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ORLICZ SPACES WITHOUT STRONGLY EXTREME POINTS 
AND WITHOUT //-POINTS 

HENRYK HUDZIK 

ABSTRACT. W. Kurc [5] has proved that in the unit sphere of Orlicz space L?(n) 
generated by an Orlicz function O satisfying the suitable A2-condition and equipped 
with the Luxemburg norm every extreme point is strongly extreme. In this paper it 
is proved in the case of a nonatomic measure \i that the unit sphere of the Orlicz 
space L®(n) generated by an Orlicz function <I> which does not satisfy the suitable A2-
condition and equipped with the Luxemburg norm has no strongly extreme point and 
no //-point. 

0. Introduction. In the sequel R denotes the reals, R+ denotes the nonnegative reals 
and <D denotes an arbitrary Orliczfunction, i.e. O: R —> R+, 0(0) = 0, and O is even and 
convex. (T, X, /x) denotes a positive nonatomic (finite or infinite) measure space. L°(/x) 
stands for the space of (equivalence classes of) all ^-measurable real functions defined 
on T. 

Given an Orlicz function <D we define on L°(/x) a convex functional /<& by 

I0(x) = J O(JC(0) d\i (VJC G L°(jij). 

This functional is a convex modular on L°(/z) (see [7]), i.e. /<D(0) = 0, /$ is convex and 
even and x — 0 whenever I®(\x) = 0 for any À > 0. The Orlicz space L°(/x) generated 
by an Orlicz function O is defined to be the set of all x G L°(fi) such that Iq>(\x) < 00 
for some A > 0 depending on x. This space can be endowed with the norm 

||x||* = inf{A < 0 :10(x/\) < 1} (VJC G L*(jij)9 

called the Luxemburg norm. The couple (L°(/X), || ||<&) is a Banach space (see [4], [6] 
and [7]). 

Recall that an Orlicz function O satisfies the ^-condition for all u G R (at infinity) if 
there are positive constants K and c such that 0 < O(c) < +00 and 0(2w) < K®{u) for 
any « e R (for u ER satisfying \u\ >c). 

We say that an Orlicz function O satisfies the suitable ^-condition if O satisfies the 
À2-condition for all u G R whenever fi is infinite and O satisfies the A2-condition at 
infinity whenever 11 is finite. 

For an arbitrary Banach space X, S(X) denotes its unit sphere. 

Received by the editors December 3, 1991. 
AMS subject classification: Primary: 46E30; secondary: 46B20. 
Key words and phrases: Orlicz space, Luxemburg norm, A2-condition, strongly extreme point, //-point. 
© Canadian Mathematical Society 1993. 

173 

https://doi.org/10.4153/CMB-1993-025-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1993-025-6


174 H. HUDZIK 

A point x € S(X) is said to be strongly extreme (see [3] and [8]) if for any sequence 
(xn) in X the conditions ||;c + xrt|| —> 1 and ||JC — xn\\ —> 1 imply that \\xn\\ —> 0. 

A point x G S(X) is said to be an H-point if for any sequence (xn) in X such that 
||JC„|| —> ||JC|| andxn tends weakly to x, we have ||JC — x„11 —> 0. 

1. Results. We start with the following: 

THEOREM 1. Let O be an Orlicz function which does not satisfy the suitable A2-
condition. Let us assume additionally in the case when [i is infinite that O vanishes only 
at zero. Then S(L?) has no strongly extreme point. 

PROOF. It is known that every strongly extreme point is extreme and that under the 
assumptions concerning O, if x G 5(L°) is extreme then it must be I®(x) — 1 (see [2]). 
Therefore, it suffices to consider only these points of 5(L°) for which I®(x) = 1. 

Assume that /$(x) = 1, (i is finite (for infinite \i the proof is analogous) and O does 
not satisfy the A2-condition at infinity. Then there exists a sequence (un) of positive reals 
with un —• 00 as n —• 00 and such that 

<*>((i+lyn)>2-n®(un). 

Let b > 0 be large enough, so that the set B = {t E T : b~l < \x(t)\ < b} has positive 
measure. Let An C B,An G X (n = 1,2,...) be such that ®(un)n(An) = 2~n (if necessary 
we can pass to a subsequence). Of course, fi(An) —• 0 as n —• 00. Define 

•*« = 2M"^« s S n * (" = ^ 2> • • •)• 

We have 
/o(x + *„) = I^(xxT\An) + ̂ >(*XAn + **) 

< /o(̂ Xr\A„) + j {°( 2^(A«) + ®(«n)M(An)} 

- + / o ( * ) = l . 

Moreover, Ẑ C* + -*Vi) > ^o(*Xr\A„) ~~* 1- Thus, /oC* + *«) —> 1, whence it follows that 
||* + -*n||o —> 1- We have also 

I<s>(x - xn) < I<t>(\x\ + \xn\) —• 1 

and 

/0(x - *„) > 7oUXr\A„) —* 1. 

whence it follows that I^(x — xn) —» 1, /.<?. ||JC — jtw||o —> 1. On the other hand 

/ 0 ( 2 ( l + - )*„) = o ( ( l + ̂ juny(An) > 2n®(un)ii(An) = 1. 

