THE REDUCED GROUP C*-ALGEBRA OF A TRIANGLE BUILDING

A.M. MANTERO AND Z. ZAPPA

Let Δ be an affine building of type \widetilde{A}_2 and let Γ be a discrete group of type-rotating automorphisms acting simply transitively on the vertices of Δ . We prove that the reduced group C^* -algebra $C^*_r(\Gamma)$ is simple. To prove this result we use the sufficient condition for the simplicity of $C^*_r(\Gamma)$ given in a recent paper by M. Bekka, M. Cowling and P. de la Harpe.

1. INTRODUCTION

Let Γ be a discrete group. The reduced C^* -algebra $C^*_r(\Gamma)$ of Γ is the norm closure in the C^* -algebra of all bounded linear operators on $\ell^2(\Gamma)$ of the linear span of $\lambda_{\Gamma}(\Gamma)$, where λ_{Γ} is the left regular representation of Γ on $\ell^2(\Gamma)$.

Powers proved in [7] that when Γ is a non-abelian free group, $C_r^*(\Gamma)$ is simple (that is, it has no non-trivial two-sided ideals) and the map $\tau : C_r^*(\Gamma) \to \mathbb{C}$ defined by $\tau(e) = 1$ and $\tau(\lambda_{\Gamma}(\gamma)) = 0$ for all γ in $\Gamma \setminus \{e\}$ is the unique normalised trace on the C^* -algebra. This result has been generalised by several authors. In [1] Bekka, Cowling and de la Harpe proved that, when Γ is a discrete group acting on a compact space Ω , then $C_r^*(\Gamma)$ is simple and it has a unique normalised trace if the action of Γ on Ω satisfies the following geometric condition:

PROPERTY P_{geo} . Let Γ be a discrete group acting on a compact space Ω . Then (Γ, Ω) is said to have Property P_{geo} if, for any finite subset F of $\Gamma \setminus \{e\}$, there exist γ_0 in Γ , a finite subset $\{\omega_s, s \in S\}$ of Ω , and open neighbourhoods V_s of ω_s in Ω for each s in S, such that

(i) $\{\omega_s, s \in S\}$ is the set of fixed points of the action of γ_0 on Ω and, for each ω in Ω , there exists s in S such that

$$\lim_{j\to\infty}\gamma_0^j\omega=\omega_s;$$

- (ii) $\gamma V_s \cap V_{s'} = \emptyset$, for all s, s' in S and all γ in F;
- (iii) for all s in S and j in \mathbb{Z}^+ , if ω in V_s and $\gamma_0^j \omega \notin V_s$, then $\gamma_0^{j+1} \omega \notin V_s$.

Received March 10, 1998

Work partially supported by MURST.

We would like to thank T. Steger for valuable suggestions and comments.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/98 \$A2.00+0.00.

A.M. Mantero and Z. Zappa

In this paper we prove that this geometric condition is satisfied when Γ is a discrete group of type-rotating automorphisms of an affine building Δ of type \widetilde{A}_2 , acting simply transitively on the vertices of Δ and the compact space Ω is the maximal boundary of the building.

Recently Robertson and Steger have shown that, if Γ is a linear group acting simply transitively on the vertices of a triangle building, then the C^* -algebra $C(\Omega) \rtimes_r \Gamma$ is simple (and $C_r^*(\Gamma)$ is subnuclear). The minimality of the action of Γ on Ω ([9, Proposition 4.1.1]), [1, Theorem 5] and our result imply that the C^* - algebra $C(\Omega) \rtimes_r \Gamma$ is simple also for non-linear buildings. Another proof of this more general result appears in [9, Theorem 5.1].

2. NOTATION

Following Tits, a triangle building Δ (of order $q \ge 2$) is any thick affine building of type \widetilde{A}_2 and of order q. Thus Δ is a simplicial complex of rank 2, consisting of vertices, edges and triangles (called chambers), such that each edge lies on (q + 1) chambers. We refer the reader to [10] for more details on buildings.

We denote by \mathcal{V} the set of vertices of Δ . There is a function $\tau : \mathcal{V} \to \mathbb{Z}/3\mathbb{Z}$, called the type, such that each chamber contains exactly one vertex of each type.

Let d be the usual graph-theoretic distance on \mathcal{V} . For each $x_0 \in \mathcal{V}$ we denote by $\mathcal{S}(x_0)$ the subcomplex consisting of all vertices x satisfying $d(x, x_0) = 1$, and of all edges connecting them. The complex $\mathcal{S}(x_0)$ has the structure of a finite projective plane (P, L) of order q, where P and L are the sets of the vertices of $\mathcal{S}(x_0)$ having type $\tau(x_0) + 1$ and $\tau(x_0) - 1$ respectively, and $x \in P$, $y \in L$ are incident if x, y and x_0 lie on a common triangle. Hence $\mathcal{S}(x_0)$ consists of $(q^2 + q + 1)$ vertices of type $\tau(x_0) + 1$, $(q^2 + q + 1)$ vertices of type $\tau(x_0) - 1$ and $(q + 1)(q^2 + q + 1)$ edges, and each vertex lies on (q + 1) edges.

An apartment \mathcal{A} of Δ is any thin subcomplex of Δ isomorphic to the Coxeter complex of type \widetilde{A}_2 ; it may be realised as an Euclidean plane tessellated by equilateral triangles. For each vertex $x \in \mathcal{A}$, the apartment \mathcal{A} may be decomposed into six simplicial cones emanating from x, called sectors based at x and denoted Q_x .

Given a sector Q_x and an apartment \mathcal{A} containing it, each vertex y in \mathcal{A} may be identified by a pair of integer coordinates (with respect to Q_x), as shown in [5] and [3]. If \mathcal{A}' is another apartment containing y and Q_x , then the coordinates of y in \mathcal{A}' are the same as those in \mathcal{A} . Moreover, if $y \in Q_x \cap Q'_x$, then y has the same coordinates with respect to both Q_x and Q'_x .

Two sectors Q_x and Q_y are said to be equivalent, or parallel, if they contain a common sector. The set Ω of equivalence classes of sectors of Δ is called the maximal boundary of Δ . Ω is in fact the set of chambers of the spherical building at infinity Δ^{∞} associated to Δ , as defined in [10]. For any fixed vertex x, there is a canonical bijection

between the maximal boundary Ω and the collection of sectors based at x. For every $\omega \in \Omega$, we denote by $Q_x(\omega)$ the sector based at x associated with ω . An element ω is a boundary point of an apartment \mathcal{A} if it is represented by a sector lying on \mathcal{A} . Hence each apartment has six boundary points.

