe L'(R) with f(A,) # 0, supp (f) » F =, there exists x € A
such that a,(x)£ %, On the other hand, (a")f=0 for every # e Prim (A) with
o(a®)< F, so

af(x)e [ F<F

FePrim(A)
o(a” )< F

This contradiction shows that the statement of the lemma holds. J

If 4 is a closed two-sided ideal of a C*-algebra A, then $+— # N .$ is a homeomor-
phism of the open subset {# € Prim (A); £ ¢ #} of Prim (A) onto Prim (#) (see e.g.
{12, theorem 4.1.11]). Therefore we shall identify Prim (#) with the above open
subset of Prim (A).

We also recall that a composition series for a C*-algebra A is a strictly increasing
family of closed two-sided ideals #, of A, indexed by a segment {z;0=<a=<¢} of
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the ordinals, such that

jO = {O}’

J.=A,

g.=U 9 for each limit ordinal 2 <.
f<a

We call a composition series {F,;0=ac=<c} saturated if, for each O0=a<c,
Prim ($,_,,/#,) is dense in Prim (A/.#,).

If (A, @) is a one-parameter C*-dynamical system and # an a-invariant closed
two-sided ideal of A, then we denote by a|.# and a” the strongly continuous
one-parameter groups of *-automorphisms of %, resp. A/, induced by a.

Now we prove a first C*-algebra counterpart to theorem 3.1:

(3.4) TueoreM. Let (A, a) be a one-parameter C*-dynamical system. Then the
Jfollowing statements are equivalent:

(i) there exists an a-invariant closed two-sided ideal ¥ of A with Prim ($) dense
in Prim (A), and P e B($) such that

P(x)=x  forxe $*¥((-,0)),
P($) = $°M((—, 0]);

(ii) there exists a saturated composition series {$,;0=<a=<c} for A, formed by.
a-invariant ideals, and projections P, € B($,. .,/ $,.),0=<a <, with
image of P, =($,,./$,)* Pes/?u((~0, 0]),
kernel of P,=($_,,/$,)* M=+/%.((0, +o0)),
P(a”|9,.1/8.) = (a”|F,1/9,).P,, tER,
such that

sup ||P,|| < +oo;

O=a<c
(iii) there exists a family ($.),.; of a-invariant norm-closed two-sided ideals of A with

(M $.={0}, suplo(a®)| < +w;
cel el
(iv) every prime closed two-sided ideal of A is a-invariant and
sup |o(a®)| <+
& prime
(v) the formula
(a*)(x)=(a)**(x), teR,xecA**

defines a o( A**, A*)-continuous one-parameter group a** of *-automorphisms of the
W*-algebra A**, and (A**, a**) satisfies the equivalent conditions of theorem 3.1;
(vi) for each xc A and ¢ € A¥,

sup

0<e<§<+0o0

J —l-(a,(x), @) dt| < +o0,
ex|t|=8 t
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Moreover, if the above equivalent statements hold, then

1PEoall= sup [Pll= sup |o(a®)

O=a<c FePrim(A)
= sup |a(a’)|=suplo(a”)],
¥ prime cel
and for suitable choice of the family ($.).c1,
sup |o(a”?)|= e exp 27| P||).
sel
Proof. First we prove that (i)=>(iii) and, for given P, the #.’s can be chosen with
sup.cs |o(a”)|=< e’ exp (27| P|):
Since () F ={0}, it is enough to prove that each # € Prim (A) with $ ¢ ¢

FePrim(A)
Sz §

is a-invariant and |o(a”®)|= e* exp 27| P|).

Let 7: A-> B(H) be an irreducible *-representation with ker (7) = #. Since w(¥#)
is a non-zero two-sided ideal of 7(A), it is dense in B(H) in the strong operator
topology. Therefore | $: $ - B(H) is an irreducible *-representation of %.

Taking into account corollary 1.5 and [5, prop. 2.2 and cor. 2.4], by a second dual
argument similar to that used in the proof of corollary 2.3, we get a one-parameter
W#*.dynamical system (B(H), B) with

(wlﬁ)O(aIf),=ﬂ,°(7r|f), teR,
and a linear map Q:B(H)-> B(H) such that ||Q|=|P|, Q(y)=y for
y€ B(H)?((-,0)), and Q(B(H))< B(H)"((-, 0]).
Let a € A be arbitrary. We have, for any teR and be ¥,
m(a,(a))m(a,(b)) = 7(a,(ab)) = B.(7(ab)) = B,(7(a))B.(m(D))

=B w(a))7(a,(b)).

Since a,(#) = for all teR, it follows that
m(a,(a))m(b)=B(7(a))m(b), teR,bes.
But the identity operator on H belongs to the closure of 7 (.#) in the strong operator
topology, so w(a,(a)) = B,(w(a)), te R. Consequently, 7o a,= B, o 7, teR. In par-
ticular, # =ker () is a-invariant. Finally, by theorem 2.2,
lo(B)|=e” exp 27| Q|)) = ” exp (2| P|).

