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Abstract

Background: Electronic health record (EHR) data have many quality problems that may affect
the outcome of research results and decision support systems. Manymethods have been used to
evaluate EHR data quality. However, there has yet to be a consensus on the best practice. We
used a rule-based approach to assess the variability of EHR data quality across multiple
healthcare systems. Methods: To quantify data quality concerns across healthcare systems in a
PCORnet Clinical Research Network, we used a previously tested rule-based framework
tailored to the PCORnet CommonDataModel to perform data quality assessment at 13 clinical
sites across eight states. Results were compared with the current PCORnet data curation process
to explore the differences between both methods. Additional analyses of testosterone therapy
prescribing were used to explore clinical care variability and quality. Results: The framework
detected discrepancies across sites, revealing evident data quality variability between sites. The
detailed requirements encoded the rules captured additional data errors with a specificity that
aids in remediation of technical errors compared to the current PCORnet data curation process.
Other rules designed to detect logical and clinical inconsistencies may also support clinical care
variability and quality programs. Conclusion: Rule-based EHR data quality methods quantify
significant discrepancies across all sites. Medication and laboratory sources are causes of data
errors.

Introduction

Electronic health records (EHR) adoption rapidly increased since Congress passed the Health
Information Technology for Economic and Clinical Health (HITECH) Act in 2009 [1]. By 2021,
certified EHR adoption reached 78% for office-based physicians and 96% for nonfederal acute
care hospitals [2]; resulting in a substantial increase in the capture patient health-related
information available for learning health systems and the national health data infrastructure [1].
Widespread EHR adoption increased interest in using the real-world data to support clinical
research such as pragmatic clinical trials, comparative effectiveness studies, observational
studies, and safety surveillance studies [3]. Many federal agencies, such as the Food and Drug
Administration (FDA) and the National Institute of Health (NIH), have increasingly
encouraged the use of EHR data to advance clinical research [4]. However, there are many
concerns about fitness of EHR data to conduct clinical research and support clinical decision
support systems [5,6]. The complexity of aggregation, acquisition, processing of EHR data to be
ready for secondary use and harmonizing data from different clinical sites create many quality
issues that may impact the validity of research results and affect stakeholders’ decisions [3,5]. In
2021, the FDA published draft guidance for real-world data use and recommended researchers
to examine the data using a rigorous approach to assess completeness, accuracy, and plausibility.
Researchers are encouraged to provide a rationale for using a specific methods to evaluate these
data quality dimensions and describe their application in the study protocols [7].

Various methods have been used to assess EHR data quality, but the field has yet to reach
consensus.Weiskopf andWeng [8] described the standardmethods used to assess the data quality,
such as comparing to a gold standard, data element agreement, element presence, data source
agreement, distribution comparison, validity checks, and log review. They recommended adopting
a valid and systematic approach to assess EHR data quality. Rule-based approaches for EHR data
quality assessment have been used previously by many researchers who proved their effectiveness
in identifying data discrepancies. Carlson et al. [9] developed rules to assess the quality of data used
to calculate decision support scores because they found some critical data they needed in
producing the scores were unavailable, out of range, or inconsistent. The results showed data
becomemore accurate after the implementation of rules. Brown andWarmington [10] described a
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method based on the rules approach to identify the data error and
monitor EHR data quality. Themethod utilized the principle of data
quality probes (DQP) that increase the clinician’s focus during data
entry and help them receive timely feedback on their performance.
They found that DQP helped track data quality and clinical care
quality over time. Kahn et al. [11] proposed a conceptual model that
used five categories of rules to address data variability at different
sites. Hart and Kuo [12] built a rule-based system at IslandHealth to
assess the quality of EHR data. The system could identify errors
related to EHR data or the system itself. This helps the team to
address these errors. Wang et al. [13,14] used Kahn’s conceptual
model to develop a framework that includes rule templates and
knowledge tables and used structural query language (SQL) to
implement them against the EHR database of a single center and
validate by discussing his results with clinical experts and reported
their feedback.

