ORLICZ SPACES WITHOUT STRONGLY EXTREME POINTS AND WITHOUT *H*-POINTS

HENRYK HUDZIK

ABSTRACT. W. Kurc [5] has proved that in the unit sphere of Orlicz space $L^{\Phi}(\mu)$ generated by an Orlicz function Φ satisfying the suitable Δ_2 -condition and equipped with the Luxemburg norm every extreme point is strongly extreme. In this paper it is proved in the case of a nonatomic measure μ that the unit sphere of the Orlicz space $L^{\Phi}(\mu)$ generated by an Orlicz function Φ which does not satisfy the suitable Δ_2 -condition and equipped with the Luxemburg norm has no strongly extreme point and no *H*-point.

0. Introduction. In the sequel \mathbb{R} denotes the reals, \mathbb{R}_+ denotes the nonnegative reals and Φ denotes an arbitrary *Orlicz function*, *i.e.* $\Phi: \mathbb{R} \to \mathbb{R}_+$, $\Phi(0) = 0$, and Φ is even and convex. (T, Σ, μ) denotes a positive nonatomic (finite or infinite) measure space. $L^0(\mu)$ stands for the space of (equivalence classes of) all Σ -measurable real functions defined on *T*.

Given an Orlicz function Φ we define on $L^0(\mu)$ a convex functional I_{Φ} by

$$I_{\Phi}(x) = \int_{T} \Phi(x(t)) d\mu \quad (\forall x \in L^{0}(\mu)).$$

This functional is a convex modular on $L^0(\mu)$ (see [7]), *i.e.* $I_{\Phi}(0) = 0$, I_{Φ} is convex and even and x = 0 whenever $I_{\Phi}(\lambda x) = 0$ for any $\lambda > 0$. The *Orlicz space* $L^{\Phi}(\mu)$ generated by an Orlicz function Φ is defined to be the set of all $x \in L^0(\mu)$ such that $I_{\Phi}(\lambda x) < \infty$ for some $\lambda > 0$ depending on x. This space can be endowed with the norm

$$\|\mathbf{x}\|_{\mathbf{\Phi}} = \inf\{\lambda < 0 : I_{\mathbf{\Phi}}(x/\lambda) \le 1\} \quad (\forall x \in L^{\mathbf{\Phi}}(\mu)),$$

called the *Luxemburg norm*. The couple $(L^{\Phi}(\mu), || ||_{\Phi})$ is a Banach space (see [4], [6] and [7]).

Recall that an Orlicz function Φ satisfies the Δ_2 -condition for all $u \in \mathbb{R}$ (at infinity) if there are positive constants K and c such that $0 < \Phi(c) < +\infty$ and $\Phi(2u) \le K\Phi(u)$ for any $u \in \mathbb{R}$ (for $u \in \mathbb{R}$ satisfying $|u| \ge c$).

We say that an Orlicz function Φ satisfies the *suitable* Δ_2 -*condition* if Φ satisfies the Δ_2 -condition for all $u \in \mathbb{R}$ whenever μ is infinite and Φ satisfies the Δ_2 -condition at infinity whenever μ is finite.

For an arbitrary Banach space X, S(X) denotes its unit sphere.

Key words and phrases: Orlicz space, Luxemburg norm, Δ_2 -condition, strongly extreme point, *H*-point.

Received by the editors December 3, 1991.

AMS subject classification: Primary: 46E30; secondary: 46B20.

[©] Canadian Mathematical Society 1993.

A point $x \in S(X)$ is said to be *strongly extreme* (see [3] and [8]) if for any sequence (x_n) in X the conditions $||x + x_n|| \to 1$ and $||x - x_n|| \to 1$ imply that $||x_n|| \to 0$.

A point $x \in S(X)$ is said to be an *H*-point if for any sequence (x_n) in X such that $||x_n|| \to ||x||$ and x_n tends weakly to x, we have $||x - x_n|| \to 0$.

1. **Results.** We start with the following:

THEOREM 1. Let Φ be an Orlicz function which does not satisfy the suitable Δ_2 condition. Let us assume additionally in the case when μ is infinite that Φ vanishes only
at zero. Then $S(L^{\Phi})$ has no strongly extreme point.

PROOF. It is known that every strongly extreme point is extreme and that under the assumptions concerning Φ , if $x \in S(L^{\Phi})$ is extreme then it must be $I_{\Phi}(x) = 1$ (see [2]). Therefore, it suffices to consider only these points of $S(L^{\Phi})$ for which $I_{\Phi}(x) = 1$.

