THE REDUCED GROUP C^{*}-ALGEBRA OF A TRIANGLE BUILDING

A.M. Mantero and Z. Zappa

Abstract

Let Δ be an affine building of type $\widetilde{A_{2}}$ and let Γ be a discrete group of type-rotating automorphisms acting simply transitively on the vertices of Δ. We prove that the reduced group C^{*}-algebra $C_{r}^{*}(\Gamma)$ is simple. To prove this result we use the sufficient condition for the simplicity of $C_{r}^{*}(\Gamma)$ given in a recent paper by M. Bekka, M. Cowling and P. de la Harpe.

1. Introduction

Let Γ be a discrete group. The reduced C^{*}-algebra $C_{r}^{*}(\Gamma)$ of Γ is the norm closure in the C^{*}-algebra of all bounded linear operators on $\ell^{2}(\Gamma)$ of the linear span of $\lambda_{\Gamma}(\Gamma)$, where λ_{Γ} is the left regular representation of Γ on $\ell^{2}(\Gamma)$.

Powers proved in [7] that when Γ is a non-abelian free group, $C_{r}^{*}(\Gamma)$ is simple (that is, it has no non-trivial two-sided ideals) and the map $\tau: C_{r}^{*}(\Gamma) \rightarrow \mathbb{C}$ defined by $\tau(e)=1$ and $\tau\left(\lambda_{\Gamma}(\gamma)\right)=0$ for all γ in $\Gamma \backslash\{e\}$ is the unique normalised trace on the C^{*}-algebra. This result has been generalised by several authors. In [1] Bekka, Cowling and de la Harpe proved that, when Γ is a discrete group acting on a compact space Ω, then $C_{r}^{*}(\Gamma)$ is simple and it has a unique normalised trace if the action of Γ on Ω satisfies the following geometric condition:
Property $P_{\text {geo }}$. Let Γ be a discrete group acting on a compact space Ω. Then (Γ, Ω) is said to have Property $P_{\text {geo }}$ if, for any finite subset F of $\Gamma \backslash\{e\}$, there exist γ_{0} in Γ, a finite subset $\left\{\omega_{s}, s \in S\right\}$ of Ω, and open neighbourhoods V_{s} of ω_{s} in Ω for each s in S, such that
(i) $\left\{\omega_{s}, s \in S\right\}$ is the set of fixed points of the action of γ_{0} on Ω and, for each ω in Ω, there exists s in S such that

$$
\lim _{j \rightarrow \infty} \gamma_{0}^{j} \omega=\omega_{s}
$$

(ii) $\gamma V_{s} \cap V_{s^{\prime}}=\emptyset$, for all s, s^{\prime} in S and all γ in F;
(iii) for all s in S and j in \mathbb{Z}^{+}, if ω in V_{s} and $\gamma_{0}^{j} \omega \notin V_{s}$, then $\gamma_{0}^{j+1} \omega \notin V_{s}$.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/98 \$A2.00+0.00.

In this paper we prove that this geometric condition is satisfied when Γ is a discrete group of type-rotating automorphisms of an affine building Δ of type $\widetilde{A_{2}}$, acting simply transitively on the vertices of Δ and the compact space Ω is the maximal boundary of the building.

Recently Robertson and Steger have shown that, if Γ is a linear group acting simply transitively on the vertices of a triangle building, then the C^{*}-algebra $C(\Omega) \rtimes_{r} \Gamma$ is simple (and $C_{\tau}^{*}(\Gamma)$ is subnuclear). The minimality of the action of Γ on Ω ([9, Proposition 4.1.1]), [1, Theorem 5] and our result imply that the C^{*} - algebra $C(\Omega) \rtimes_{r} \Gamma$ is simple also for non-linear buildings. Another proof of this more general result appears in [9, Theorem 5.1].

2. Notation

Following Tits, a triangle building Δ (of order $q \geqslant 2$) is any thick affine building of type $\widetilde{A_{2}}$ and of order q. Thus Δ is a simplicial complex of rank 2 , consisting of vertices, edges and triangles (called chambers), such that each edge lies on ($q+1$) chambers. We refer the reader to $[\mathbf{1 0}]$ for more details on buildings.

We denote by \mathcal{V} the set of vertices of Δ. There is a function $\tau: \mathcal{V} \rightarrow \mathbb{Z} / 3 \mathbb{Z}$, called the type, such that each chamber contains exactly one vertex of each type.

Let d be the usual graph-theoretic distance on \mathcal{V}. For each $x_{0} \in \mathcal{V}$ we denote by $\mathcal{S}\left(x_{0}\right)$ the subcomplex consisting of all vertices x satisfying $d\left(x, x_{0}\right)=1$, and of all edges connecting them. The complex $\mathcal{S}\left(x_{0}\right)$ has the structure of a finite projective plane (P, L) of order q, where P and L are the sets of the vertices of $\mathcal{S}\left(x_{0}\right)$ having type $\tau\left(x_{0}\right)+1$ and $\tau\left(x_{0}\right)-1$ respectively, and $x \in P, y \in L$ are incident if x, y and x_{0} lie on a common triangle. Hence $\mathcal{S}\left(x_{0}\right)$ consists of $\left(q^{2}+q+1\right)$ vertices of type $\tau\left(x_{0}\right)+1,\left(q^{2}+q+1\right)$ vertices of type $\tau\left(x_{0}\right)-1$ and $(q+1)\left(q^{2}+q+1\right)$ edges, and each vertex lies on $(q+1)$ edges.

An apartment \mathcal{A} of Δ is any thin subcomplex of Δ isomorphic to the Coxeter complex of type $\widetilde{A_{2}}$; it may be realised as an Euclidean plane tessellated by equilateral triangles. For each vertex $x \in \mathcal{A}$, the apartment \mathcal{A} may be decomposed into six simplicial cones emanating from x, called sectors based at x and denoted Q_{x}.

Given a sector Q_{x} and an apartment \mathcal{A} containing it, each vertex y in \mathcal{A} may be identified by a pair of integer coordinates (with respect to Q_{x}), as shown in [5] and [3]. If \mathcal{A}^{\prime} is another apartment containing y and Q_{x}, then the coordinates of y in \mathcal{A}^{\prime} are the same as those in \mathcal{A}. Moreover, if $y \in Q_{x} \cap Q_{x}^{\prime}$, then y has the same coordinates with respect to both Q_{x} and Q_{x}^{\prime}.

Two sectors Q_{x} and Q_{y} are said to be equivalent, or parallel, if they contain a common sector. The set Ω of equivalence classes of sectors of Δ is called the maximal boundary of $\Delta . \Omega$ is in fact the set of chambers of the spherical building at infinity Δ^{∞} associated to Δ, as defined in [10]. For any fixed vertex x, there is a canonical bijection
between the maximal boundary Ω and the collection of sectors based at x. For every $\omega \in \Omega$, we denote by $Q_{x}(\omega)$ the sector based at x associated with ω. An element ω is a boundary point of an apartment \mathcal{A} if it is represented by a sector lying on \mathcal{A}. Hence each apartment has six boundary points.