The Greater Plains Collaborative (GPC) [15,16] is one of the
Patient-Centered Outcomes Research Network (PCORnet)
Clinical Data Research Network (CDRN), which includes 13
medical centers across eight states. The total population in the GPC
network is over 34 million patients. The GPC Reusable Observable
Unified Study Environment (GROUSE) unified EHR data with
claims data from the Center for Medicare and Medicaid Services
(CMS) [17]. This makes GPC a comprehensive data source for
conducting clinical research using healthcare and insurance claims
data. Currently, PCORnet coordinating center uses a structural
approach to check for data integrity and characteristics called
empirical data curation. The results of the data curation are
summarized in the empirical data characterization (EDC) report
and shared with the network partner which is reported quarterly.
For data integrity, EDC report includes 13 rules to check for model
conformance, plausibility, completeness, and persistence [18].
However, these rules do not cover granular information such as
range or unit of laboratory values, drug interaction, and laboratory
test orders related to medication prescription. This limits the
translation of the findings from the EDC report to the specific
needs of clinical research and health learning system initiatives.

In a previous study, we tailored the rules in Wang’s framework
to be compatible to run against the PCORnet common data model
[19]. The rules were implemented to assess the quality of EHR data
from the University of Missouri Health Care System, GPC’s
coordinating center. In this study, we expand the previous work to
(1) assess the variability of EHR data quality cross multiple
healthcare systems within GPC, (2) examine ability of rules to track
clinical care quality, (3) compare the results with the PCORnet
EDC report, and (4) report on the scalability of the framework.

Materials and Methods

Data Source

We used the rule-based method [19] to assess the EHR data
quality of 13 clinical sites that contributed to GROUSE. We
requested data from the clinical sites according to the institu-
tional review board (IRB) protocol and received approval from all
sites willing to participate in the study. GROUSE’s established
IRB protocol aims and data sharing agreement and provided de-
identified data from all sites [17]. The subsequent use of
deidentified data for quality assessment was determined as
nonhuman subject research. The data were stored following the
PCORnet CDM V6.0 specification on the deidentified instance

on the Snowflake cloud data platform [20]. The name of sites
deidentified using alphabetic order (A-M) to preserve anonymity.

Design of the Prior Framework

Wang et al. [13,14] formulated the framework used in this study by
reusing sets of rules published by many sources such as OHDSI,
PCORnet, and Sentinel networks. To identify new rules to extend
the framework, they engaged stakeholders and clinicians in system
design and validation of additional new rules. The framework
component includes 1) knowledge tables which include the
information needed to implement the rules against the databases
and 2) rule templates, which assess for value out of range,
incompatibility, incompleteness, a temporal sequence error, and
duplication. A total of 63,397 rules in 28 templates were
categorized based on Kahn’s conceptual model and corresponded
with the recently proposed Harmonized Data Quality Assessment
Terminology (conformance, completeness, and plausibility) [21].

Implementation of Rules on Different Clinical Sites in
GROUSE

We loaded the knowledge tables into GROUSE along with
implemented rules structured query language (SQL) queries
described in our prior study [19] for execution against common
data model tables from participating sites. Discrepancies were
identified and recorded at the patient and encounter level. A
discrepancy is defined as an instance of one or more data values
that does not match the values in the knowledge table of a specified
rule. Therefore, the rule will flag any instance that has data value
inconsistent with the value in the knowledge table. We counted the
discrepancies at the encounter and patient levels and calculated the
percentage of discrepancies with discrepancy number as the
numerator and the total number of encounters or patients as the
denominator for each rule template. The variability between sites
(A-M) was assessed by comparing the percentage numbers after
calculating the percentage of discrepancy at both encounter and
patient levels and plotting the results for visualizations.

The rule templates were categorized to assess five data quality
dimensions:

• Value out of range: The rules in this category will check and
detect any value out of data constraints. For instance, weight
value above 300 kg or below 1 kg.