Therefore, \\xn\\® > \{\ + \)~x > \. This means that* is not a strongly extreme point. 
The proof is finished. 
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THEOREM 2. Let O be an Orlicz function which does not satisfy the suitable A2-
condition. Let us assume additionally in the case when \i is infinite that O vanishes only 
at zero. Then 5(L°) has no H-point. 

PROOF. We will restrict ourselves only to finite measure. In the case of an infinite 
measure the proof is analogous. Take d > 0 large enough, so that defining A = {t G T : 
d~x < \x(t)\ < d} we have I^(X\A) > |/<DO)- Next, take C „ c A , C „ G l such that 

I*(x)ccn) = 2-nI0(x) («=1 ,2 , . . . ) . 

Since O has only finite values by the definition and /i is finite, the condition ||JC||O = 1 
yields I®(x) > 0 (note that for infinite // it can be I<j>(x) = 0 even if \\x\\& = 1 whenever 
O vanishes outside zero). In fact, defining a = sup{w > 0 : O(w) = 0} the condition 
/<DC*) = 0 yields \x(t)\ < a for /i- a.e. t G T. Next by the finiteness of /i we have 
Iq>(\x) < 00 for any A > 0. This is a contradiction, because in the case when I®(x) = 0 
the quality ||JC||<D = 1 implies that I®(\x) — 00 for any À > 1 (see [2]). 

In view of the assumption that O does not satisfy the A2-condition at infinity, there 
exists a sequence (un) of positive reals such that un —-+ 00 as n —• 00 and 

o ( ( l + ^)M„) >22n®(un) ( «= 1,2,...)-

Passing to subsequences of (un) and (C„) if necessary, we can find a sequence (Dn) of 
measurable subsets of Cn such that 

0(un)fjL(Dn) = Io(xxcn) («=1 ,2 , . . . ) . 

Define 

xn = xXT\cn - un(sgnx)xDn. 

We have 

Jo(*/i) = h(xxr\cn) + Q(un)iJi(Dn). 

If /O(JC) = 1 then I<t>(xn) = 1 for any n G N, whence ||jcn||o = 1- If /$W < 1, then 
the equality ||JC||O = 1 yields I^(Xx) = 00 for any A > 1. Since x is uniformly bounded 
on the sets C„, we get I&(\xn) = 00 for any A > 1 and n G N. Hence it follows that 
||jcn||o = 1 for any n G N. We have 

X—Xn= X\Cn + UnXDn SgTiX. 

The sequence (xxc„) is norm convergent to zero, because the function x is uniformly 
bounded on C„, n = 1,2,... , and /i(Cw) —»• 0 as n —> 00. Therefore, in order to prove 
that the sequence (xn) is weakly convergent to x it suffices to prove that the sequence 
(yn), where yn = un\Dn sgnx, is weakly convergent to zero. We have yn G £°(/i) for any 
n G N, where £°(/x) = {JC G L°(/x) : 7o(Ax) < 00 for any A > 0}. Hence it follows 
that any linear continuous singular functional over L®(n) vanishes at y„, n — 1,2,... 
(for the description of the dual space of L°(^) see [1]). Thus, in order to prove that yn —> 
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0 weakly, it suffices to consider only regular (i.e. order continuous) linear continuous 
functionals over L°(JLX). Take an arbitrary linear continuous regular functional £/• over 
L®(fi) generated by a function/ E £°*(/i), where O* is the function complementary to 
O in the sense of Young. Let A > 0 be such that I®*(\f) < oo. We have 

I W l = \JTf(t)yn(t)dfi\ = j\JT\f(t)yn(t)dfi 

<\{l**(¥XDn) + h(yn)} 

< \{i**(¥xDn) + 2 - % w } — o 

as n —• oo because /x(Dn) —* 0 as n —» oo. Moreover, 

/ * ( ( l + i)(jc - *„)) > /o,((l + i ) v n ) = / 0 ( ( l + -)iin)/x(Dn) 

> 22"O(Wn)M(A0 = 2 " / 0 « > 1 

for n E N large enough. Therefore 

| | * - * „ | | * > l / ( l + ^ ) > l / 2 

for sufficiently large n G N, which means that the sequence (xn) is not norm convergent 
to JC, i.e. x is not an //-point. Since x G S(L?) was arbitrary, the proof is finished. 

Recall that a point x G S(X) is said to be strongly exposed if there exists a functional 
x* G S(X*) such that JC*(JC) = 1, and for any sequence (xn) in X the conditionx*(x—xn) —• 
0 implies that ||JC — JC„|| —» 0. 

Since any strongly exposed point is strongly extreme, we obtain from Theorem 1 the 
following: 

COROLLARY. If O is an Orlicz function which does not satisfy the suitable 
^-condition and if additionally in the case when \i is infinite O vanishes only at zero, 
then S(L°) has no strongly exposed point. 
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