Fix a vertex x_0 . For $\omega \in \Omega$, and $N \ge 1$, we define

$$Q_N(\omega) = \left\{ x \in Q_{x_0}(\omega) : d(x, x_0) \leq N \right\}$$

and

$$E_N(\omega) = \Big\{ \omega' \in \Omega : Q_N(\omega) \subset Q_{x_0}(\omega') \Big\}.$$

Then [5] the family of sets

$$\mathcal{E} = \{ E_N(\omega) : N \ge 1, \ \omega \in \Omega \}$$

generates a totally disconnected compact Hausdorff topology on Ω .

A particular class of triangle buildings was introduced in [2]. Let (P, L) be the projective plane of order q, where q is any power of a prime number, and let us fix a point-line correspondence $\lambda : P \to L$. A "triangle presentation" (compatible with λ) is defined to be a subset \mathcal{T} of P^3 with the following properties:

- (1) given $\xi, \eta \in P$ there exists $\zeta \in P$ such that $(\xi, \eta, \zeta) \in \mathcal{T}$ if and only if $\eta \in \lambda(\xi)$,
- (2) $(\xi, \eta, \zeta) \in \mathcal{T}$ implies $(\zeta, \xi, \eta), (\eta, \zeta, \xi) \in \mathcal{T}$,
- (3) given $\xi, \eta \in P$ there exists at most one $\zeta \in P$ such that $(\xi, \eta, \zeta) \in \mathcal{T}$.

Let $A = \{a_{\xi} : \xi \in P\}$ be a set of $(q^2 + q + 1)$ distinct letters and form the multiplicative group

$$\Gamma = \Big\langle \{a_{\xi} : \xi \in P\} : a_{\xi} a_{\eta} a_{\zeta} = e \text{ if } (\xi, \eta, \zeta) \in \mathcal{T} \Big\rangle,$$

where e denotes the identity of Γ . Then [2, Theorem 3.4] \mathcal{T} gives rise to a triangle building Δ . The vertices and the edges of Δ form the Cayley graph of Γ constructed via right multiplication with respect to $A \cup A^{-1}$, and its chambers are the triples $\{\gamma, \gamma a_{\xi}, \gamma a_{\eta}^{-1}\}$, where $\gamma \in \Gamma$, and $\xi, \eta \in P$, with $(\zeta, \eta, \xi) \in \mathcal{T}$ for some $\zeta \in P$. The type is the homomorphism $\tau : \Gamma \to \mathbb{Z}/3\mathbb{Z}$ determined by $\tau(a_{\xi}) = 1$, for each $\xi \in P$. The triangle group Γ acts simply transitively by left multiplication on the vertices of Δ , as a group of "type-rotating" automorphisms [2]. It was also shown in [2] that any triangle building, on whose vertices a group acts simply transitively and in type-rotating way, is isomorphic to a building arising from a triangle presentation.

In the present paper we assume Δ is the triangle building arising from a triangle presentation and Γ is its type-rotating simply transitive automorphisms group. It is natural to take the identity element of Γ as the special vertex x_0 , and each element γ as the vertex x of Δ if $x = \gamma \cdot x_0$; then, for every $\gamma' \in \Gamma$,

$$\gamma' \cdot (\gamma \cdot x_0) = (\gamma' \gamma) \cdot x_0.$$

A.M. Mantero and Z. Zappa

For every $\gamma \in \Gamma$, any minimal word for γ in the generators and their inverses contains the same number m of generators and the same number n of inverses; in particular we may write γ in both the following forms

$$\gamma = a_{\xi_1} \dots a_{\xi_m} a_{\eta_1}^{-1} \dots a_{\eta_n}^{-1} = a_{\zeta_1}^{-1} \dots a_{\zeta_n}^{-1} a_{\theta_1} \dots a_{\theta_m}$$

Moreover the positive integers m, n are the coordinates of the vertex $x = \gamma \cdot x_0$, with respect to a sector Q_{x_0} containing x. By abuse of notation, we simply write $(a, b, c) \in \mathcal{T}$ if $a = a_{\xi}, b = a_{\eta}$ and $c = a_{\zeta}$, with $(\xi, \eta, \zeta) \in \mathcal{T}$. Given $\gamma, \gamma' \in \Gamma$ corresponding to an edge of the building, there exists a generator $a \in A$ such that $\gamma' = \gamma a$ or $\gamma = \gamma' a$. We provide the edge with the orientation $\gamma \to \gamma'$, if $\gamma' = \gamma a$. So we assign to each of the edges of Δ a generator of Γ , and we represent the chamber $C = \{\gamma, \gamma a, \gamma b^{-1}\}$ by the triple $(c, b, a) \in \mathcal{T}$, where c denotes the unique generator satisfying cba = e, according to the following diagram.

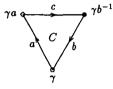


FIGURE 1

The action of Γ on the vertices of Δ induces a natural action, by left multiplication, of the group on the maximal boundary. We refer the reader to [3] for a proof that this action is in fact well-defined.

3. PERIODIC APARTMENTS

Let \mathcal{A} be an apartment of Δ , not necessarily containing the fundamental vertex x_0 . Fix a sector Q_x of the apartment and consider the coordinate system for the vertices of \mathcal{A} determined by Q_x . For every $(j,k) \in \mathbb{Z}^2$, let $a_{j,k}$ be the element of Γ such that the vertex $a_{j,k} \cdot x_0$ of \mathcal{A} has coordinates (j,k). Hence \mathcal{A} may be represented via its vertices as

$$\mathcal{A} = \{a_{j,k}\}_{j,k\in\mathbb{Z}}.$$

In particular $a_{0,0}$ is the element of Γ corresponding to the origin x of the coordinate system. We note that if $a_{j,k}$ and $a_{l,m}$ correspond to an edge of \mathcal{A} , then $a_{l,m} = a_{j,k}a$ or $a_{l,m} = a_{j,k}b^{-1}$, for suitable $a, b \in \mathcal{A}$, according as the edge is oriented from $a_{j,k}$ to $a_{l,m}$ or vice versa (see Figure 2).

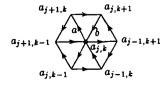


FIGURE 2

DEFINITION 3.1: The label associated to the ordered pair $(a_{j,k}, a_{l,m})$ of elements of \mathcal{A} is defined as the element of Γ

$$\varepsilon_{j,k}^{l,m} = a_{j,k}^{-1} a_{l,m}$$

and the labeling of any region $\mathcal R$ of the apartment $\mathcal A$ is defined as the collection

$$\left\{\varepsilon_{j,k}^{l,m}, \quad a_{j,k}, a_{l,m} \in \mathcal{R}\right\}$$

REMARK 3.2. (i) If $a_{j,k}$, $a_{l,m}$ are adjacent, then $\varepsilon_{j,k}^{l,m} = a$ or $\varepsilon_{j,k}^{l,m} = b^{-1}$, according to the orientation of the corresponding edge, and in this case we refer to $\varepsilon_{j,k}^{l,m}$ as the label of the edge.