• Incompatibility: Rule templates in this category will assess the
relational and attribute dependency and locate any incon-
sistent instances. For example, rules that check for gender and
procedure will flag any record with a female gender and
prostatectomy procedure.

• Incompleteness: Rule templates in this category assess the
multivariate and record-level missingness or presence of data
elements. Rules in one template check for the presence of
laboratory test monitoring for some prescribed medication.
For example, a lithium prescription needs blood level
monitoring to avoid lithium toxicity.

• Date and time error: Rule templates in this category assess the
chronological and temporal relationship among data ele-
ments. For example, rules in the laboratory time template
checked for chronological relationships between the type of
laboratory test and the specimen collection time to provide
accurate results for the test.
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• Duplication: Rule templates in this category assess record
duplication for procedures performed once in life. For
example, rules will determine if data have duplicated records
for hysterectomy or prostatectomy procedures.

The Ability of Rule Templates to Monitor Data Quality and
Track Clinical Care Quality

Some rules in the framework were based upon clinical scenarios
though these rules will fire to any inconsistency. We took
advantage of this characteristic and conducted follow-up analyses
to determine whether the data discrepancies captured by these
rules were due to actual transformation issues, variability in clinical
care, or quality of care issues. We used the rule template drug and
laboratory to check for ordering prostate-specific antigen (PSA)
tests before or after initiation of testosterone replacement therapy
(TRT). We looked at male patients who were 40 or above and had
any prescription of testosterone cypionate 200 mg/ml injectable
solution and if there was any order for PSA in their records.

Comparison of Results with EDC Report

The current data quality assessment implemented by the PCORnet
Coordinating Center’s EDC report examines a) data model
conformance to assess the value of constraints, b) data plausibility
to assess future dates, illogical dates, encounters per visit and per
patient, C) completeness to assess diagnosis records per encounter,
procedure records per encounter, missing or unknown values, and
laboratory result data, and C) data persistence to assess table
changes, selected encounters, or code types. However, all these
rules assess only structural data quality issues but not sematic data
quality issues revealing more detailed information and looking
deeper into potential root causes. For example, the type of unit
used for laboratory tests or specific physiologically acceptable value
range, incompatibility of diagnosis with gender or age, incompat-
ibility of the procedure with gender or age, and check for drug
interaction of prescribed medication. We will use the results
generated by the rules framework to compare with the results
published in the EDC report for every site.

Scalability of the Framework and Storing the Output of Data
Quality Assessments

We benchmarked all SQL queries after the implementation of
rules, identified the rules with longer execution time, and
compared that time in milliseconds between rule templates that
need a simple query to implement versus the complex one. We
created a schema on the GROUSE database to store all results from
implementing rules across sites to assess data quality improvement
and scalability across sites after each quarterly data refresh cycle.

Results

For this study, we focused on 17 logic templates that included 8199
rules and successfully executed them against the common data
model (CDM) of 13 sites on GROUSE. Most sites showed similar
discrepancies patterns and performed well in many data quality
dimensions examined by rules templates. However, we still
identified several sites with significant discrepancies.
Supplementary Table 1 summarized the number and percentage
of discrepancies at the patient level, and Supplementary Table 2
summarized the number and percentage of discrepancies at
encounter levels for every site.

Assessment of Conformance (Out of Range Values)

Three templates including 43 rules were used to assess the data
conformance at each site. The demographic data elements
template checked for records with a date of birth before 01/01/
1850, which revealed 0% discrepancies in all sites. The observation
data element template assessed the height, weight, and diastolic
and systolic blood pressure values using the vital table, showing
variation in the discrepancy percentage among sites. The analysis
showed site C had a 2.4% discrepancy, followed by site D, which
had a 1.9 % of discrepancy. Sites A and K showed a 1.6% and 1.4 %
discrepancy, respectively. Other sites kept the discrepancy
percentage below 1% (Fig. 1A). Most of these discrepancies were
due to populating fields for height, weight, and diastolic/systolic
blood pressure measurements with extremely small or large values

Figure 1. Rule templates assessing out of range values in all sites.
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and null values. The valid laboratory values template, which
assessed a group of laboratory normal range values and units,
showed discrepancies which were more than 10 % of patients in all
sites, with the greatest discrepancy in site I which reached 99.4%
(Fig. 1B). These discrepancies were due to the use of measurement
units for laboratory tests different from the Logical Observation
Identifiers Name and Codes (LOINC) units, and some sites have
populated units with no information (NI) or NULL values.