Fix a vertex x_{0}. For $\omega \in \Omega$, and $N \geqslant 1$, we define

$$
Q_{N}(\omega)=\left\{x \in Q_{x_{0}}(\omega): d\left(x, x_{0}\right) \leqslant N\right\}
$$

and

$$
E_{N}(\omega)=\left\{\omega^{\prime} \in \Omega: Q_{N}(\omega) \subset Q_{x_{0}}\left(\omega^{\prime}\right)\right\}
$$

Then [5] the family of sets

$$
\mathcal{E}=\left\{E_{N}(\omega): N \geqslant 1, \omega \in \Omega\right\}
$$

generates a totally disconnected compact Hausdorff topology on Ω.
A particular class of triangle buildings was introduced in [2]. Let (P, L) be the projective plane of order q, where q is any power of a prime number, and let us fix a point-line correspondence $\lambda: P \rightarrow L$. A "triangle presentation" (compatible with λ) is defined to be a subset \mathcal{T} of P^{3} with the following properties:
(1) given $\xi, \eta \in P$ there exists $\zeta \in P$ such that $(\xi, \eta, \zeta) \in \mathcal{T}$ if and only if $\eta \in \lambda(\xi)$,
(2) $(\xi, \eta, \zeta) \in \mathcal{T}$ implies $(\zeta, \xi, \eta),(\eta, \zeta, \xi) \in \mathcal{T}$,
(3) given $\xi, \eta \in P$ there exists at most one $\zeta \in P$ such that $(\xi, \eta, \zeta) \in \mathcal{T}$.

Let $A=\left\{a_{\xi}: \xi \in P\right\}$ be a set of $\left(q^{2}+q+1\right)$ distinct letters and form the multiplicative group

$$
\Gamma=\left\langle\left\{a_{\xi}: \xi \in P\right\}: a_{\xi} a_{\eta} a_{\zeta}=e \text { if }(\xi, \eta, \zeta) \in \mathcal{T}\right\rangle
$$

where e denotes the identity of Γ. Then [2, Theorem 3.4] \mathcal{T} gives rise to a triangle building Δ. The vertices and the edges of Δ form the Cayley graph of Γ constructed via right multiplication with respect to $A \cup A^{-1}$, and its chambers are the triples $\left\{\gamma, \gamma a_{\xi}, \gamma a_{\eta}^{-1}\right\}$, where $\gamma \in \Gamma$, and $\xi, \eta \in P$, with $(\zeta, \eta, \xi) \in \mathcal{T}$ for some $\zeta \in P$. The type is the homomorphism $\tau: \Gamma \rightarrow \mathbb{Z} / 3 \mathbb{Z}$ determined by $\tau\left(a_{\xi}\right)=1$, for each $\xi \in P$. The triangle group Γ acts simply transitively by left multiplication on the vertices of Δ, as a group of "type-rotating" automorphisms [2]. It was also shown in [2] that any triangle building, on whose vertices a group acts simply transitively and in type-rotating way, is isomorphic to a building arising from a triangle presentation.

In the present paper we assume Δ is the triangle building arising from a triangle presentation and Γ is its type-rotating simply transitive automorphisms group. It is natural to take the identity element of Γ as the special vertex x_{0}, and each element γ as the vertex x of Δ if $x=\gamma \cdot x_{0}$; then, for every $\gamma^{\prime} \in \Gamma$,

$$
\gamma^{\prime} \cdot\left(\gamma \cdot x_{0}\right)=\left(\gamma^{\prime} \gamma\right) \cdot x_{0}
$$

For every $\gamma \in \Gamma$, any minimal word for γ in the generators and their inverses contains the same number m of generators and the same number n of inverses; in particular we may write γ in both the following forms

$$
\gamma=a_{\xi_{1}} \ldots a_{\xi_{m}} a_{\eta_{1}}^{-1} \ldots a_{\eta_{n}}^{-1}=a_{\varsigma_{1}}^{-1} \ldots a_{\varsigma_{n}}^{-1} a_{\theta_{1}} \ldots a_{\theta_{m}}
$$

Moreover the positive integers m, n are the coordinates of the vertex $x=\gamma \cdot x_{0}$, with respect to a sector $Q_{x_{0}}$ containing x. By abuse of notation, we simply write $(a, b, c) \in \mathcal{T}$ if $a=a_{\xi}, b=a_{\eta}$ and $c=a_{\zeta}$, with $(\xi, \eta, \zeta) \in \mathcal{T}$. Given $\gamma, \gamma^{\prime} \in \Gamma$ corresponding to an edge of the building, there exists a generator $a \in A$ such that $\gamma^{\prime}=\gamma a$ or $\gamma=\gamma^{\prime} a$. We provide the edge with the orientation $\gamma \rightarrow \gamma^{\prime}$, if $\gamma^{\prime}=\gamma a$. So we assign to each of the edges of Δ a generator of Γ, and we represent the chamber $C=\left\{\gamma, \gamma a, \gamma b^{-1}\right\}$ by the triple $(c, b, a) \in \mathcal{T}$, where c denotes the unique generator satisfying $c b a=e$, according to the following diagram.

Figure 1
The action of Γ on the vertices of Δ induces a natural action, by left multiplication, of the group on the maximal boundary. We refer the reader to [3] for a proof that this action is in fact well-defined.

3. Periodic apartments

Let \mathcal{A} be an apartment of Δ, not necessarily containing the fundamental vertex x_{0}. Fix a sector Q_{x} of the apartment and consider the coordinate system for the vertices of \mathcal{A} determined by Q_{x}. For every $(j, k) \in \mathbb{Z}^{2}$, let $a_{j, k}$ be the element of Γ such that the vertex $a_{j, k} \cdot x_{0}$ of \mathcal{A} has coordinates (j, k). Hence \mathcal{A} may be represented via its vertices as

$$
\mathcal{A}=\left\{a_{j, k}\right\}_{j, k \in \mathbf{Z}}
$$

In particular $a_{0,0}$ is the element of Γ corresponding to the origin x of the coordinate system. We note that if $a_{j, k}$ and $a_{l, m}$ correspond to an edge of \mathcal{A}, then $a_{l, m}=a_{j, k} a$ or $a_{l, m}=a_{j, k} b^{-1}$, for suitable $a, b \in A$, according as the edge is oriented from $a_{j, k}$ to $a_{l, m}$ or vice versa (see Figure 2).

Figure 2

Definition 3.1: The label associated to the ordered pair ($a_{j, k}, a_{l, m}$) of elements of \mathcal{A} is defined as the element of Γ

$$
\varepsilon_{j, k}^{l, m}=a_{j, k}^{-1} a_{l, m}
$$

and the labeling of any region \mathcal{R} of the apartment \mathcal{A} is defined as the collection

$$
\left\{\varepsilon_{j, k}^{l, m}, \quad a_{j, k}, a_{l, m} \in \mathcal{R}\right\}
$$