Since o(a®) < o(B), we conclude that

lo(a®)| < e? exp (2| P|)).

(iii)=>(iv) and the inequality Supy prime |o(a®)|=<sup,, |o(a®)|:
We shall first show that if J, is a dense subset of the space J of all prime closed
 two-sided ideals of A with the Jacobson topology and if each member of J, is
a-invariant, then each member of J is a-invariant, and

sup |o(a”)| =sup |o(a?)],
Fely SeJ

provided that the supremum over J; is finite. That each member of J is a-invariant
follows immediately from the fact that each «, determines a homeomorphism of J
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onto itself with a dense set of fixed points. Suppose that the largest number of
elements in any o(a®) with § € J, is finite, and denote this number by n. By lemma
3.3 (which holds just as well for the space of prime closed two-sided ideals as for
the space of primitive ideals) for any closed subset F<R, the set of #e€J with
o(a®)< F is closed. Fix ¢ € J, and choose a net ($,) in J, converging to #. Passing
to a subnet at most n times, we may assume that o(_#,) converges to a closed set
FcRu{+} with at most n elements. It follows that o(#) is contained in any
closed neighbourhood of F, and hence that o(#) is contained in F'; in particular,
lo(£)|=n.

Now, for each ¢ € I, denote by J; the subset of J of prime ideals containing I..
By [5, theorem 3.5(iii)] applied to A/ #,, each element of J, is a-invariant. Moreover,
the intersection of the members of J; (even of just the primitive ideals in J,) is equal
to .$,. Hence the intersection of the members of |U,c; J; is [ \ics £, ={0}; in other
words, Jo=\,c; J: is dense in J. Since o(a®) < o(a®) if #> 5., we have

sup |o(a?)|=sup |o(a”)|.

Fely iel
By the preceding paragraph, the desired inequality, which is stronger than (iv),
follows.

A second application of the statement in the first sentence of the proof of
(iii)=(iv), with J,< J the set of primitive ideals of A, is that

sup |o(a”)|= sup |o(a?)].
FePrim(A) F prime

(iv)=>(ii) and the inequality supo=, <. || P, || =<Sup scprimca) |o(a”®)]:

First we note that by [5, theorem 3.5], o(a_;) # C, so by [5, cor. 2.5] every closed
two-sided ideal of A is a-invariant. We prove that there exists a closed two-sided
ideal #, of A with Prim (.#,) dense in Prim (A), and a projection P, € B(.#,) such that:

image of P, =($,)*"/((~c0,0]);

kernel of P, =($,)*”1((0, +));

P(al|$),=(a|%).P, teR;and

| Py || < supseprimca) |0'(01’)|-

This suffices, because then, using transfinite induction, we get easily (ii) and the
desired estimation for supo<,<. | P.||.

Let us write for each n=1

F,,={0}u{A eR;%sl)ds n}cR,
F.={#€Prim (A); o(a’)= F,}.

By lemma 3.3 the %,’s are closed subsets of Prim (A), and by (iv) Prim (A)=
Un=1 %, Since Prim (A) is a Baire space, 9=\_J,-, (interior of %,) is a dense open
subset of Prim (A). Hence there exists a closed two-sided ideal #, of A with

Prim ($,)={FePrim (A); ¥, ¢ #}=¥

dense in Prim (A).
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For each n=1, letting #, , denote the closed two-sided ideal of A with
Prim (#, ,) = {# € Prim (A); #, , ¢ #} =interior of ¥,

we have
o-(a"l,n)CFm nZl’
S = U fl,n-
n=1

It follows that
F1n= (1) 1((=00, 0]) +(F, ) “1*1+((0, +0)), nx=l;

consequently,

$1= ()P ((=00, 0]) +(£)) (0, +00)).
On the other hand, by corollary 1.2 we have for every xe (f,)"" 1((—00, 0]) and
y€(£1)1((0, +00)),
Ixsll =lo(@®)N(x +p)sll=<|o(a®)|lx+yl, £ ePrim(A),

lxl= sup nx,us( sup |a<a~’>|)ux+yu,
FePrim(A) im(A)

Fe
where a; denotes the canonical image of ac€ A in A/ $.

We conclude that there exists a projection P,e B(#,) of norm =
SUP geprim(a) |0(a”®)| such that:

image of P, =($,)*"* (=0, 0]);

kernel of P, = (#,)**1((0, +)).

