THE RADICAL EQUATION $P\left(A_{n}\right)=(P(A))_{n}$

R. E. PROPES
(Received 22nd June 1973, revised 12th November 1973)

The purpose of this paper is to impose conditions on a radical class P so that the P-radical of the ring of $n \times n$-matrices over a ring A is equal to the ring of $n \times n$ matrices over the ring $P(A)$. In (1), Amitsur gave such conditions, but with the stipulation that the radical class P contained all zero-rings (rings in which all products are zero). In what follows, we shall be working within the class of associative rings.

We show that if P is a radical class which is (right or left)-hereditary and (right or left)-strong, then P has the property that the P-radical of the ring of $n \times n$-matrices over a ring A is equal to the ring of $n \times n$-matrices over the ring $P(A)$.

Definition 1. Let P be a radical class. A left ideal I of a ring A is called a P-left ideal of A if I is a P-ring, i.e. if $I \in P$. We define P-right ideals of A analogously.

Definition 2. As defined in (2), a radical class P is said to be left-strong in case $P(A)$ contains all P-left ideals of A for each ring A. The concept rightstrong is defined analogously. A strong radical class is one which is both leftstrong and right-strong.

Definition 3. A radical class P is said to be left-hereditary if each left ideal of a P-ring is also a P-ring. Right-hereditary radicals are defined analogously. An hereditary radical class is one for which each ideal of a P-ring is also a P-ring.

Remark. If P is the Brown-McCoy radical, then P is hereditary and satisfies the equation $P\left(A_{n}\right)=(P(A))_{n}$. However, from (2, Example 3), P is neither leftstrong nor right-strong and is neither left-hereditary nor right-hereditary.

We shall employ the following notation throughout.
If A is a ring and n is a positive integer, A_{n} denotes the ring of $n \times n$-matrices over A. For $i, j \in\{1,2, \ldots, n\}, A_{i j}$ denotes the subring of A_{n} consisting of all matrices with elements from A in the (i, j)-position and with 0 's elsewhere.
For $i \in\{1,2, \ldots, n\}$, we define R_{i} as the right ideal $\sum_{j=1}^{n} A_{i j}$ of A_{n}, and we define L_{i} as the left ideal $\sum_{k=1}^{n} A_{k i}$ of A_{n}. If $x \in A$ and J is a non-empty subset of $\{1,2, \ldots, n\}$ with $i \in J$, then $B_{J}(i, x)$ denotes the $n \times n$-matrix with x in the (i, j)-position for all $j \in J$ and with 0 's elsewhere. Then $B_{J(i)}=\bigcup_{x \in A} B_{J}(i, x)$ is a left-ideal of the ring R_{i}. Moreover, $A \cong B_{J(i)}$ under the obvious mapping.

Theorem 1. Let P be a radical class, let A be a ring, and let n be a positive integer. The following statements are equivalent.
(i) If $A \in P$, then $A_{n} \in P$.
(ii) $(P(A))_{n} \subseteq P\left(A_{n}\right)$.

Proof. Assume (i). Now $P(A) \in P$ so that by (i), $(P(A))_{n} \in P$. Hence $(P(A))_{n} \subseteq P\left(A_{n}\right)$. Next assume (ii). Now $A \in P$ implies $P(A)=A$ so that $A_{n}=(P(A))_{n} . \quad$ By (ii), $(P(A))_{n} \subseteq P\left(A_{n}\right)$. Whence $A_{n}=P\left(A_{n}\right)$ and $A_{n} \in P$.

Theorem 2. Let P be a radical class, let A be a ring, and let n be a positive integer. The following statements are equivalent.
(i) If $A_{n} \in P$, then $A \in P$.
(ii) $P\left(A_{n}\right) \subseteq(P(A))_{n}$.

Proof. Assume (i). By Lemma 7 of Snider (4), $P\left(A_{n}\right)=I_{n}$ for some ideal I of A. From (i), we have $I \in P$. Hence $I \subseteq P(A)$ and so $P\left(A_{n}\right)=I_{n} \subseteq(P(A))_{n}$. Assume (ii). Now $A_{n} \in P$ implies $P\left(A_{n}\right)=A_{n}$. Thus by (ii), $A_{n}=P\left(A_{n}\right) \subseteq(P(A))_{n}$ and so $A_{n}=(P(A))_{n}$. Whence $P(A)=A$ and $A \in P$.