REMARK 3.2. (i) If $a_{j, k}, a_{l, m}$ are adjacent, then $\varepsilon_{j, k}^{l, m}=a$ or $\varepsilon_{j, k}^{l, m}=b^{-1}$, according to the orientation of the corresponding edge, and in this case we refer to $\varepsilon_{j, k}^{l, m}$ as the label of the edge.
(ii) The labels of the edges determine the labeling of the apartment. In fact, if $\left\{a_{j_{i}, k_{i}}\right\}_{i=0}^{n}$ is a minimal path from $a_{j, k}$ to $a_{l, m}$, then

$$
\varepsilon_{j, k}^{l, m}=\prod_{i=0}^{n} \varepsilon_{j_{i}, k_{i}}^{j_{i+1}, k_{i+1}}
$$

where $\varepsilon_{j_{i}, k_{i}}^{j_{i+1}, k_{i+1}}$ belongs to $A \cup A^{-1}$ for every i.
(iii) The length of a minimal word for $\varepsilon_{j, k}^{l, m}$ is the distance between $a_{j, k}$ and $a_{l, m}$; moreover $\varepsilon_{l, m}^{j, k}=\left(\varepsilon_{j, k}^{l, m}\right)^{-1}$.
Remark 3.3. Let

$$
\begin{equation*}
R_{1}(j, k)=\left\{a_{j, k}, a_{j+1, k}, a_{j, k+1}, a_{j+1, k+1}\right\} \tag{1}
\end{equation*}
$$

be the parallelogram of base vertices $a_{j, k}, a_{j+1, k}, a_{j, k+1}$ and $a_{j+1, k+1}$ (see Figure 3). The labels, say a and b^{-1}, of two adjacent edges of $R_{1}(j, k)$, connecting $a_{j, k}$ and $a_{j+1, k+1}$, determine the labeling of the parallelogram. Indeed, there exist unique c, d such that

Figure 3
$a b^{-1}=c^{-1} d$, and a unique f such that $(f, c, a),(f, d, b) \in \mathcal{T}$. More generally, let

$$
\begin{equation*}
R_{J, K}(j, k)=\left\{a_{j, k}, a_{j+J, k}, a_{j, k+K}, a_{j+J, k+K}\right\} \tag{2}
\end{equation*}
$$

be the parallelog: am of base vertices $a_{j, k}, a_{j+J, k}, a_{j, k+K}$ and $a_{j+J, k+K}$, as in Figure 3. The label $\varepsilon_{j, k}^{j+J, k+K}$, consisting of the labels of the edges of a minimal path joining $a_{j, k}$ to $a_{j+J, k+K}$, determines the labeling of the parallelogram.
REMARK 3.4. If $\mathcal{A}^{\prime}=\gamma \mathcal{A}$ for some $\gamma \in \Gamma$, then the apartments \mathcal{A} and \mathcal{A}^{\prime} have the same labeling with respect to corresponding sectors Q_{x} and γQ_{x}. Indeed, for every $(j, k) \in \mathbb{Z}^{2}$, $a_{j, k}^{\prime}=\gamma a_{j, k}$ and therefore

$$
\varepsilon_{j, k}^{\prime l, m}=a_{j, k}^{\prime-1} a_{l, m}^{\prime}=a_{j, k}^{-1} \gamma^{-1} \gamma a_{l, m}=\varepsilon_{j, k}^{l, m}
$$

Conversely, if two apartments \mathcal{A} and \mathcal{A}^{\prime} have the same labeling with respect to sectors Q_{x} and $Q_{x^{\prime}}$, then $\mathcal{A}^{\prime}=\gamma \mathcal{A}$ for $\gamma=a_{0,0}^{\prime} a_{0,0}^{-1}$. In fact, for every $(j, k) \in \mathbb{Z}^{2}, \varepsilon_{0,0}^{\prime j, k}=\varepsilon_{0,0}^{j, k}$, so $a_{j, k}^{\prime}=a_{0,0}^{\prime} a_{0,0}^{-1} a_{j, k}$.

Definition 3.5: The pair $(J, K) \in \mathbb{Z}^{2}$ is a period for the apartment \mathcal{A} (with respect to $\left.Q_{x}\right)$ if, for every $(j, k),(l, m) \in \mathbb{Z}^{2}$,

$$
\begin{equation*}
\varepsilon_{j, k}^{l, m}=\varepsilon_{j+j, k+K}^{l+J, m+K} \tag{3}
\end{equation*}
$$

The periods of \mathcal{A} (with respect to Q_{x}) form a subgroup of \mathbb{Z}^{2}, denoted by \mathcal{L}. If $(J, K) \in \mathcal{L}$, then $a_{j+J, k+K} a_{j, k}^{-1}$ does not depend on (j, k), and it has length greater than one.

Definition 3.6: The apartment \mathcal{A} is periodic (with respect to Q_{x}) if \mathcal{L} is nontrivial; it is doubly periodic if \mathcal{L} is a cofinite subgroup of \mathbb{Z}^{2}. We denote

$$
\begin{equation*}
\mu=\min _{(J, K) \in \mathcal{L} \backslash(0,0)\}}\left|a_{j+J, k+K} a_{j, k}^{-1}\right| \tag{4}
\end{equation*}
$$

REMARK 3.7. (i) The property of periodicity does not depend on the choice of the sector Q_{x} on the apartment. Actually the apartment \mathcal{A} is (J, K)-periodic if and only if the condition (3) holds for (j, k) and (l, m) corresponding to adjacent vertices. Indeed, if $\left\{a_{j_{i}, k_{i}}\right\}_{i=0}^{n}$ is a minimal path from $a_{j, k}$ to $a_{l, m}$, then $\left\{a_{j_{i}+J, k_{i}+K}\right\}_{i=0}^{n}$ is a minimal path from $a_{j+J, k+K}$ to $a_{l+J, m+K}$; so Remark 3.2 enables us to conclude. So in geometric terms, the (J, K)-periodicity of \mathcal{A} means that corresponding edges of the sets $\mathcal{S}\left(a_{j, k}\right) \cap \mathcal{A}$ and $\mathcal{S}\left(a_{j+J, k+K}\right) \cap \mathcal{A}$ have the same labels, for every $(j, k) \in \mathbb{Z}^{2}$. This characterisation allows us to deduce that the property of periodicity does not depend on the choice of the coordinate system on the apartment.
(ii) If \mathcal{A} is doubly periodic, then \mathcal{L} contains a subgroup of the form $N \mathbb{Z}^{2}$, for some positive integer N; so it contains vectors of \mathbb{Z}^{2} in every rational direction.

We refer the reader to [6] for more details about periodicity.

Lemma 3.8. Let \mathcal{A} be an apartment and let $(J, K) \in \mathbb{Z}^{2}$, with $J, K \neq 0$ and $J+K \neq 0$. The following facts are equivalent:
(i) (J, K) is a period;
(ii) $\varepsilon_{r J, r K}^{(r+1) J,(r+1) K}=\varepsilon_{(r+1) J,(r+1) K}^{(r+2) J,(r+2) K}, \quad \forall r \in \mathbb{Z}$.

Moreover, if $J=K$, then (i) and (ii) are equivalent to
(iii) $\varepsilon_{j, j}^{j+1, j+1}=\varepsilon_{j+J, j+J}^{j+1+J+1+J}, \quad \forall j \in \mathbb{Z}$.

Proof: It is obvious that (i) implies (ii), and (iii) for $J=K$. We prove that (iii) implies (i), assuming, without loss of generality, that $J=K>0$. Consider

$$
\begin{equation*}
\mathcal{C}_{i}=\left\{R_{1}(j+i, j)\right\}_{j \in \mathbf{Z}}, \forall i \in \mathbb{Z} \tag{5}
\end{equation*}
$$

As shown in Remark 3.3, the labels $\left(\varepsilon_{j, j}^{j+1, j+1}\right)_{j \in \mathbf{Z}}$ determine the labeling of \mathcal{C}_{0}. Then condition (iii) implies that (J, J) is a period for this chain, that is (1) holds for every pair of vertices of this region. Consider now the chain \mathcal{C}_{1} adjacent on the left to \mathcal{C}_{0} (the same argument applies to the chain \mathcal{C}_{-1} adjacent on the right). For every $j, R_{1}(j+1, j)$ contains one edge of $R_{1}(j, j)$ and one edge of $R_{1}(j+1, j+1)$, connecting $a_{j+1, j}$ to $a_{j+2, j+1}$. Therefore the labeling of \mathcal{C}_{1} is determined by that of \mathcal{C}_{0}. Hence (1) holds for every pair of vertices of $\mathcal{C}_{-1} \cup \mathcal{C}_{0} \cup \mathcal{C}_{1}$ (see Figure 4).