(ii) The labels of the edges determine the labeling of the apartment. In fact, if $\{a_{j_i,k_i}\}_{i=0}^n$ is a minimal path from $a_{j,k}$ to $a_{l,m}$, then

$$\varepsilon_{j,k}^{l,m} = \prod_{i=0}^n \varepsilon_{j_i,k_i}^{j_{i+1},k_{i+1}},$$

where $\varepsilon_{j_i,k_i}^{j_{i+1},k_{i+1}}$ belongs to $A \cup A^{-1}$ for every *i*.

(iii) The length of a minimal word for $\varepsilon_{j,k}^{l,m}$ is the distance between $a_{j,k}$ and $a_{l,m}$; moreover $\varepsilon_{l,m}^{j,k} = (\varepsilon_{j,k}^{l,m})^{-1}$.

REMARK 3.3. Let

(1)
$$R_1(j,k) = \{a_{j,k}, a_{j+1,k}, a_{j,k+1}, a_{j+1,k+1}\}$$

be the parallelogram of base vertices $a_{j,k}$, $a_{j+1,k}$, $a_{j,k+1}$ and $a_{j+1,k+1}$ (see Figure 3). The labels, say a and b^{-1} , of two adjacent edges of $R_1(j,k)$, connecting $a_{j,k}$ and $a_{j+1,k+1}$, determine the labeling of the parallelogram. Indeed, there exist unique c, d such that



FIGURE 3

 $ab^{-1} = c^{-1}d$, and a unique f such that $(f, c, a), (f, d, b) \in \mathcal{T}$. More generally, let

(2)
$$R_{J,K}(j,k) = \{a_{j,k}, a_{j+J,k}, a_{j,k+K}, a_{j+J,k+K}\}$$

be the parallelogram of base vertices $a_{j,k}$, $a_{j+J,k}$, $a_{j,k+K}$ and $a_{j+J,k+K}$, as in Figure 3. The label $\varepsilon_{j,k}^{j+J,k+K}$, consisting of the labels of the edges of a minimal path joining $a_{j,k}$ to $a_{j+J,k+K}$, determines the labeling of the parallelogram.

REMARK 3.4. If $\mathcal{A}' = \gamma \mathcal{A}$ for some $\gamma \in \Gamma$, then the apartments \mathcal{A} and \mathcal{A}' have the same labeling with respect to corresponding sectors Q_x and γQ_x . Indeed, for every $(j,k) \in \mathbb{Z}^2$, $a'_{j,k} = \gamma a_{j,k}$ and therefore

$$arepsilon^{l,m}_{j,k}=a^{\prime-1}_{j,k}a^{\prime}_{l,m}=a^{-1}_{j,k}\gamma^{-1}\gamma a_{l,m}=arepsilon^{l,m}_{j,k}.$$

Conversely, if two apartments \mathcal{A} and \mathcal{A}' have the same labeling with respect to sectors Q_x and $Q_{x'}$, then $\mathcal{A}' = \gamma \mathcal{A}$ for $\gamma = a'_{0,0}a^{-1}_{0,0}$. In fact, for every $(j,k) \in \mathbb{Z}^2$, $\varepsilon'^{j,k}_{0,0} = \varepsilon^{j,k}_{0,0}$, so $a'_{j,k} = a'_{0,0}a^{-1}_{0,0}a_{j,k}$.

DEFINITION 3.5: The pair $(J, K) \in \mathbb{Z}^2$ is a period for the apartment \mathcal{A} (with respect to Q_x) if, for every $(j, k), (l, m) \in \mathbb{Z}^2$,

(3)
$$\varepsilon_{j,k}^{l,m} = \varepsilon_{j+J,k+K}^{l+J,m+K}.$$

The periods of \mathcal{A} (with respect to Q_x) form a subgroup of \mathbb{Z}^2 , denoted by \mathcal{L} . If $(J, K) \in \mathcal{L}$, then $a_{j+J,k+K}a_{j,k}^{-1}$ does not depend on (j, k), and it has length greater than one.

DEFINITION 3.6: The apartment \mathcal{A} is periodic (with respect to Q_x) if \mathcal{L} is nontrivial; it is doubly periodic if \mathcal{L} is a cofinite subgroup of \mathbb{Z}^2 . We denote

(4)
$$\mu = \min_{(J,K) \in \mathcal{L} \setminus \{(0,0)\}} \left| a_{j+J,k+K} a_{j,k}^{-1} \right|.$$

REMARK 3.7. (i) The property of periodicity does not depend on the choice of the sector Q_x on the apartment. Actually the apartment \mathcal{A} is (J, K)-periodic if and only if the condition (3) holds for (j, k) and (l, m) corresponding to adjacent vertices. Indeed, if $\{a_{j_i,k_i}\}_{i=0}^n$ is a minimal path from $a_{j,k}$ to $a_{l,m}$, then $\{a_{j_i+J,k_i+K}\}_{i=0}^n$ is a minimal path from $a_{j+J,k+K}$ to $a_{l+J,m+K}$; so Remark 3.2 enables us to conclude. So in geometric terms, the (J, K)-periodicity of \mathcal{A} means that corresponding edges of the sets $\mathcal{S}(a_{j,k}) \cap \mathcal{A}$ and $\mathcal{S}(a_{j+J,k+K}) \cap \mathcal{A}$ have the same labels, for every $(j, k) \in \mathbb{Z}^2$. This characterisation allows us to deduce that the property of periodicity does not depend on the choice of the coordinate system on the apartment.

(ii) If \mathcal{A} is doubly periodic, then \mathcal{L} contains a subgroup of the form $N\mathbb{Z}^2$, for some positive integer N; so it contains vectors of \mathbb{Z}^2 in every rational direction.

We refer the reader to [6] for more details about periodicity.

LEMMA 3.8. Let A be an apartment and let $(J, K) \in \mathbb{Z}^2$, with $J, K \neq 0$ and $J + K \neq 0$. The following facts are equivalent:

(i) (J, K) is a period; (ii) $\varepsilon_{rJ,rK}^{(r+1)J,(r+1)K} = \varepsilon_{(r+1)J,(r+1)K}^{(r+2)K}, \quad \forall r \in \mathbb{Z}.$

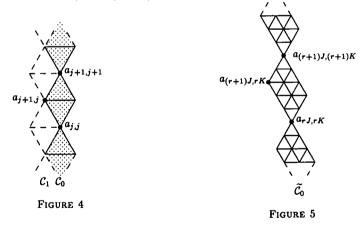
Moreover, if J = K, then (i) and (ii) are equivalent to

 $(iii) \quad \varepsilon_{j,j}^{j+1,j+1} = \varepsilon_{j+J,j+J}^{j+1+J,j+1+J}, \quad \forall j \in \mathbb{Z}.$

PROOF: It is obvious that (i) implies (ii), and (iii) for J = K. We prove that (iii) implies (i), assuming, without loss of generality, that J = K > 0. Consider