Theorem 3. Let P be a strong radical class. Then $A \in P$ implies $A_{n} \in P$.
Proof. The theorem is evident for $n=1$. Thus, let $n>1$. Let $i \in\{1,2, \ldots, n\}$ be fixed, and let $j \in\{1,2, \ldots, n\}$ with $j \neq i$. Set $J=\{i, j\}$. Then since $A \in P$ and $A \cong B_{J(i)}$, we have $B_{J(i)} \in P$. Since P is strong and since $B_{J(i)}$ is a left ideal of the ring R_{i}, we have that $B_{J(i)} \subseteq P\left(R_{i}\right)$. Setting $K=\{i\}$ we likewise obtain $B_{K(i)} \subseteq P\left(R_{i}\right)$. Hence $B_{J(i)}+B_{K(i)} \subseteq P\left(R_{i}\right)$. Since $j \neq i$, and j was otherwise arbitrary, then $R_{i} \subseteq P\left(R_{i}\right)$, i.e. $R_{i} \in P$. Now R_{i} is a P-right ideal of A_{n} so that, since P is strong, we must have $R_{i} \subseteq P\left(A_{n}\right)$. This being true for $i=1,2, \ldots, n$, we obtain $\sum_{i=1}^{n} R_{i} \subseteq P\left(A_{n}\right)$. Hence $A_{n}=P\left(A_{n}\right)$ and $A_{n} \in P$.

Theorem 4. If P is a left-hereditary (or a right-hereditary) radical class, then $A_{n} \in P$ implies $A \in P$.

Proof. Let P be a left-hereditary radical class, and let $A_{n} \in P$. Since L_{1} is a left ideal of A_{n}, and since P is left-hereditary, then $L_{1} \in P$. Now A is a homomorphic image of L_{1} under the mapping

$$
\left[\begin{array}{clr}
a_{11} & 0 \ldots \ldots 0 \\
a_{12} & 0 \ldots \ldots .0 \\
\vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots \\
a_{1 n} & 0 \ldots \ldots .0
\end{array}\right] \mapsto a_{11} .
$$

Thus $A \in P$. The proof for right-hereditary radicals is dual.
The proof of the next theorem is facilitated by a proposition which is due to M. Jaegermann (3). If A is a ring, A^{+}denotes the zero-ring on A, i.e. the additive group of A with all products being 0 .

Proposition. If P is a hereditary and left-strong (right-strong) radical class, then $A \in P$ implies $A^{+} \in P$.

Theorem 5. If P is a hereditary and left-strong (right-strong) radical class, then $A \in P$ implies $A_{n} \in P$.

Proof. Let P be hereditary and left-strong, and let $A \in P$. From the proof of Theorem 3, the right ideal R_{i} of A_{n} belongs to P. By the Proposition, $R_{i}^{+} \in P$. Since the zero-rings $R_{i}{ }^{+}$and $L_{i}{ }^{+}$are isomorphic by the matrix transpose function, we have $L_{i}{ }^{+} \in P$. Now $\sum_{j \neq i} A_{j i}$ is an ideal of $L_{i}{ }^{+}$and so belongs to P, since P is hereditary. But $\sum_{j \neq i} A_{j i}$ is also an ideal of the ring L_{i}, and ${ }^{\circ} L_{i} \mid \sum_{j \neq i} A_{j i} \cong A$. Since $A \in P$ and $\sum_{j \neq i} A_{j i} \in P$, then $L_{i} \in P$. Since i was arbitrary, and P is leftstrong, then $\sum_{i=1}^{n} L_{i}=A_{n} \in P$.

The proof for P hereditary and right-strong is dual.
Theorem 6. If P is a radical class which is (right or left)-hereditary and (right or left)-strong, then $P\left(A_{n}\right)=(P(A))_{n}$ for each ring A and for each positive integer n.

Proof. Since P is (right or left)-hereditary, then P is hereditary. The proof now follows from Theorem 4 and Theorem 5.

REFERENCES

(1) S. Amitsur, A general theory of radicals II, Amer. J. Math. 76 (1954), 100-125.
(2) N. Divinsky, J. Krempa and A. Sulinski, Strong radical properties of alternative and associative rings, J. Algebra 17 (1971), 369-388.
(3) M. Jaegermann, Morita contexts and radicals, Bull. Acad. Polon. Sci, Ser Sci. Math. Astronom. Phys. 20 (1972), 619-623.
(4) R. Snider, Lattices of radicals, Pacific J. Math. 40 (1972), 207-220.

The University of Wisconsin-Milwaukee

 Milwaukee, Wisconsin