Assessment of Consistency (Incompatibility)

The incompatibility of data values was verified by executing a set of
rules that include 8,112 rules categorized into nine templates as
follows. The rules in the template of age and diagnosis assessed
records that have inconsistent age with disease diagnosis and
showed less than 1% of the patients have incompatible age with the
recorded diagnosis in all sites (Fig. 2A). Most of these discrepancies

were due to mapping the diagnosis of a fussy infant (baby) to the
age of 1 year. The rules in the age and procedure template checked
for patient age inconsistency and performed procedures. The
results revealed site C had 8.6% of patients with age incompatible
with the procedure, whereas the discrepancy dropped to less than 5
% of patients in the other sites (Fig. 2B). The discrepancies
captured by this rule were due to the periodic comprehensive
preventive medicine reevaluation, and preventive visits for an
established patient were mapped incorrectly to the specified age.
The rules in the template of gender and diagnosis checked the
consistency between the gender of patients and the recorded
diagnosis. The results depicted that site J had 6.3 % of the patient’s
gender was incompatible with the recorded diagnosis. The other
sites showed that less than 5% of the patients had a gender
incompatible with the recorded diagnosis (Fig. 2C). Most of the
discrepancies were due to encounters with a diagnosis of single live
birth that were mapped to the male gender because they attributed

Figure 2. Rule templates assessing incompatibility in all sites.
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the gender of the born baby instead of themother’s gender. Rules in
the gender and procedure template assessed the consistency of the
patient’s gender with the recorded procedure. The results showed
all sites had less than 1% of their patients had incompatible ages
and procedures (Fig. 2D). Most discrepancies were due to
incorrectly mapping the obstetric panel and urine pregnancy test
to the male gender.

Rules in the drug and diagnosis template assessed the possibility
of in-hospital medication prescription that should not be
prescribed for a disease specified by the rules on the same date
of disease diagnosis. The results showed sites H,K, B, andG had the
greatest discrepancy percentage, which is 8.9%, 6.6%,5.4%, and
5.3%, respectively. All other sites showed a percentage below 5%
(Fig. 2E). The discrepancies were due to the prescription orders for
non-steroidal anti-inflammatory drugs (NSAIDs) were on the
same date of diagnosis with peptic ulcer disease. Rules in the drug
interaction template assessed the data for prescribing two
medications with known drug interaction within the same
encounter date. Our results revealed that only site H had 1.4%
discrepancy. The rest of the sites had 1% or less (Fig. 2F).
Discrepancies captured by this rule template were primarily due to
the prescription of potassium chloride on the same date as
prescribing spironolactone or clonidine and propranolol on the
same date. The rules in the inpatient-only procedure template
checked for any procedure that should be performed in the hospital
but was recorded as outpatient or ambulatory visit. Major joint
replacement procedures, spinal surgery, and cesarean delivery were
the most discrepancies seen in different sites and were incorrectly
mapped to ambulatory visit encounters. The results showed sites H
and L revealed 4.3% and 3.7% discrepancy, respectively. Other sites
kept the percentage of discrepancy below 2% (Fig. 2G). The rules in
diagnosis and the laboratory template assessed the consistency of
the presence of laboratory tests that should be ordered for the
specified diagnosis in the rules. Our results showed that sites I, M, J,
H, and K had 43.5 %, 16.2%, 8.9%, 7.3%, and 5.5% discrepancies,
respectively. The remaining sites showed a percentage of
discrepancy below 5% (Fig. 2H). The missing LOINC codes in
the laboratory table were one of the problems that led to these
discrepancies.