(5)
$$C_i = \{R_1(j+i,j)\}_{j \in \mathbb{Z}}, \forall i \in \mathbb{Z}$$

As shown in Remark 3.3, the labels $(\varepsilon_{j,j}^{j+1,j+1})_{j\in\mathbb{Z}}$ determine the labeling of \mathcal{C}_0 . Then condition (iii) implies that (J, J) is a period for this chain, that is (1) holds for every pair of vertices of this region. Consider now the chain \mathcal{C}_1 adjacent on the left to \mathcal{C}_0 (the same argument applies to the chain \mathcal{C}_{-1} adjacent on the right). For every j, $R_1(j+1,j)$ contains one edge of $R_1(j,j)$ and one edge of $R_1(j+1,j+1)$, connecting $a_{j+1,j}$ to $a_{j+2,j+1}$. Therefore the labeling of \mathcal{C}_1 is determined by that of \mathcal{C}_0 . Hence (1) holds for every pair of vertices of $\mathcal{C}_{-1} \cup \mathcal{C}_0 \cup \mathcal{C}_1$ (see Figure 4).



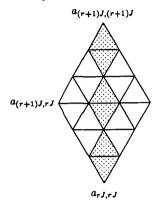
Iterating this procedure we argue that (J, J) is a period for $\bigcup_{i=-M}^{M} C_i$, for every M > 0. Since, given $(j, k), (l, m) \in \mathbb{Z}^2$, there exists M such that $a_{j,k}$ and $a_{l,m}$ belong to $\bigcup_{i=-M}^{M} C_i$, we conclude that (J, J) is a period for the whole apartment.

We consider now (J, K), with $J, K \neq 0$ and $J + K \neq 0$, and we prove that (ii) implies (i). We assume J, K > 0; the other cases are analogous. For every $r \in \mathbb{Z}$ we consider the parallelogram $R_{J,K}(rJ, rK)$. The argument used to prove that (iii) implies (i) for J = K, applied to the chain

(6)
$$\tilde{\mathcal{C}}_i = \left\{ R_{J,K}((r+i)J, rK) \right\}_{r \in \mathbb{Z}}$$

instead of \mathcal{C}_i , enables us to show that (J, K) is a period for the apartment, provided (ii) is true (see Figure 5). Π

REMARK 3.9. The equivalence of (ii) and (iii) for J = K, in Lemma 3.8 is a straightforward consequence of the fact that, for every r, the labeling of $R_{J,J}(rJ, rJ)$ is determined by that of the finite chain $\{R_1(j,j)\}_{j=rJ}^{(r+1)J-1}$ herein contained (see Figure 6).



Conditions (ii) and (iii) in Lemma 3.8 may be replaced by the following slightly different conditions:

- (ii)' for some $r_0 \in \mathbb{Z}$, $\varepsilon_{(r+r_0+1)J,(r+1)K}^{(r+r_0+1)J,(r+1)K} = \varepsilon_{(r+r_0+1)J,(r+1)K}^{(r+r_0+2)J,(r+2)K}$, $\forall r \in \mathbb{Z}$; (iii)' for some $j_0 \in \mathbb{Z}$, $\varepsilon_{j+j_0,j}^{j+j_0+1,j+1} = \varepsilon_{j+j_0+J,j+J}^{j+j_0+1+J,j_1+1+J}$, $\forall j \in \mathbb{Z}$.

PROPOSITION 3.10. Let $(J, K) \in \mathbb{Z}^2$, with $J, K \neq 0$ and $J + K \neq 0$. If the apartment \mathcal{A} is (J, K)-periodic, then it is doubly periodic.

PROOF: Consider for every $i \in \mathbb{Z}$ the chain \tilde{C}_i defined by (5). The (J, K)-periodicity of \mathcal{A} implies that any two parallelograms of $\tilde{\mathcal{C}}_i$ have the same labeling. Since the set of generators is finite, there are only finitely many possible choices for the labeling of the infinite collection of chains $\{\tilde{\mathcal{C}}_i\}_{i\in\mathbb{Z}}$. Thus there must exist M and N, with $M\neq N$, such that $\widetilde{\mathcal{C}_M}$ has the same labeling as $\widetilde{\mathcal{C}_N}$. On the other hand, Lemma 3.8 and Remark 3.9 imply that the labeling of A is determined by the labeling of each parallelogram either $R_{J,K}((r+M)J,rK)$ or $R_{J,K}((r+N)J,rK)$. Hence, for every $(j,k) \in \mathbb{Z}^2$, corresponding edges of $\mathcal{S}(a_{j+MJ,k}) \cap \mathcal{A}$ and of $\mathcal{S}(a_{j+NJ,k}) \cap \mathcal{A}$ have the same labels, and ((N-M)J, 0) is a period for the apartment. Since (J, J) and ((N - M)J, 0) generate a cofinite subgroup Π of \mathbb{Z}^2 , the apartment is doubly periodic.

REMARK 3.11. (i) If J = 0 or K = 0 or J + K = 0, Lemma 3.8 and Proposition 3.10 are false. In fact, in these cases each parallelogram $R_{IK}(rJ, rK)$ collapses to a segment and therefore the labeling of this region does not determine the labeling of the apartment.

(ii) Δ contains apartments which are non-periodic. In fact, the cardinality of the set of all apartments containing a fixed vertex x is not countable, while the set of (J, K)- periodic apartments containing x is finite.

In order to prove the existence of periodic apartments with arbitrarily large μ , we state the following lemmata.

LEMMA 3.12. There exists an element $\gamma_0 \in \Gamma$ such that, for every $N \in \mathbb{N}$, the vertex $y_0^N = \gamma_0^N \cdot x_0$ has coordinates (2N, 2N) with respect to any sector based at x_0 and containing y_0^N .

PROOF: For every $(c, b, a) \in \mathcal{T}$, let C be a chamber associated to this triple, and let x be its vertex opposite to the edge labeled a. We define $X_{(c,b,a)}$ to be the set of triples $(g, f, d) \in \mathcal{T}$ associated to the chambers D opposite to C with respect to x, where d denotes the label of the edge opposite to x in D (see Figure 7).