Figure 4

Figure 5

Iterating this procedure we argue that (J, J) is a period for $\bigcup_{i=-M}^{M} \mathcal{C}_{i}$, for every $M>0$. Since, given $(j, k),(l, m) \in \mathbb{Z}^{2}$, there exists M such that $a_{j, k} \begin{gathered}i=-M \\ \text { and } \\ l l, m\end{gathered}$ belong to $\bigcup_{i=-M}^{M} \mathcal{C}_{i}$, we conclude that (J, J) is a period for the whole apartment.
We consider now (J, K), with $J, K \neq 0$ and $J+K \neq 0$, and we prove that (ii) implies (i). We assume $J, K>0$; the other cases are analogous. For every $r \in \mathbb{Z}$ we consider the parallelogram $R_{J, K}(r J, r K)$. The argument used to prove that (iii) implies (i) for $J=K$, applied to the chain

$$
\begin{equation*}
\tilde{\mathcal{C}_{i}}=\left\{R_{J, K}((r+i) J, r K)\right\}_{r \in \mathbf{Z}} \tag{6}
\end{equation*}
$$

instead of \mathcal{C}_{i}, enables us to show that (J, K) is a period for the apartment, provided (ii) is true (see Figure 5).

Remark 3.9. The equivalence of (ii) and (iii) for $J=K$, in Lemma 3.8 is a straightforward consequence of the fact that, for every r, the labeling of $R_{J, J}(r J, r J)$ is determined by that of the finite chain $\left\{R_{1}(j, j)\right\}_{j=r J}^{(r+1) J-1}$ herein contained (see Figure 6).

$a_{r} J, r J$

Figure 6
Conditions (ii) and (iii) in Lemma 3.8 may be replaced by the following slightly different conditions:
(ii) $)^{\prime} \quad$ for some $r_{0} \in \mathbb{Z}, \varepsilon_{\left(r+r_{0}\right) J, r K}^{\left(r+r_{0}+1\right) J,(r+1) K}=\varepsilon_{\left(r+r_{0}+1\right), J,(r+1) K}^{\left(r+r_{0}+2\right) J(,+2) K}, \quad \forall r \in \mathbb{Z}$;
(iii)' for some $j_{0} \in \mathbb{Z}, \varepsilon_{j+j_{0}, j}^{j+j_{j}+1, j+1}=\varepsilon_{j+j_{0}+J, j+J}^{j+j_{0}+1+J, j+1+j}, \forall j \in \mathbb{Z}$.

Proposition 3.10. Let $(J, K) \in \mathbb{Z}^{2}$, with $J, K \neq 0$ and $J+K \neq 0$. If the apartment \mathcal{A} is (J, K)-periodic, then it is doubly periodic.

Proof: Consider for every $i \in \mathbb{Z}$ the chain $\widetilde{\mathcal{C}}_{i}$ defined by (5). The (J, K)-periodicity of \mathcal{A} implies that any two parallelograms of $\tilde{\mathcal{C}}_{i}$ have the same labeling. Since the set of generators is finite, there are only finitely many possible choices for the labeling of the infinite collection of chains $\left\{\widetilde{\mathcal{C}}_{i}\right\}_{i \in \mathbf{Z}}$. Thus there must exist M and N, with $M \neq N$, such that $\widetilde{\mathcal{C}_{M}}$ has the same labeling as $\widetilde{\mathcal{C}_{N}}$. On the other hand, Lemma 3.8 and Remark 3.9 imply that the labeling of \mathcal{A} is determined by the labeling of each parallelogram either $R_{J, K}((r+M) J, r K)$ or $R_{J, K}((r+N) J, r K)$. Hence, for every $(j, k) \in \mathbb{Z}^{2}$, corresponding edges of $\mathcal{S}\left(a_{j+M J, k}\right) \cap \mathcal{A}$ and of $\mathcal{S}\left(a_{j+N J, k}\right) \cap \mathcal{A}$ have the same labels, and $((N-M) J, 0)$ is a period for the apartment. Since (J, J) and $((N-M) J, 0)$ generate a cofinite subgroup of \mathbb{Z}^{2}, the apartment is doubly periodic.

Remark 3.11. (i) If $J=0$ or $K=0$ or $J+K=0$, Lemma 3.8 and Proposition 3.10 are false. In fact, in these cases each parallelogram $R_{J, K}(r J, r K)$ collapses to a segment and therefore the labeling of this region does not determine the labeling of the apartment.
(ii) Δ contains apartments which are non-periodic. In fact, the cardinality of the set of all apartments containing a fixed vertex x is not countable, while the set of (J, K)-
periodic apartments containing x is finite.
In order to prove the existence of periodic apartments with arbitrarily large μ, we state the following lemmata.

Lemma 3.12. There exists an element $\gamma_{0} \in \Gamma$ such that, for every $N \in \mathbb{N}$, the vertex $y_{0}^{N}=\gamma_{0}^{N} \cdot x_{0}$ has coordinates $(2 N, 2 N)$ with respect to any sector based at x_{0} and containing y_{0}^{N}.

Proof: For every $(c, b, a) \in \mathcal{T}$, let C be a chamber associated to this triple, and let x be its vertex opposite to the edge labeled a. We define $X_{(c, b, a)}$ to be the set of triples (g, f, d) $\in \mathcal{T}$ associated to the chambers D opposite to C with respect to x, where d denotes the label of the edge opposite to x in D (see Figure 7).

Figure 7
Furthermore for every generator d we define

$$
X_{(c, b, a)}^{d}=\left\{(g, f, \delta) \in X_{(c, b, a)}: \delta=d\right\}
$$

We have $\left|X_{(c, b, a)}\right|=q^{3}$ and $0 \leqslant\left|X_{(c, b, a)}^{d}\right| \leqslant(q+1)$. Actually in a projective plane of order q, given a line L_{0} and a point $x_{0} \in L_{0}$, there are q^{2} ways of choosing a point x outside L_{0} and q ways of choosing a line through x but not through x_{0}. Fix a generator a and denote by $\left(b_{i}, c_{i}\right), i=0, \ldots, q$, all possible pairs such that $\left(c_{i}, b_{i}, a\right) \in \mathcal{T}$. For every i, consider the set $X_{i}=X_{\left(c_{i}, b_{i}, a\right)}$. We claim that, for some $j \neq k, X_{j}$ and X_{k} contain triples $\left(g_{j}, f_{j}, d_{j}\right)$ and $\left(g_{k}, f_{k}, d_{k}\right)$ respectively, with $d_{j}=d_{k}$ and $\left(f_{j}, g_{j}\right) \neq\left(f_{k}, g_{k}\right)$. Otherwise, for every d, either $\left|X_{i}^{d}\right|=1$, for all non-empty X_{i}^{d}, or only one X_{i}^{d} is non-empty. Hence $\sum_{i=0}^{q}\left|X_{i}^{d}\right| \leqslant q+1$, and

$$
\sum_{i=0}^{q}\left|X_{i}\right|=\sum_{d} \sum_{i=0}^{q}\left|X_{i}^{d}\right| \leqslant(q+1)\left(q^{2}+q+1\right)
$$