Assessment of Data Element and Value Completeness
(Incompleteness)

We assessed the presence of data elements and values by
implementing another set of rules that included 35 rules
categorized into three templates. The analyses showed the rules
in drug and laboratory templates checked for the presence of
laboratory tests that need to be ordered for monitoring medication
side effects. This rule showed that sites I, M, A, and F had 83.6, 30%,
18.5%, and 18.3% discrepancies, respectively. Other sites showed
less than a 15% discrepancy (Fig. 3A). These discrepancies in some
sites were associated with the incompleteness of LOINC codes. The
rules in the drug and continuous procedure template verify the
presence of a specific procedure or clinical exam that needs to be
performed after a specified period of medication prescription. Our
results showed sites L, F, and H had 32.6%, 8.4%, and 6.1%
discrepancies, respectively. All other sites kept the percentage of
discrepancy below 5% (Fig. 3B).Most discrepancies were due to the
RXNorm concept-unique identifier (CUI) incompleteness. The
drug monitoring template verified the presence of records for the
order of specific laboratory monitoring tests for a specified
medication. The results showed that all sites had a percentage of

discrepancy of more than 30 % except sites C, D, I, and M, which
showed a discrepancy of less than 15% (Fig. 3C). These
discrepancies were associated with the incompleteness of
LOINC codes and RXNorm CUI at some sites.

Assessment of temporal relationship (Date and time)

We used six rules included in two templates to verify the temporal
relationship for time and date of a specific data value. After
implementing the rules in the laboratory time template, all sites
showed a significant discrepancy percentage of more than 50%,
whereas four sites showed an empty bar chart (Fig. 4). Most
discrepancies were due to the inconsistent time of specimen
collection. The other rules in future date template checked for
relation of dates. Most sites showed 0 or less than 0.01%
discrepancy. Only site H showed 2% discrepancy in death date.
The discrepancy is due to incorrectly recording death date in future
years (Supplementary Table 1).

Assessment of event duplication (Duplication)

We used three rules included in one template to check for the
propensity of duplication of procedures that are impossible to
occur more than once in life. Results show 0% of patients had a
discrepancy in all sites.

The ability of rule templates to capture the variability of
clinical care or quality of clinical care

The laboratory and drug rule template assess data’s completeness
by checking for medication prescription that should be monitored
with a specified laboratory test to prevent medication side effects.
We evaluated one of these rules to explore care variability in
ordering PSA tests before or after starting TRT. Our results show
many sites have more than 20% of patients who received TRT
without any PSA test in their records. Only sites B, C, D, G, and M
had below the 20% of their patients were tested for PSA (Table 1).

Comparing the results with the EDC report

We looked at the EDC report for every site and found the report
was organized to provide detailed statistical information about the
data distribution and descriptive analysis. The information was
included in tables and plots to simplify reading the report. In
addition, it explored the assessment of different data quality
dimensions. The framework used in this study provided rule
templates that used clinical knowledge to capture the data errors
with an intention to identify potential root causes. For example, the
data of these sites passed the data curation process, and when we
implemented the rule templates, our results showed rules captured
many discrepancies related to different data quality problems such
as incompatibility and incompleteness.

Performance of the framework

We reviewed the history of the computation of all queries we run to
implement the framework on the database for every site. It takes 11
hours and 50 minutes to run the whole script of all rule templates
on 13 sites. The queries for age and diagnosis rule template were
the longest, which took 25 minutes and 14 seconds to finish. Most
queries for other rule templates finished in less than 15 seconds
which was similar in most sites.
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Discussion

This paper expands previous work that tailored rules to operate
against the PCORnet CDM [19]. We used the same framework to
determine the variability of EHR data quality across 13 healthcare
systems. Our results showed all sites have limited issues with
demographic data, date temporal relation, or duplication of
procedures. However, most sites had significant discrepancies with
data related to laboratories or medications. The rules assessing
laboratory and medication data based on clinical scenarios guide
evaluation of plausibility or completeness of diagnosis, laboratory
tests, procedures, or prescribed medications. These have the
potential to heighten the clinician and health system stakeholder
engagement compared with EDC reports.