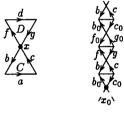


FIGURE 7

Furthermore for every generator d we define

$$X_{(c,b,a)}^{d} = \{ (g, f, \delta) \in X_{(c,b,a)} : \delta = d \}.$$

We have $|X_{(c,b,a)}| = q^3$ and $0 \leq |X_{(c,b,a)}^d| \leq (q+1)$. Actually in a projective plane of order q, given a line L_0 and a point $x_0 \in L_0$, there are q^2 ways of choosing a point x outside L_0 and q ways of choosing a line through x but not through x_0 . Fix a generator a and denote by (b_i, c_i) , $i = 0, \ldots, q$, all possible pairs such that $(c_i, b_i, a) \in \mathcal{T}$. For every i, consider the set $X_i = X_{(c_i,b_i,a)}$. We claim that, for some $j \neq k$, X_j and X_k contain triples (g_j, f_j, d_j) and (g_k, f_k, d_k) respectively, with $d_j = d_k$ and $(f_j, g_j) \neq (f_k, g_k)$. Otherwise, for every d, either $|X_i^d| = 1$, for all non-empty X_i^d , or only one X_i^d is non-empty. Hence $\sum_{i=0}^{q} |X_i^d| \leq q+1$, and

$$\sum_{i=0}^{q} |X_i| = \sum_{d} \sum_{i=0}^{q} |X_i^d| \leq (q+1)(q^2+q+1).$$

On the other hand $\sum_{i=0}^{q} |X_i| = q^3(q+1)$, so the previous inequality is absurd, because $q^3(q+1) \ge (q+1)(q^2+q+1)$, for q > 1. Without loss of generality we may assume that the previous condition is satisfied for j = 0, k = 1. If we consider the pairs $(b_0, c_0), (f_0, g_0)$ and $(b_1, c_1), (f_1, g_1)$, it is obvious that, for every positive integer N, $(b_0 b^{-1} f f_0^{-1})^N$ and

470

 $\left(c_0^{-1}cg^{-1}g_0\right)^N$ are minimal words consisting of 2N generators and 2N inverses. Therefore, if

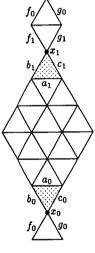
$$\gamma_0 = b_0 b^{-1} f f_0^{-1} = c_0^{-1} c g^{-1} g_0,$$

the vertex $y_0^N = \gamma_0^N \cdot x_0$ has coordinates (2N, 2N), for every $N \ge 1$ (see Figure 7).

LEMMA 3.13. For every positive integer M > 2, there exists an element $\gamma_0 \in \Gamma$, such that

- (i) for every $N \in \mathbb{N}$, the vertex $y_0^N = \gamma_0^N \cdot x_0$ has coordinates (MN, MN) with respect to any sector based at x_0 containing y_0^N ;
- (ii) γ_0 is not a true power in Γ .

PROOF: Fix a non-periodic apartment \mathcal{A} containing the fundamental vertex x_0 , and write $\mathcal{A} = \{a_{j,k}\}$ with respect to a sector based at x_0 . Consider the vertex $x_1 = a_{M-1,M-1} \cdot x_0$ and the convex hull \mathcal{R} of the set $\{x_0, x_1\}$ (see Figure 8).



Let C_0 and C_1 be the chambers of \mathcal{R} containing x_0 and x_1 respectively. Suppose $C_0 = (c_0, b_0, a_0)$ and $C_1 = (c_1, b_1, a_1)$, where a_0 and a_1 denote the labels of the edges opposite to x_0 and x_1 respectively. By altering the choice of the non-periodic apartment if necessary, we may assume $a_1 \neq a_0$, $(b_1, c_1) \neq (b_0, c_0)$. Following the notation of Lemma 3.12, we consider the sets $X_0 = X_{(c_0,b_0,a_0)}$ and $X_1 = X_{(c_1,b_1,a_1)}$. We claim that X_0 and X_1 contain triples (g_0, f_0, d_0) and (g_1, f_1, d_1) respectively, with $d_0 = d_1$ and $(f_0, g_0) \neq (f_1, g_1)$. Otherwise, if for some d the sets are both non-empty, then $|X_0^d| = |X_1^d| = 1$. Hence, for every d,

$$\left|X_{0}^{d}\right| + \left|X_{1}^{d}\right| \leqslant q + 1$$

and therefore

$$|X_0| + |X_1| \leq (q+1)(q^2+q+1)$$

Since $|X_0| + |X_1| = 2q^3$, this inequality is absurd for $q \ge 3$.

For q = 2, we use a direct argument to prove the required property. For i = 0, 1, we consider, for every chamber based at x_i and opposite to C_i , the edge having the orientation away from x_i . We may think of these four edges as a system \mathcal{M}_i of lines on the projective plane of order 2 and the three edges adjacent to each of them (but not containing x_i) as points of the corresponding line on this plane. Among these three points we neglect the one lying on a chamber adjacent to C_i . Since we suppose $(b_1, c_1) \neq (b_0, c_0)$, exactly two lines belong to both \mathcal{M}_0 and \mathcal{M}_1 . We can prove by a direct computation that, in all possible configurations of \mathcal{M}_0 and \mathcal{M}_1 , there exist two lines, say $L_0 \in \mathcal{M}_0$ and $L_1 \in \mathcal{M}_1$, with $L_0 \neq L_1$, which intersect each other in one point different from those discarded before. If f_i is the label corresponding to L_i , d is the label attached to their intersection point, and g_i is the unique generator such that $g_i f_i d = e$, then the triples (g_0, f_0, d) and (g_1, f_1, d) satisfy the required property. Thus $a_{M-1,M-1}f_1f_0^{-1}$ and $a_{M-1,M-1}g_1^{-1}g_0$ are minimal words for an element of Γ , say γ_0 , consisting of M generators and M inverses. Therefore $y_0^N = \gamma_0^N \cdot x_0$ has coordinates (MN, MN), for every $N \in \mathbb{Z}$. Finally, we note that, by construction, γ_0 cannot be a power of the form γ^m , for $\gamma \in \Gamma$ and $m \ge 2$. D

PROPOSITION 3.14. For every integer $M \ge 2$, there exists a (M, M)-periodic apartment, such that $\mu \ge M$.

PROOF: Let M = 2. Consider the sequence of vertices $\{y_0^N\}_{N \in \mathbb{Z}}$ constructed in Lemma 3.12. It is obvious that the convex hull of $\{y_0, y_0^{-1}\}$ also contains x_0 . More generally, for every N > 1, the convex hull of $\{y_0^N, y_0^{-N}\}$ contains y_0^n , for all $n \in \{-N, \ldots, N\}$.

FIGURE 9

This implies that there exists an apartment \mathcal{A}_0 containing all vertices of the sequence. We write $\mathcal{A}_0 = \{a_{j,k}\}$ with respect to the sector containing the vertices y_0^N , N > 0. In particular for every integer N the vertex y_0^N corresponds to $a_{2N,2N}$. The apartment is uniquely determined by the chain consisting of the convex hulls of $\{a_{2N,2N}, a_{2(N+1),2(N+1)}\}$; moreover, for all $(j,k) \in \mathbb{Z}^2$,

$$\epsilon_{j,k}^{j+1,j+1} = \epsilon_{j+2,j+2}^{j+3,j+3}$$

Lemma 3.8 enables us to conclude that (2, 2) is a period for the apartment (see Figure 9). For M > 2, we consider the sequence of vertices $\{y_0^N\}_{N \in \mathbb{Z}}$ constructed in Lemma 3.13, and proceed as above to construct a (M, M)-periodic apartment. By altering the choice of the non-periodic apartment containing x_0 , if necessary, we may assume that the convex hull \mathcal{R} is not contained in any doubly periodic apartment having $\mu \leq M - 1$.