Since (a|#,).P,(a|.$,)_, is, for each teR, a linear projection with the same image
and kernel as P,, we have automatically

P,(a|f,),=(al.9‘,),Pl, teR.
(i) =(v):

From (i)=>(iv) established above, applied for each z, 0= 4 <¢, we see that the
C*-dynamical system (5, .,/ $., a’-| £, .,) satisfies the equivalent conditions of [5,
theorem 3.5 and cor. 4.5]. It follows in particular that > a¥* is a o(A**, A*)-
continuous one-parameter group of automorphisms of A** — denote it by a**. From
(ii) it follows immediately that the W*-dynamical system (A**, a**) satisfies condi-
tion (iii) of theorem 3.1 in the special case F =(—00,0]; in particular, it satisfies
condition (i) of theorem 3.1 (and therefore it satisfies all the equivalent conditions
of theorem 3.1). Moreover, since P{ o, is the direct sum of all P¥*, we have

sup ||P,|| = || PEoall-
O=a<c
(v)=():

It follows from condition (iv) of theorem 3.1 that for each irreducible representa-
tion 7 of A the restriction (a**)™ of a** to the weak closure of 7(A) has finite
spectrum, and that the supremum of these cardinalities is finite. Since o(a**™) <
o((a**)™), we have condition (iii) of the present theorem, with the family (%)
taken to be Prim A. As shown above, condition (iii) implies condition (ii), and
condition (i) follows trivially.
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Finally, the implication (v)=>(vi) is trivial, and the implication (vi)=>(v) follows
easily by [18, cor. 2.5], [5, prop. 2.2], and the uniform boundedness principle. [

(3.5) CoroOLLARY. Let (A, a) be a one-parameter C*-dynamical system.

If B is an a-invariant C*-subalgebra of A and (A, a) satisfies the equivalent
conditions of theorem 3.4, then (B, a|B) also satisfies them.

If # is a closed two-sided ideal of A, then (A, ) satisfies the equivalent conditions
of theorem 3.4 if and only if  is a-invariant and (%, a | $) and (A/ $, a”) satisfy them.
Proof. The first statement follows from corollary 3.2 by making use of condition (v)
from theorem 3.4. Also the second statement follows easily by using condition
(v) from theorem 3.4. O

Unfortunately, if a one-parameter C*-dynamical system (A, a) satisfies the
equivalent conditions from theorem 3.4, there does not necessarily exist a projection
P w01€ B(A) with:

image of P 0= A%((~00, 0]);

kernel of P o= A%((0, +0)).
Indeed let A be the C*-algebra of all convergent sequences of complex 2 X 2 matrices,
a the self-adjoint element of A corresponding to the sequence

(o D6 w2k (o 17n)
o 1)°\o 1/2)7""°\0 1/n) 7

and a the uniformly continuous one-parameter group of *-automorphisms of A
defined by

a,(x)=exp (ita)x exp (—ita).
It is easy to see that (A, a) satisfies condition (iv) from theorem 3.4, but

A%((—00, 0]) = the set of all convergent sequences of

matrices of the form ((e) f};),

A% ((0, —0)) = the set of all sequences of matrices of

0 0 00
the form (g 0), which converge to ( 0 O)’

SO

A# A*((—0, 0]) + A*((0, +00)).
The explanation of the above deviation from the case of W*-dynamical systems
relies on the fact that all one-parameter W*-dynamical systems satisfy the weak
ergodic property from [16, § 3], whilst for general one-parameter C*-dynamical
systems this is not true. More concretely, the following second C*-algebra counter-
part to theorem 3.1 holds:

(3.6) THEOREM. Let (A, @) be a one-parameter C*-dynamical system. Then the
Jfollowing statements are equivalent:
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(i) there exists a projection P{_ g € B(A) with:
image of P{ g = A% ((—00, 0]),
kernel of P{_s 0= A%((0, +00)),
Pl =Pl o, teR;
(ii) « has the Hilbert transform property in every x € A; that is, the limit

i 1
H*(x)=—0(A, A¥)— lim J Za(x)dteA
m™ 0<e=>0 J _|j<s !
8-> +0c0
exists for each x€ A,

(iii) (A, a) satisfies the equivalent conditions from theorem 3.4 and

( U A"(K)) +A“({0})+( U A“(K))

K = (—00,0) compact K < (0,+00) compact

is dense in A, or, equivalently,

1 [°
norm-lim % I \ a,(x) dt

8-> +00

exists for all x € A.
Proof. We note that if (i) holds, then the formula

P, +o0)(%) = (P oo 0(x*))*
defines a projection Ppj .)€ B(A) with:
image of P .oy = A%([0, +0));
kernel of P .oy = A%((—0, 0)).
Using this remark, (i) < (ii) follows from [18, cor. 3.6]. We note also, that by [16,
cor. 3.5],
(U aw)raon+( U an))

K =(—0,0) compact K < (0,+00) compact

is dense in A if and only if

I
norm-llmég I . a(x) dt

8-> +00

exists for all xe A. The equivalence of (iii) with (i) and (ii) is an immediate
consequence of [18, cor. 3.7]. d

We remark that, contrary to corollary 3.5, if (A, @) is a one-parameter C*-dynamical
system, $ an a-invariant closed two-sided ideal of A, and a|# and a” satisfy the
equivalent conditions from theorem 3.6, then this does not necessarily hold for a:
we can take, for example, (A, a) as in the example before theorem 3.6 and # =the
set of all complex 2 X2 matrices, which converge to

(o o)
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