On the other hand $\sum_{i=0}^{q}\left|X_{i}\right|=q^{3}(q+1)$, so the previous inequality is absurd, because $q^{3}(q+1) \geqslant(q+1)\left(q^{2}+q+1\right)$, for $q>1$. Without loss of generality we may assume that the previous condition is satisfied for $j=0, k=1$. If we consider the pairs (b_{0}, c_{0}), (f_{0}, g_{0}) and $\left(b_{1}, c_{1}\right),\left(f_{1}, g_{1}\right)$, it is obvious that, for every positive integer $N,\left(b_{0} b^{-1} f f_{0}^{-1}\right)^{N}$ and
$\left(c_{0}^{-1} \mathrm{cg}^{-1} g_{0}\right)^{N}$ are minimal words consisting of $2 N$ generators and $2 N$ inverses. Therefore, if

$$
\gamma_{0}=b_{0} b^{-1} f f_{0}^{-1}=c_{0}^{-1} c g^{-1} g_{0}
$$

the vertex $y_{0}^{N}=\gamma_{0}^{N} \cdot x_{0}$ has coordinates $(2 N, 2 N)$, for every $N \geqslant 1$ (see Figure 7). $]$
Lemma 3.13. For every positive integer $M>2$, there exists an element $\gamma_{0} \in \Gamma$, such that
(i) for every $N \in \mathbb{N}$, the vertex $y_{0}^{N}=\gamma_{0}^{N} \cdot x_{0}$ has coordinates ($M N, M N$) with respect to any sector based at x_{0} containing y_{0}^{N};
(ii) γ_{0} is not a true power in Γ.

Proof: Fix a non-periodic apartment \mathcal{A} containing the fundamental vertex x_{0}, and write $\mathcal{A}=\left\{a_{j, k}\right\}$ with respect to a sector based at x_{0}. Consider the vertex $x_{1}=$ $a_{M-1, M-1} \cdot x_{0}$ and the convex hull \mathcal{R} of the set $\left\{x_{0}, x_{1}\right\}$ (see Figure 8).

Figure 8
Let C_{0} and C_{1} be the chambers of \mathcal{R} containing x_{0} and x_{1} respectively. Suppose $C_{0}=$ $\left(c_{0}, b_{0}, a_{0}\right)$ and $C_{1}=\left(c_{1}, b_{1}, a_{1}\right)$, where a_{0} and a_{1} denote the labels of the edges opposite to x_{0} and x_{1} respectively. By altering the choice of the non-periodic apartment if necessary, we may assume $a_{1} \neq a_{0},\left(b_{1}, c_{1}\right) \neq\left(b_{0}, c_{0}\right)$. Following the notation of Lemma 3.12, we consider the sets $X_{0}=X_{\left(c_{0}, b_{0}, a_{0}\right)}$ and $X_{1}=X_{\left(c_{1}, b_{1}, a_{1}\right)}$. We claim that X_{0} and X_{1} contain triples $\left(g_{0}, f_{0}, d_{0}\right)$ and (g_{1}, f_{1}, d_{1}) respectively, with $d_{0}=d_{1}$ and (f_{0}, g_{0}) $\neq\left(f_{1}, g_{1}\right)$. Otherwise, if for some d the sets are both non-empty, then $\left|X_{0}^{d}\right|=\left|X_{1}^{d}\right|=1$. Hence, for every d,

$$
\left|X_{0}^{d}\right|+\left|X_{1}^{d}\right| \leqslant q+1
$$

and therefore

$$
\left|X_{0}\right|+\left|X_{1}\right| \leqslant(q+1)\left(q^{2}+q+1\right)
$$

Since $\left|X_{0}\right|+\left|X_{1}\right|=2 q^{3}$, this inequality is absurd for $q \geqslant 3$.
For $q=2$, we use a direct argument to prove the required property. For $i=0,1$, we consider, for every chamber based at x_{i} and opposite to C_{i}, the edge having the orientation away from x_{i}. We may think of these four edges as a system \mathcal{M}_{i} of lines on the projective plane of order 2 and the three edges adjacent to each of them (but not containing x_{i}) as points of the corresponding line on this plane. Among these three points we neglect the one lying on a chamber adjacent to C_{i}. Since we suppose ($\left.b_{1}, c_{1}\right) \neq\left(b_{0}, c_{0}\right)$, exactly two lines belong to both \mathcal{M}_{0} and \mathcal{M}_{1}. We can prove by a direct computation that, in all possible configurations of \mathcal{M}_{0} and \mathcal{M}_{1}, there exist two lines, say $L_{0} \in \mathcal{M}_{0}$ and $L_{1} \in \mathcal{M}_{1}$, with $L_{0} \neq L_{1}$, which intersect each other in one point different from those discarded before. If f_{i} is the label corresponding to L_{i}, d is the label attached to their intersection point, and g_{i} is the unique generator such that $g_{i} f_{i} d=e$, then the triples $\left(g_{0}, f_{0}, d\right)$ and (g_{1}, f_{1}, d) satisfy the required property. Thus $a_{M-1, M-1} f_{1} f_{0}^{-1}$ and $a_{M-1, M-1} g_{1}^{-1} g_{0}$ are minimal words for an element of Γ, say γ_{0}, consisting of M generators and M inverses. Therefore $y_{0}^{N}=\gamma_{0}^{N} \cdot x_{0}$ has coordinates ($M N, M N$), for every $N \in \mathbb{Z}$. Finally, we note that, by construction, γ_{0} cannot be a power of the form γ^{m}, for $\gamma \in \Gamma$ and $m \geqslant 2$.

Proposition 3.14. For every integer $M \geqslant 2$, there exists a (M, M)-periodic apartment, such that $\mu \geqslant M$.

Proof: Let $M=2$. Consider the sequence of vertices $\left\{y_{0}^{N}\right\}_{N \in \mathbf{Z}}$ constructed in Lemma 3.12. It is obvious that the convex hull of $\left\{y_{0}, y_{0}^{-1}\right\}$ also contains x_{0}. More generally, for every $N>1$, the convex hull of $\left\{y_{0}^{N}, y_{0}^{-N}\right\}$ contains y_{0}^{n}, for all $n \in\{-N, \ldots, N\}$.

Figure 9
This implies that there exists an apartment \mathcal{A}_{0} containing all vertices of the sequence. We write $\mathcal{A}_{0}=\left\{a_{j, k}\right\}$ with respect to the sector containing the vertices $y_{0}^{N}, N>0$. In particular for every integer N the vertex y_{0}^{N} corresponds to $a_{2 N, 2 N}$. The apartment is uniquely determined by the chain consisting of the convex hulls of $\left\{a_{2 N, 2 N}, a_{2(N+1), 2(N+1)}\right\}$; moreover, for all $(j, k) \in \mathbb{Z}^{2}$,

$$
\varepsilon_{j, k}^{j+1, j+1}=\varepsilon_{j+2, j+2}^{j+3, j+3}
$$

Lemma 3.8 enables us to conclude that $(2,2)$ is a period for the apartment (see Figure 9). For $M>2$, we consider the sequence of vertices $\left\{y_{0}^{N}\right\}_{N \in \mathbf{Z}}$ constructed in Lemma 3.13, and proceed as above to construct a (M, M)-periodic apartment. By altering the choice of the non-periodic apartment containing x_{0}, if necessary, we may assume that the convex hull \mathcal{R} is not contained in any doubly periodic apartment having $\mu \leqslant M-1$. $]$

We conclude this section stating some interesting results about the action of the group Γ on a doubly periodic apartment and on its boundary points.