We conclude this section stating some interesting results about the action of the group Γ on a doubly periodic apartment and on its boundary points.

We note that if A is any (J, K)-periodic apartment, then γA is, as follows from Remark 3.4; hence the property of periodicity is Γ -invariant.

PROPOSITION 3.15. Let \mathcal{A} and \mathcal{A}' be (J, K)-periodic apartments, with $J \neq 0$, $K \neq 0$ and $J + K \neq 0$. Let ω, ω' be boundary points of \mathcal{A} and \mathcal{A}' respectively. If $\omega' = \gamma \omega$ for some $\gamma \in \Gamma$, then $\mathcal{A}' = \gamma \mathcal{A}$.

PROOF: Assume $\omega' = \gamma \omega$. Then, for every sector $Q_x(\omega)$ associated to ω , $\gamma Q_x(\omega)$ is the sector $Q_{\gamma,x}(\omega')$ representative of ω' . Since $Q_{y_1}(\omega) \supset Q_{y_2}(\omega)$ implies that $\gamma Q_{y_1}(\omega) \supset$ $\gamma Q_{y_2}(\omega)$, we may deduce that there exists a vertex $x \in \mathcal{A}$ such that $Q_x(\omega) \subset \mathcal{A}$ and $Q_{\gamma \cdot x}(\omega) \subset \mathcal{A}'$. Set $\mathcal{A} = \{a_{j,k}\}$ and $\mathcal{A}' = \{a'_{j,k}\}$ with respect to $Q_x(\omega)$ and $Q_{\gamma \cdot x}(\omega')$. Thus, for all $j, k \ge 0$, (7)

$$\gamma a_{j,k} = a'_{j,k}.$$

We prove that actually (3) holds for every $(j,k) \in \mathbb{Z}^2$. Assume J, K > 0 (the other cases are similar), and note that, for every $(j,k) \in \mathbb{Z}^2$, there exist $n, j_0, k_0 \in \mathbb{N}$, such that

$$j = j_0 - nJ, \quad k = k_0 - nK.$$

Since $j_0 + nJ$, $k_0 + nK$ are positive, the (J, K)-periodicity of A and A' implies

$$\begin{aligned} a'_{j,k} &= a'_{j_0,k_0} (a'_{j_0,k_0})^{-1} a'_{j_0-nJ,k_0-nK} \\ &= a'_{j_0,k_0} (a'_{j_0+nJ,k_0+nK})^{-1} a'_{j_0,k_0} \\ &= \gamma a_{j_0,k_0} (\gamma a_{j_0+nJ,k_0+nK})^{-1} \gamma a_{j_0,k_0} \\ &= \gamma a_{j_0,k_0} a_{j_0,k_0}^{-1} a_{j_0-nJ,k_0-nK} \\ &= \gamma a_{j,k}. \end{aligned}$$

Let \mathcal{A} be a doubly periodic apartment containing x_0 , and represent $\mathcal{A} = \{a_{i,k}\}$, with respect to a sector Q_{x_0} . We denote by Σ the finite group of symmetries of \mathcal{A} generated by the reflections fixing $a_{0,0}$.

PROPOSITION 3.16. Let $\gamma \in \Gamma$ be such that $\gamma \mathcal{A} = \mathcal{A}$, and let T_{γ} be the operator on \mathbb{Z}^2 defined by $T_{\gamma}(j,k) = (l,m)$, if $a_{l,m} = \gamma a_{j,k}$. Then

> there exist $(p,r) \in \mathbb{Z}^2$ and $\sigma \in \Sigma$ such that $T_{\gamma}(j,k) = \sigma(j,k) + (p,r)$; (i) moreover $(p, r) \neq (0, 0)$, if γ is non-trivial;

- (ii) if σ is the identity of Σ then $(p, r) \in \mathcal{L}$;
- (iii) the length of γ is at least $1/3\mu$.

PROOF: (i) Since $\gamma \cdot x_0$ is a vertex of \mathcal{A} , then $\gamma = a_{p,r}$ for some $(p,r) \in \mathbb{Z}^2$. If ω is the boundary point of \mathcal{A} represented by the sector Q_{x_0} , and if $\omega' = \gamma \omega$, there exists $\sigma \in \Sigma$ such that $\sigma Q_{x_0}(\omega) = Q_{x_0}(\omega')$. Therefore $(l,m) = \sigma(j,k) + (p,r)$, if $a_{l,m} = \gamma a_{j,k}$. Moreover $(p,r) \neq (0,0)$ if γ is non-trivial, because γ cannot act on \mathcal{A} according to a symmetry fixing $a_{0,0}$.

(ii) If σ is the identity of Σ , then γ fixes ω , and, for every $(j,k) \in \mathbb{Z}^2$,

$$a_{j,k}a_{j+p,k+r}^{-1} = a_{j,k}(\gamma a_{j,k})^{-1} = \gamma^{-1}$$

This implies that (p, r) is a period for the apartment \mathcal{A} .

(iii) If T_{γ} is a translation, then σ is trivial and, by (ii), $|\gamma| = |a_{p,r}a_{0,0}^{-1}| \ge \mu$. If T_{γ} contains a non-trivial symmetry σ which is a reflection, then $T_{\gamma^2} = T_{\gamma}^2$ acts as a translation, so $2|\gamma| \ge |\gamma^2| \ge \mu$. Finally if T_{γ} contains a non-trivial symmetry σ which is a rotation, then $T_{\gamma^3} = T_{\gamma}^3$ acts as a translation, so $3|\gamma| \ge |\gamma^3| \ge \mu$.

[8, Section 2] contains a parallel discussion of periodic apartments.

4. Simplicity of the reduced group C^* -algebra

In this section we prove (Γ, Ω) has property P_{geo} .

According to Lemma 3.13, for every M > 2, we fix an element $\gamma_0 \in \Gamma$ of length 2M such that $y_0^N = \gamma_0^N \cdot x_0$ has coordinates (MN, MN), for all $N \in \mathbb{Z}$, and consider the doubly periodic apartment \mathcal{A}_0 determined by $\{y_0^N\}_{N \in \mathbb{Z}}$. We denote by $Q_{x_0}^{\infty}$ and $Q_{x_0}^{-\infty}$ the sectors of \mathcal{A}_0 containing $\{y_0^N, N \ge 0\}$ and $\{y_0^{-N}, N \ge 0\}$ respectively; moreover we denote by $\{\omega_1, \ldots, \omega_6\}$ the boundary points of the apartment, assuming the following choice:

 ω_1 and ω_6 are the points represented by the sectors $Q_{x_0}^{\infty}$ and $Q_{x_0}^{-\infty}$ respectively (see Proposition 3.14);

 ω_2 and ω_3 are the points represented by the sectors based at x_0 adjacent to $Q_{x_0}^{\infty}$; ω_4 and ω_5 are the points represented by the sectors based at x_0 adjacent to $Q_{x_0}^{\infty}$.