The execution of valid laboratory values to assess data
incompatibility also revealed a significant discrepancy in most
sites. For example, site I reached 99.4% which was due to the field
of the laboratory unit was 100% populated with NI (No
Information). Similarly, site L showed an 85.5% discrepancy;
we found that 84 % of these patients specified by the rules had
records populated with laboratory units different from those
specified by the rule. After grouping laboratory unit field, we
found 71.4% of the field was populated with OT (Other) instead
of the actual measurement unit. Thus, our findings showed most
sites struggled with populating the field of laboratory units, or
they used different measurement units than the LOINC unit,
which is specified by the rule in addition to the null value or issue
with the value range limit.

Figure 3. Rule templates assessing the incompleteness in all sites.

Figure 4. Rule template assessing the time error in all sites.
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Furthermore, implementation of diagnosis and laboratory rule
template that checks for patients who have a diagnosis of diabetes
mellitus and any lab order for blood glucose or HbA1C test
revealed a significant discrepancy in sites I and M. With further
analyses, we found the LOINC code was not populated in 54.6% of
patients' records for site I, which was one of the new sites joined
PCORnet and GPC in 2022. In site M, we found the LOINC code
was populated in 100% of patients’ records, and 16% of patients did
not have any order of blood sugar or HbA1C test in their records
which could be due to data entry problem or given the site’s role as
a tertiary care facility, the laboratory test may have been recorded
in another healthcare system and, the results returned as
unstructured data.

The data completeness assessment used a drug and laboratory
template that used three medications that needed follow-up with
specific blood tests to monitor the side effects after the prescription.
Our findings showed many sites have a significant discrepancy. For
instance, site I revealed 83.5%. We found this site has much
missingness in LOINC codes that reached 54.6%. For sitesM, F, and
A, there was no missingness in LOINC codes. This brought other
possibilities, such as errors in data entry, the data being entered into
the procedure table using CPT codes, tests performed in another
healthcare system, or data recorded as unstructured data. Also, we
cannot rule out possibilities of care quality issues. The drug and
continuous procedure rule template checked for patients who
received hydroxychloroquine prescriptions and regular eye exams
every 2 year. The results showed site L has the greatest discrepancy.
The analysis showed 8.8% of patients’ records missed the RXNorm
CUI in the prescription table. Similarly, site F showed incomplete
RXNorm CUI data reaching 17.4%. Additionally, some sites had all
the data in the prescribing and procedure table and showed
discrepancies, which could be due to data entry errors or procedures
performed in other healthcare systems.

Moreover, the drug monitoring rule template assessed the
completeness of data for some medication that needs monitoring
for their level in the blood to prevent drug toxicity. The rule
captured a significant discrepancy in most sites. Many sites have
incomplete data for LOINC codes and RXNorm CUI, leading to
these discrepancies.Whereas site G has an empty bar chart because
all the LOINC codes specified by the rule template were not
available in the data even though there was nomissing data value in
the field of LOINC codes. The time temporal relationship was
assessed by the laboratory monitoring rule template, which look at
the time of testosterone and salivary cortisone tests, which should
be collected before 10:00 am. The results showed more than a 50%
discrepancy in most sites. Many reasons led to these discrepancies,
including some sites having the specimen time inconsistent with
the rule of just minutes, errors in data entry, or problems in care
delivery. For the sites with no bar chart, in site D, the field of
specimen time was populated with numbers, not in time format. In
sites I and K, the field of specimen timewas populated with aNULL
value, and in site L, the field of specimen time was populated with
zero in time format.