We note that if \mathcal{A} is any (J, K)-periodic apartment, then $\gamma \mathcal{A}$ is, as follows from Remark 3.4; hence the property of periodicity is Γ-invariant.

Proposition 3.15. Let \mathcal{A} and \mathcal{A}^{\prime} be (J, K)-periodic apartments, with $J \neq 0$, $K \neq 0$ and $J+K \neq 0$. Let ω, ω^{\prime} be boundary points of \mathcal{A} and \mathcal{A}^{\prime} respectively. If $\omega^{\prime}=\gamma \omega$ for some $\gamma \in \Gamma$, then $\mathcal{A}^{\prime}=\gamma \mathcal{A}$.

Proof: Assume $\omega^{\prime}=\gamma \omega$. Then, for every sector $Q_{x}(\omega)$ associated to $\omega, \gamma Q_{x}(\omega)$ is the sector $Q_{\gamma \cdot x}\left(\omega^{\prime}\right)$ representative of ω^{\prime}. Since $Q_{y_{1}}(\omega) \supset Q_{y_{2}}(\omega)$ implies that $\gamma Q_{y_{1}}(\omega) \supset$ $\gamma Q_{y_{2}}(\omega)$, we may deduce that there exists a vertex $x \in \mathcal{A}$ such that $Q_{x}(\omega) \subset \mathcal{A}$ and $Q_{\gamma \cdot x}(\omega) \subset \mathcal{A}^{\prime}$. Set $\mathcal{A}=\left\{a_{j, k}\right\}$ and $\mathcal{A}^{\prime}=\left\{a_{j, k}^{\prime}\right\}$ with respect to $Q_{x}(\omega)$ and $Q_{\gamma \cdot x}\left(\omega^{\prime}\right)$. Thus, for all $j, k \geqslant 0$,

$$
\begin{equation*}
\gamma a_{j, k}=a_{j, k}^{\prime} \tag{7}
\end{equation*}
$$

We prove that actually (3) holds for every $(j, k) \in \mathbb{Z}^{2}$. Assume $J, K>0$ (the other cases are similar), and note that, for every $(j, k) \in \mathbb{Z}^{2}$, there exist $n, j_{0}, k_{0} \in \mathbb{N}$, such that

$$
j=j_{0}-n J, \quad k=k_{0}-n K
$$

Since $j_{0}+n J, k_{0}+n K$ are positive, the (J, K)-periodicity of \mathcal{A} and \mathcal{A}^{\prime} implies

$$
\begin{aligned}
a_{j, k}^{\prime} & =a_{j_{0}, k_{0}}^{\prime}\left(a_{j_{0}, k_{0}}^{\prime}\right)^{-1} a_{j_{0}-n J, k_{0}-n K}^{\prime} \\
& =a_{j_{0}, k_{0}}\left(a_{j_{0}+n J, k_{0}+n K}\right)^{-1} a_{j_{0}, k_{0}}^{\prime} \\
& =\gamma a_{j_{0}, k_{0}}\left(\gamma a_{j_{0}+n J, k_{0}+n K}\right)^{-1} \gamma a_{j_{0}, k_{0}} \\
& =\gamma a_{j_{0}, k_{0}} a_{j_{0}, k_{0}}^{-1} a_{j_{0}-n J, k_{0}-n K} \\
& =\gamma a_{j, k} .
\end{aligned}
$$

Let \mathcal{A} be a doubly periodic apartment containing x_{0}, and represent $\mathcal{A}=\left\{a_{j, k}\right\}$, with respect to a sector $Q_{x_{0}}$. We denote by Σ the finite group of symmetries of \mathcal{A} generated by the reflections fixing $a_{0,0}$.

Proposition 3.16. Let $\gamma \in \Gamma$ be such that $\gamma \mathcal{A}=\mathcal{A}$, and let T_{γ} be the operator on \mathbb{Z}^{2} defined by $T_{\gamma}(j, k)=(l, m)$, if $a_{l, m}=\gamma a_{j, k}$. Then
(i) there exist $(p, r) \in \mathbb{Z}^{2}$ and $\sigma \in \Sigma$ such that $T_{\gamma}(j, k)=\sigma(j, k)+(p, r)$; moreover $(p, r) \neq(0,0)$, if γ is non-trivial;
(ii) if σ is the identity of Σ then $(p, r) \in \mathcal{L}$;
(iii) the length of γ is at least $1 / 3 \mu$.

Proof: (i) Since $\gamma \cdot x_{0}$ is a vertex of \mathcal{A}, then $\gamma=a_{p, r}$ for some $(p, r) \in \mathbb{Z}^{2}$. If ω is the boundary point of \mathcal{A} represented by the sector $Q_{x_{0}}$, and if $\omega^{\prime}=\gamma \omega$, there exists $\sigma \in \Sigma$ such that $\sigma Q_{x_{0}}(\omega)=Q_{x_{0}}\left(\omega^{\prime}\right)$. Therefore $(l, m)=\sigma(j, k)+(p, r)$, if $a_{l, m}=\gamma a_{j, k}$. Moreover $(p, r) \neq(0,0)$ if γ is non-trivial, because γ cannot act on \mathcal{A} according to a symmetry fixing $a_{0,0}$.
(ii) If σ is the identity of Σ, then γ fixes ω, and, for every $(j, k) \in \mathbb{Z}^{2}$,

$$
a_{j, k} a_{j+p, k+r}^{-1}=a_{j, k}\left(\gamma a_{j, k}\right)^{-1}=\gamma^{-1}
$$

This implies that (p, r) is a period for the apartment \mathcal{A}.
(iii) If T_{γ} is a translation, then σ is trivial and, by (ii), $|\gamma|=\left|a_{p, r} a_{0,0}^{-1}\right| \geqslant \mu$. If T_{γ} contains a non-trivial symmetry σ which is a reflection, then $T_{\gamma^{2}}=T_{\gamma}^{2}$ acts as a translation, so $2|\gamma| \geqslant\left|\gamma^{2}\right| \geqslant \mu$. Finally if T_{γ} contains a non-trivial symmetry σ which is a rotation, then $T_{\gamma^{3}}=T_{\gamma}^{3}$ acts as a translation, so $3|\gamma| \geqslant\left|\gamma^{3}\right| \geqslant \mu$.
[8, Section 2] contains a parallel discussion of periodic apartments.