PROPOSITION 4.1. The following facts are true:

- (i) the element γ_0 fixes ω_s , for every $s = 1, \ldots, 6$;
- (ii) for every $\omega \in \Omega$ there exists $s \in \{1, \ldots, 6\}$ such that $\lim_{n \to \infty} \gamma_0^n \omega = \omega_s$;
- (iii) if $\gamma_0 \omega = \omega$, then $\omega = \omega_s$, for some $s \in \{1, \ldots, 6\}$.

PROOF: (i) The element γ_0 acts on \mathcal{A}_0 by translation. So for every s the sector $\gamma_0 Q_{x_0}(\omega_s)$ lies on \mathcal{A}_0 and is parallel to $Q_{x_0}(\omega_s)$; this means that γ_0 fixes all boundary points of the apartment.

(ii) The property is obvious if $\omega = \omega_s$. For $\omega \neq \omega_s$, consider the boundary point ω_6 of \mathcal{A}_0 and an apartment \mathcal{A} containing ω and ω_6 . We sketch in Figure 10 one of the six different situations that may occur; all the others are similar.

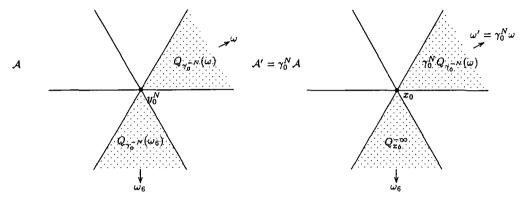


FIGURE 10

FIGURE 11

[14]

We may choose a positive integer N so big that $y_0^{-N} \in \mathcal{A}$; thus $Q_{y_0^{-N}}(\omega_6)$ and $Q_{y_0^{-N}}(\omega)$ belong to \mathcal{A} . On the translated apartment $\mathcal{A}' = \gamma_0^N \mathcal{A}$, consider the sector $\gamma_0^N Q_{y_0^{-N}}(\omega_6) = Q_{x_0}^{\infty}$ and the sector $\gamma_0^N Q_{y_0^{-N}}(\omega)$, based at x_0 and corresponding to the boundary point $\omega' = \gamma_0^N \omega$. (see Figure 11).

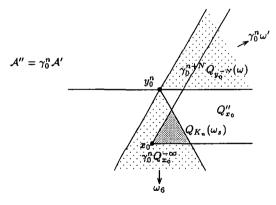


FIGURE 12

For every $n \ge 1$, consider, on the translated apartment $\mathcal{A}'' = \gamma_0^n \mathcal{A}'$, the sectors (based at y_0^n) $\gamma_0^n \gamma_0^N Q_{y_0^{-N}}(\omega)$ and $\gamma_0^n \gamma_0^N Q_{y_0^{-N}}(\omega_6) = \gamma_0^n Q_{x_0}^{-\infty}$, corresponding to $\gamma_0^n \omega'$ and ω_6 respectively. Since $\gamma_0^n Q_{x_0}^{-\infty}$ contains the fundamental vertex x_0 as an interior element, then $x_0 \in \mathcal{A}''$ and there exists a sector $Q_{x_0}'' \subset \mathcal{A}''$ parallel to $\gamma_0^n \gamma_0^N Q_{y_0^{-N}}(\omega)$. This sector intersects $\gamma_0^n Q_{x_0}^{-\infty}$ in a set $Q_{K_n}(\gamma_0^n \omega')$, for some $K_n \ge 1$. (See Figure 12.)

Since $Q_{K_n}(\gamma_0^n \omega') \subset \mathcal{A}_0$, there exists s such that $Q_{K_n}(\gamma_0^n \omega') = Q_{K_n}(\omega_s)$. We claim that $\lim_{n\to\infty} \gamma_0^n \omega = \omega_s$. In fact, for every $m \ge n$, $K_m \ge K_n$, and for every $K \ge 1$ there exists $\nu \ge 1$ such that $K_\nu \ge K$, if $n \ge \nu$. It follows that

$$\lim_{n \to \infty} \gamma_0^n \omega = \lim_{n \to \infty} \gamma_0^{n-N} \omega' = \omega_s.$$

(iii) Assume $\gamma_0 \omega = \omega$; then $\gamma_0^n \omega = \omega$, $\forall n \ge 1$, and (ii) implies $\omega = \omega_s$, for some $s \in \{1, \ldots, 6\}$.

PROPOSITION 4.2. Let $V_{s,K} = E_K(\omega_s)$, for $K \ge 1$. If $\omega \in V_{s,K}$ and $\gamma_0^n \omega \notin V_{s,K}$, for some positive integer n, then also $\gamma_0^{n+1} \omega \notin V_{s,K}$.

PROOF - CASE 1: s = 1: We prove that if $\omega \in V_{1,K}$, then $\gamma_0^n \omega \in V_{1,K}$, for all $n \ge 1$. Let \mathcal{R}_K be the convex hull of the set $\{y_0^{-1}\} \cup Q_K(\omega_1)$, and let \mathcal{A} be an apartment containing ω and y_0^{-1} . Thus \mathcal{R}_K lies on both \mathcal{A} and \mathcal{A}_0 (see Figure 13).

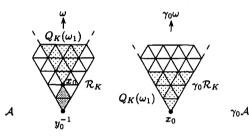


FIGURE 13

The translated apartment $\gamma_0 \mathcal{A}$ intersects \mathcal{A}_0 in the region $\gamma_0 \mathcal{R}_K$ containing $Q_K(\omega_1)$. This implies $\gamma_0 \omega \in V_{1,K}$. By induction we can prove that $\gamma_0^n \omega \in V_{1,K}$, for all $n \ge 1$.

CASE 2: s = 2, 3. Denote by \mathcal{R}_K and \mathcal{R}'_K the convex hull of $\{y_0^{-n}\} \cup Q_K(\omega_s)$ and of $\{y_0\} \cup Q_K(\omega_s)$ respectively.

For every $\omega \in V_{s,K}$, the sector $Q_{x_0}(\omega)$ contains a wall, say S_K , of $Q_K(\omega_1)$. Therefore the region $\gamma_0^n \mathcal{R}_K$ intersects $Q_K(\omega_s)$ at least in S_K . So $Q_{x_0}(\gamma_0^n \omega)$ contains S_K (see Figure 14 for s = 2 and n = 1).