For assessing the ability of some rule templates to determine
suboptimal clinical care quality, we used the drug and laboratory
rule template to check for ordering PSA for patients who received
TRT prescriptions. Although the American Urological Association
and the Endocrine Society recommend PSA screening before
starting testosterone therapy and during the treatment period for
male patients over 40 years of age, previous studies showed many
male patients were prescribed TRT without testing their PSA
[22,23]. This could be due to the controversies between the
different scientific societies and their guidelines [24,25]. Our
finding showed the rule captured many discrepancies and clear
variability among sites. Even though we used laboratory and
procedure data to find the order for the screening test, the
discrepancies are still significant in most sites. The reason for these
discrepancies could be due to the test being done in different
healthcare systems, data entry errors, the different practices of
clinical care due to the lack of consensus among the scientific
societies to order this test before or during the TRT period, or
issues with the quality of clinical care. Therefore, seeking clinician
feedback to refine, validate, or add clinical knowledge specifi-
cations based on real-world practice will strengthen rules to
capture data quality errors and assist in diagnosing the under-
lying causes.

Our findings show many sites have data quality issues mainly
due to the incompleteness of data. The big challenge for most sites
was keeping complete laboratory and medication data, which
revealed obvious variability in data quality among sites. The
framework was efficient in capturing data errors and scalable to
run in a reasonable time, and rules were easy to implement on
different sites using SQL. Also, the rule templates in the framework
were able to capture many discrepancies which are often
challenging to detect during the data curation process. Another
strength of this study is that it shows the rule templates' ability to
detect data errors, which may help determine variability in clinical
care or clinical care quality problems. The findings of our study
should be interpreted with consideration of potential limitations.
The rules were effective in data error detection; however, more
analyses are still needed to identify and confirm the root causes of
data error. Rules that used laboratory value ranges that are different
from the value ranges determined by various institutions
depending on their requirement for laboratory equipment may
capture more discrepancies. In addition, these rules still need

Table 1. Summary for number of patients who received TRT and not tested for
PSA

Clinical
site

Count of patients
who received

TRTa

(n)

Count of patients
who have

no order of PSAb

(n)

The percentage
of discrepancyc

(%)

Site A 352 118 33.5

Site B 959 129 13.5

Site C 1,149 137 11.9

Site D 174 31 17.8

Site E 79 31 39.2

Site F 3,406 1,449 42.5

Site G 6,396 1,108 17.3

Site H 3,221 1,613 50.1

Site I 165 84 50.9

Site J 260 169 65.0

Site K 2,587 643 24.9

Site L 1,268 788 62.1

Site M 390 42 10.8

aTRT; Testosterone Replacement Therapy.
bPSA; Prostate Specific Antigen.
cThe percentage calculated by using the count of patients who have no PSA order as
nominator and patients who received TRT as dominator.
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validation to rule out any false-positive results. Finally, although
the rule templates could explore the data quality for many sites and
capture the discrepancies in data, we need to come up with scores
that categorize sites depending on their data quality check.

Future direction

Given the framework’s efficiency in detecting data inconsistency,
we seek to determine the concordance of EHR-CDM-based data
and claim data in GROUSE. We are looking to create a scoring
algorithm that will produce data quality scores depending on the
results produced by implementing the framework. This will
facilitate the interaction with clinicians during the research process
or when we need feedback on the quality of clinical care concerns
that appeared during the data quality assessment process. Another
aspect on which to focus is developing a method to automate the
implementation of this framework tomake the data quality process
faster and conducted on a regular basis.

Conclusion

The large volume of healthcare data available requires adopting a
comprehensive method to evaluate the quality of these data. In this
study, we used rules tailored to run against the PCORnet CDM in
previous work to check for data quality across multiple healthcare
systems.

The framework showed strong performance, scalability, and
ability to capture data errors. The rule templates showed promising
results in detecting the possible quality of clinical care issues. The
assessment revealed most sites had struggled with laboratory and
medication data, and many sites have an issue with the
completeness of data especially for laboratory units and specimen
collection time. These rules capture many discrepancies due to the
use of granular clinical information, which augments the current
data curation process. More studies are needed to refine the rules
using more knowledge sources and feedback from clinical experts
as well as informatics teams that can integrate data quality
improvement into clinical research networks and learning health
systems.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/cts.2023.548.
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