4. Simplicity of the reduced group C^{*}-algebra

In this section we prove (Γ, Ω) has property $P_{\text {geo }}$.
According to Lemma 3.13, for every $M>2$, we fix an element $\gamma_{0} \in \Gamma$ of length $2 M$ such that $y_{0}^{N}=\gamma_{0}^{N} \cdot x_{0}$ has coordinates $(M N, M N)$, for all $N \in \mathbb{Z}$, and consider the doubly periodic apartment \mathcal{A}_{0} determined by $\left\{y_{0}^{N}\right\}_{N \in \mathbf{Z}}$. We denote by $Q_{x_{0}}^{\infty}$ and $Q_{x_{0}}^{-\infty}$ the sectors of \mathcal{A}_{0} containing $\left\{y_{0}^{N}, N \geqslant 0\right\}$ and $\left\{y_{0}^{-N}, N \geqslant 0\right\}$ respectively; moreover we denote by $\left\{\omega_{1}, \ldots, \omega_{6}\right\}$ the boundary points of the apartment, assuming the following choice:
ω_{1} and ω_{6} are the points represented by the sectors $Q_{x_{0}}^{\infty}$ and $Q_{x_{0}}^{-\infty}$ respectively (see Proposition 3.14);
ω_{2} and ω_{3} are the points represented by the sectors based at x_{0} adjacent to $Q_{x_{0}}^{\infty}$; ω_{4} and ω_{5} are the points represented by the sectors based at x_{0} adjacent to $Q_{x_{0}}^{-\infty}$.

Proposition 4.1. The following facts are true:
(i) the element γ_{0} fixes ω_{s}, for every $s=1, \ldots, 6$;
(ii) for every $\omega \in \Omega$ there exists $s \in\{1, \ldots, 6\}$ such that $\lim _{n \rightarrow \infty} \gamma_{0}^{n} \omega=\omega_{s}$;
(iii) if $\gamma_{0} \omega=\omega$, then $\omega=\omega_{s}$, for some $s \in\{1, \ldots, 6\}$.

Proof: (i) The element γ_{0} acts on \mathcal{A}_{0} by translation. So for every s the sector $\gamma_{0} Q_{x_{0}}\left(\omega_{s}\right)$ lies on \mathcal{A}_{0} and is parallel to $Q_{x_{0}}\left(\omega_{s}\right)$; this means that γ_{0} fixes all boundary points of the apartment.
(ii) The property is obvious if $\omega=\omega_{s}$. For $\omega \neq \omega_{s}$, consider the boundary point ω_{6} of \mathcal{A}_{0} and an apartment \mathcal{A} containing ω and ω_{6}. We sketch in Figure 10 one of the six different situations that may occur; all the others are similar.

Figure 10

Figure 11

We may choose a positive integer N so big that $y_{0}^{-^{N}} \in \mathcal{A}$; thus $Q_{y_{0}^{-N}}\left(\omega_{6}\right)$ and $Q_{y_{0}^{-N}}(\omega)$ belong to \mathcal{A}. On the translated apartment $\mathcal{A}^{\prime}=\gamma_{0}^{N} \mathcal{A}$, consider the sector $\gamma_{0}^{N} Q_{y_{0}^{-N}}\left(\omega_{6}\right)=$ $Q_{x_{0}}^{\infty}$ and the sector $\gamma_{0}^{N} Q_{y_{0}{ }^{-N}}(\omega)$, based at x_{0} and corresponding to the boundary point $\omega^{\prime}=\gamma_{0}^{N} \omega$. (see Figure 11).

Figure 12
For every $n \geqslant 1$, consider, on the translated apartment $\mathcal{A}^{\prime \prime}=\gamma_{0}^{n} \mathcal{A}^{\prime}$, the sectors (based at y_{0}^{n}) $\gamma_{0}^{n} \gamma_{0}^{N} Q_{y_{0}^{-N}}(\omega)$ and $\gamma_{0}^{n} \gamma_{0}^{N} Q_{y_{0}^{-N}}\left(\omega_{6}\right)=\gamma_{0}^{n} Q_{x_{0}}^{-\infty}$, corresponding to $\gamma_{0}^{n} \omega^{\prime}$ and ω_{6} respectively. Since $\gamma_{0}^{n} Q_{x_{0}}^{-\infty}$ contains the fundamental vertex x_{0} as an interior element, then $x_{0} \in \mathcal{A}^{\prime \prime}$ and there exists a sector $Q_{x_{0}}^{\prime \prime} \subset \mathcal{A}^{\prime \prime}$ parallel to $\gamma_{0}^{n} \gamma_{0}^{N} Q_{y_{0}^{-N}}(\omega)$. This sector intersects $\gamma_{0}^{n} Q_{x_{0}}^{-\infty}$ in a set $Q_{K_{n}}\left(\gamma_{0}^{n} \omega^{\prime}\right)$, for some $K_{n} \geqslant 1$. (See Figure 12.)

Since $Q_{K_{n}}\left(\gamma_{0}^{n} \omega^{\prime}\right) \subset \mathcal{A}_{0}$, there exists s such that $Q_{K_{n}}\left(\gamma_{0}^{n} \omega^{\prime}\right)=Q_{K_{n}}\left(\omega_{s}\right)$. We claim that $\lim _{n \rightarrow \infty} \gamma_{0}^{n} \omega=\omega_{s}$. In fact, for every $m \geqslant n, K_{m} \geqslant K_{n}$, and for every $K \geqslant 1$ there exists $\nu \geqslant 1$ such that $K_{\nu} \geqslant K$, if $n \geqslant \nu$. It follows that

$$
\lim _{n \rightarrow \infty} \gamma_{0}^{n} \omega=\lim _{n \rightarrow \infty} \gamma_{0}^{n-N} \omega^{\prime}=\omega_{s}
$$

(iii) Assume $\gamma_{0} \omega=\omega$; then $\gamma_{0}^{n} \omega=\omega, \quad \forall n \geqslant 1$, and (ii) implies $\omega=\omega_{s}$, for some $s \in\{1, \ldots, 6\}$.

Proposition 4.2. Let $V_{s, K}=E_{K}\left(\omega_{s}\right)$, for $K \geqslant 1$. If $\omega \in V_{s, K}$ and $\gamma_{0}^{n} \omega \notin$ $V_{s, K}$, for some positive integer n, then also $\gamma_{0}^{n+1} \omega \notin V_{s, K}$.

Proof - Case 1: $s=1$: We prove that if $\omega \in V_{1, K}$, then $\gamma_{0}^{n} \omega \in V_{1, K}$, for all $n \geqslant 1$. Let \mathcal{R}_{K} be the convex hull of the set $\left\{y_{0}^{-1}\right\} \cup Q_{K}\left(\omega_{1}\right)$, and let \mathcal{A} be an apartment containing ω and y_{0}^{-1}. Thus \mathcal{R}_{K} lies on both \mathcal{A} and \mathcal{A}_{0} (see Figure 13).

Figure 13
The translated apartment $\gamma_{0} \mathcal{A}$ intersects \mathcal{A}_{0} in the region $\gamma_{0} \mathcal{R}_{K}$ containing $Q_{K}\left(\omega_{1}\right)$. This implies $\gamma_{0} \omega \in V_{1, K}$. By induction we can prove that $\gamma_{0}^{n} \omega \in V_{1, K}$, for all $n \geqslant 1$.
Case 2: $s=2,3$. Denote by \mathcal{R}_{K} and \mathcal{R}_{K}^{\prime} the convex hull of $\left\{y_{0}^{-n}\right\} \cup Q_{K}\left(\omega_{s}\right)$ and of $\left\{y_{0}\right\} \cup Q_{K}\left(\omega_{s}\right)$ respectively.

For every $\omega \in V_{s, K}$, the sector $Q_{x_{0}}(\omega)$ contains a wall, say S_{K}, of $Q_{K}\left(\omega_{1}\right)$. Therefore the region $\gamma_{0}^{n} \mathcal{R}_{K}$ intersects $Q_{K}\left(\omega_{s}\right)$ at least in S_{K}. So $Q_{x_{0}}\left(\gamma_{0}^{n} \omega\right)$ contains S_{K} (see Figure 14 for $s=2$ and $n=1$).