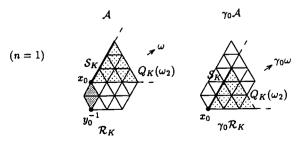


FIGURE 14

[16]

We check that if $\omega \in V_{s,K}$ and $\omega' = \gamma_0^{n+1}\omega \in V_{s,K}$, then also $\gamma_0^{-1}\omega' \in V_{s,K}$. Let \mathcal{A} be an apartment containing y_0 and ω' ; then $\mathcal{R}'_K \subset \mathcal{A}$. Thus the translated region $\gamma_0^{-1}\mathcal{R}'_K$ lies on $\gamma_0^{-1}\mathcal{A}$ and on $\gamma_0^{-1}\mathcal{A}_0 = \mathcal{A}_0$. On the other hand the apartment $\gamma_0^{-1}\mathcal{A}$ contains the set S_K , since it contains the sector $Q_{x_0}(\gamma_0^{-1}\omega') = Q_{x_0}(\gamma_0^n\omega)$. We conclude that the apartments \mathcal{A}_0 and $\gamma_0^{-1}\mathcal{A}$ share the convex hull of the set $S_K \cup \gamma_0^{-1}\mathcal{R}'_K$, which contains $Q_K(\omega_s)$. This proves that $\gamma_0^{-1}\omega' \in V_{s,K}$ (see Figure 15 for s = 2 and n = 1).

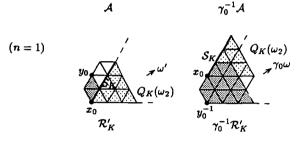


FIGURE 15

CASE 3: s = 4, 5. We prove that, if $\omega \in V_{s,K}$ and $\omega' = \gamma_0^{n+1}\omega \in V_{s,K}$, then also $\gamma_0^{-1}\omega' = \gamma_0^n \omega \in V_{s,K}$. Let \mathcal{R}_K be the convex hull of the set $\{y_0^{-(n+1)}\} \cup Q_K(\omega_s)$ and let \mathcal{A} be an apartment containing \mathcal{R}_K and ω . Then the apartment $\mathcal{A}' = \gamma_0^{n+1}\mathcal{A}$ contains the region $\gamma_0^{n+1}\mathcal{R}_K$. Moreover the hypothesis $\gamma_0^{n+1}\omega \in V_{s,K}$ implies that \mathcal{A}' contains also $Q_K(\omega_s)$. Then it contains the convex hull $\widetilde{\mathcal{R}_K}$ of the set $\gamma_0^{n+1}\mathcal{R}_K \cup Q_K(\omega_s)$. The region $\gamma_0^{-1}\widetilde{\mathcal{R}_K}$ lies in the translated apartment $\mathcal{A}'' = \gamma_0^{-1}\mathcal{A}' = \gamma_0^n\mathcal{A}$ and contains $Q_K(\omega_s)$. This proves that

$$\gamma_0^{-1}\omega' = \gamma_0^n \omega \in V_{s,K}$$

(see Figure 16 for s = 4 and n = 1).

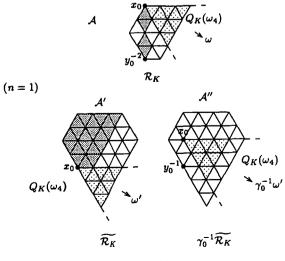


FIGURE 16

CASE 4: s = 6. If we change y_0 with y_0^{-1} we may use the same argument as in case 1, to prove that $\omega \in V_{6,K}$ implies $\gamma_0^{-1}\omega \in V_{6,K}$. So if $\omega \in V_{6,K}$ and $\omega' = \gamma_0^n \omega \notin V_{6,K}$, then also $\gamma_0 \omega' \notin V_{6,K}$.

PROPOSITION 4.3. Let $F \subset \Gamma \setminus \{e\}$ be a finite set and denote

$$m(F) = \max\{|\gamma|, \gamma \in F\}.$$

Suppose M > 3m(F). Then for each $s \in \{1, ..., 6\}$ there exists an open neighbourhood $V_{s,K}$ of ω_s , such that

$$\gamma V_{s,K} \cap V_{s',K} = \emptyset, \qquad \forall \gamma \in F, \quad \forall s, s'.$$

PROOF: It suffices to prove that $\gamma \omega_s \neq \omega_{s'}$, for every $\gamma \in F$ and each pair s, s'. In fact, if $\gamma \omega_s = \omega_{s'}$ for some element γ , Proposition 3.16 implies $|\gamma| \ge \mu/3 \ge M/3$. Because of the choice of M, γ can not be an element of F.

THEOREM 4.4. Let Γ be a discrete group acting simply transitively on a triangle building. Then the reduced C^* -algebra $C^*_r(\Gamma)$ is simple.

PROOF: Propositions 4.2, 4.3 and 4.4 prove that (Γ, Ω) has property P_{geo} . Then Lemmata 2.1, 2.3 and 2.4 of [1] imply that the reduced C^* -algebra of Γ is simple.

References

- M. Bekka, M. Cowling and P. de la Harpe, 'Groups whose reduced group C*-algebra is simple', Inst. Hautes. Études. Sci. Publ. Math. 80 (1994), 117-134.
- [2] D.I. Cartwright, A.M. Mantero, T. Steger and A. Zappa, 'Groups acting simply transitively on the vertices of a building of type \tilde{A}_2 ', Geom. Dedicata 47 (1993), 143-166.
- [3] D.I. Cartwright and W. Młotkowski, 'Harmonic analysis for groups acting on triangle buildings', J. Austral. Math. Soc. Ser. A 56 (1994), 345–383.
- [4] D.I. Cartwright, W. Młotkowski and T. Steger, 'Property (T) and A₂ groups', Ann. Inst. Fourier 44 (1994), 213-248.
- [5] A.M. Mantero and A. Zappa, 'Spherical functions and spectrum of the Laplace operators on buildings of rank 2', Boll. Un. Mat. Ital., 7 (1994), 419-475.
- [6] S. Mozes, 'Actions of Cartan subgroups', Israel J. Math. 90 (1995), 253-294.
- [7] R.T. Powers, 'Simplicity of the C*-algebra associated with the free group on two generators', Duke Math. J. 42 (1975), 151-156.
- [8] J. Ramagge and G. Robertson, 'Triangle buildings and actions of type III_{1/q²}', J. Funct. Anal. 140 (1996), 472-504.
- [9] G. Robertson and T. Steger, 'C*-algebras arising from group actions on the boundary of a triangle building', Proc. London Math. Soc. 72 (1996), 613-637.
- [10] M.A. Ronan, Lectures on buildings, Perspectives in Math. 7 (Academic Press, London, 1989).

[17]

Istituto di Discipline scientifiche e tecniche Facoltà di Architettura Università di Genova 16123 Genova Italy e-mail: mantero@dima.unige.it Dipartimento di Matematica Università di Genova 16146 Genova Italy e-mail: zappa@dima.unige.it