Figure 14

We check that if $\omega \in V_{s, K}$ and $\omega^{\prime}=\gamma_{0}^{n+1} \omega \in V_{s, K}$, then also $\gamma_{0}^{-1} \omega^{\prime} \in V_{s, K}$. Let \mathcal{A} be an apartment containing y_{0} and ω^{\prime}; then $\mathcal{R}_{K}^{\prime} \subset \mathcal{A}$. Thus the translated region $\gamma_{0}^{-1} \mathcal{R}_{K}^{\prime}$ lies on $\gamma_{0}^{-1} \mathcal{A}$ and on $\gamma_{0}^{-1} \mathcal{A}_{0}=\mathcal{A}_{0}$. On the other hand the apartment $\gamma_{0}^{-1} \mathcal{A}$ contains the set S_{K}, since it contains the sector $Q_{x_{0}}\left(\gamma_{0}^{-1} \omega^{\prime}\right)=Q_{x_{0}}\left(\gamma_{0}^{n} \omega\right)$. We conclude that the apartments \mathcal{A}_{0} and $\gamma_{0}^{-1} \mathcal{A}$ share the convex hull of the set $S_{K} \cup \gamma_{0}^{-1} \mathcal{R}_{K}^{\prime}$, which contains $Q_{K}\left(\omega_{s}\right)$. This proves that $\gamma_{0}^{-1} \omega^{\prime} \in V_{s, K}$ (see Figure 15 for $s=2$ and $n=1$).

Figure 15

CASE 3: $s=4,5$. We prove that, if $\omega \in V_{s, K}$ and $\omega^{\prime}=\gamma_{0}^{n+1} \omega \in V_{s, K}$, then also $\gamma_{0}^{-1} \omega^{\prime}=\gamma_{0}^{n} \omega \in V_{s, K}$. Let \mathcal{R}_{K} be the convex hull of the set $\left\{y_{0}^{-(n+1)}\right\} \cup Q_{K}\left(\omega_{s}\right)$ and let \mathcal{A} be an apartment containing \mathcal{R}_{K} and ω. Then the apartment $\mathcal{A}^{\prime}=\gamma_{0}^{n+1} \mathcal{A}$ contains the region $\gamma_{0}^{n+1} \mathcal{R}_{K}$. Moreover the hypothesis $\gamma_{0}^{n+1} \omega \in V_{s, K}$ implies that \mathcal{A}^{\prime} contains also $Q_{K}\left(\omega_{s}\right)$. Then it contains the convex hull $\widetilde{\mathcal{R}_{K}}$ of the set $\gamma_{0}^{n+1} \mathcal{R}_{K} \cup Q_{K}\left(\omega_{s}\right)$. The region $\gamma_{0}^{-1} \widetilde{\mathcal{R}_{K}}$ lies in the translated apartment $\mathcal{A}^{\prime \prime}=\gamma_{0}^{-1} \mathcal{A}^{\prime}=\gamma_{0}^{n} \mathcal{A}$ and contains $Q_{K}\left(\omega_{s}\right)$. This proves that

$$
\gamma_{0}^{-1} \omega^{\prime}=\gamma_{0}^{n} \omega \in V_{s, K}
$$

(see Figure 16 for $s=4$ and $n=1$).

Figure 16

CASE 4: $s=6$. If we change y_{0} with y_{0}^{-1} we may use the same argument as in case 1 , to prove that $\omega \in V_{6, K}$ implies $\gamma_{0}^{-1} \omega \in V_{6, K}$. So if $\omega \in V_{6, K}$ and $\omega^{\prime}=\gamma_{0}^{n} \omega \notin V_{6, K}$, then also $\gamma_{0} \omega^{\prime} \notin V_{6, K}$.

Proposition 4.3. Let $F \subset \Gamma \backslash\{e\}$ be a finite set and denote

$$
m(F)=\max \{|\gamma|, \gamma \in F\}
$$

Suppose $M>3 m(F)$. Then for each $s \in\{1, \ldots, 6\}$ there exists an open neighbourhood $V_{s, K}$ of ω_{s}, such that

$$
\gamma V_{s, K} \cap V_{s^{\prime}, K}=\emptyset, \quad \forall \gamma \in F, \quad \forall s, s^{\prime}
$$

Proof: It suffices to prove that $\gamma \omega_{s} \neq \omega_{s^{\prime}}$, for every $\gamma \in F$ and each pair s, s^{\prime}. In fact, if $\gamma \omega_{s}=\omega_{s^{\prime}}$ for some element γ, Proposition 3.16 implies $|\gamma| \geqslant \mu / 3 \geqslant M / 3$. Because of the choice of M, γ can not be an element of F.

THEOREM 4.4. Let Γ be a discrete group acting simply transitively on a triangle building. Then the reduced C^{*}-algebra $C_{r}^{*}(\Gamma)$ is simple.

Proof: Propositions 4.2, 4.3 and 4.4 prove that (Γ, Ω) has property $P_{\text {geo }}$. Then Lemmata 2.1, 2.3 and 2.4 of [$\mathbf{1}]$ imply that the reduced C^{*}-algebra of Γ is simple.

References

[1] M. Bekka, M. Cowling and P. de la Harpe, 'Groups whose reduced group C^{*}-algebra is simple', Inst. Hautes. Études. Sci. Publ. Math. 80 (1994), 117-134.
[2] D.I. Cartwright, A.M. Mantero, T. Steger and A. Zappa, 'Groups acting simply transitively on the vertices of a building of type $\widetilde{A}_{2}{ }^{\prime}$, Geom. Dedicata 47 (1993), 143-166.
[3] D.I. Cartwright and W. Mlotkowski, 'Harmonic analysis for groups acting on triangle buildings', J. Austral. Math. Soc. Ser. A 56 (1994), 345-383.
[4] D.I. Cartwright, W. Mlotkowski and T. Steger, 'Property (T) and \tilde{A}_{2} groups', Ann. Inst. Fourier 44 (1994), 213-248.
[5] A.M. Mantero and A. Zappa, 'Spherical functions and spectrum of the Laplace operators on buildings of rank 2', Boll. Un. Mat. Ital., 7 (1994), 419-475.
[6] S. Mozes, 'Actions of Cartan subgroups', Israel J. Math. 90 (1995), 253-294.
[7] R.T. Powers, 'Simplicity of the C^{*}-algebra associated with the free group on two generators', Duke Math. J. 42 (1975), 151-156.
[8] J. Ramagge and G. Robertson, 'Triangle buildings and actions of type $I I I_{1 / q^{2}}$ ', J. Funct. Anal. 140 (1996), 472-504.
[9] G. Robertson and T. Steger, ' C^{*}-algebras arising from group actions on the boundary of a triangle building', Proc. London Math. Soc. 72 (1996), 613-637.
[10] M.A. Ronan, Lectures on buildings, Perspectives in Math. 7 (Academic Press, London, 1989).

Istituto di Discipline scientifiche e tecniche	Dipartimento di Matematica
Facoltà di Architettura	Università di Genova
Università di Genova	16146 Genova
16123 Genova	Italy
Italy	e-mail: zappa@dima.unige.it
e-mail: mantero@dima.unige.it	

[^0]: Received March 10, 1998
 Work partially supported by MURST.
 We would like to thank T. Steger for valuable suggestions and comments.