Assume that $I_{\Phi}(x) = 1$, μ is finite (for infinite μ the proof is analogous) and Φ does not satisfy the Δ_2 -condition at infinity. Then there exists a sequence (u_n) of positive reals with $u_n \to \infty$ as $n \to \infty$ and such that

$$\Phi\Big(\Big(1+\frac{1}{n}\Big)u_n\Big)>2^{-n}\Phi(u_n).$$

Let b > 0 be large enough, so that the set $B = \{t \in T : b^{-1} \le |x(t)| \le b\}$ has positive measure. Let $A_n \subset B, A_n \in \Sigma$ (n = 1, 2, ...) be such that $\Phi(u_n)\mu(A_n) = 2^{-n}$ (if necessary we can pass to a subsequence). Of course, $\mu(A_n) \to 0$ as $n \to \infty$. Define

$$x_n = \frac{1}{2} u_n \chi_{A_n} \operatorname{sgn} x \quad (n = 1, 2, \ldots).$$

We have

$$I_{\Phi}(x+x_n) = I_{\Phi}(x\chi_{T\setminus A_n}) + I_{\Phi}(x\chi_{A_n}+x_n)$$

$$\leq I_{\Phi}(x\chi_{T\setminus A_n}) + \frac{1}{2} \{\Phi(2b)\mu(A_n) + \Phi(u_n)\mu(A_n)\}$$

$$\rightarrow I_{\Phi}(x) = 1.$$

Moreover, $I_{\Phi}(x + x_n) \ge I_{\Phi}(x\chi_{T \setminus A_n}) \to 1$. Thus, $I_{\Phi}(x + x_n) \to 1$, whence it follows that $||x + x_n||_{\Phi} \to 1$. We have also

$$I_{\Phi}(x-x_n) \leq I_{\Phi}(|x|+|x_n|) \to 1$$

and

$$I_{\Phi}(x-x_n) \geq I_{\Phi}(x\chi_{T\setminus A_n}) \to 1,$$

whence it follows that $I_{\Phi}(x - x_n) \rightarrow 1$, *i.e.* $||x - x_n||_{\Phi} \rightarrow 1$. On the other hand

$$I_{\Phi}\left(2\left(1+\frac{1}{n}\right)x_n\right) = \Phi\left(\left(1+\frac{1}{n}\right)u_n\right)\mu(A_n) > 2^n\Phi(u_n)\mu(A_n) = 1.$$

Therefore, $||x_n||_{\Phi} \ge \frac{1}{2}(1+\frac{1}{n})^{-1} \ge \frac{1}{4}$. This means that x is not a strongly extreme point. The proof is finished.

THEOREM 2. Let Φ be an Orlicz function which does not satisfy the suitable Δ_2 condition. Let us assume additionally in the case when μ is infinite that Φ vanishes only at zero. Then $S(L^{\Phi})$ has no H-point.

PROOF. We will restrict ourselves only to finite measure. In the case of an infinite measure the proof is analogous. Take d > 0 large enough, so that defining $A = \{t \in T : d^{-1} \le |x(t)| \le d\}$ we have $I_{\Phi}(x\chi_A) \ge \frac{3}{4}I_{\Phi}(x)$. Next, take $C_n \subset A$, $C_n \in \Sigma$ such that

$$I_{\Phi}(x\chi_{C_n}) = 2^{-n}I_{\Phi}(x) \quad (n = 1, 2, \ldots).$$

Since Φ has only finite values by the definition and μ is finite, the condition $||x||_{\Phi} = 1$ yields $I_{\Phi}(x) > 0$ (note that for infinite μ it can be $I_{\Phi}(x) = 0$ even if $||x||_{\Phi} = 1$ whenever Φ vanishes outside zero). In fact, defining $\alpha = \sup\{u \ge 0 : \Phi(u) = 0\}$ the condition $I_{\Phi}(x) = 0$ yields $|x(t)| \le \alpha$ for μ - a.e. $t \in T$. Next by the finiteness of μ we have $I_{\Phi}(\lambda x) < \infty$ for any $\lambda > 0$. This is a contradiction, because in the case when $I_{\Phi}(x) = 0$ the quality $||x||_{\Phi} = 1$ implies that $I_{\Phi}(\lambda x) = \infty$ for any $\lambda > 1$ (see [2]).

In view of the assumption that Φ does not satisfy the Δ_2 -condition at infinity, there exists a sequence (u_n) of positive reals such that $u_n \to \infty$ as $n \to \infty$ and

$$\Phi\left(\left(1+\frac{1}{n}\right)u_n\right)>2^{2n}\Phi(u_n)\quad (n=1,2,\ldots).$$

Passing to subsequences of (u_n) and (C_n) if necessary, we can find a sequence (D_n) of measurable subsets of C_n such that

$$\Phi(u_n)\mu(D_n)=I_{\Phi}(x\chi_{C_n}) \quad (n=1,2,\ldots).$$

Define

$$x_n = x \chi_{T \setminus C_n} - u_n (\operatorname{sgn} x) \chi_{D_n}.$$

We have

$$I_{\Phi}(x_n) = I_{\Phi}(x\chi_{T \setminus C_n}) + \Phi(u_n)\mu(D_n).$$

If $I_{\Phi}(x) = 1$ then $I_{\Phi}(x_n) = 1$ for any $n \in \mathbb{N}$, whence $||x_n||_{\Phi} = 1$. If $I_{\Phi}(x) < 1$, then the equality $||x||_{\Phi} = 1$ yields $I_{\Phi}(\lambda x) = \infty$ for any $\lambda > 1$. Since x is uniformly bounded on the sets C_n , we get $I_{\Phi}(\lambda x_n) = \infty$ for any $\lambda > 1$ and $n \in \mathbb{N}$. Hence it follows that $||x_n||_{\Phi} = 1$ for any $n \in \mathbb{N}$. We have

$$x - x_n = x\chi_{C_n} + u_n\chi_{D_n}\operatorname{sgn} x.$$

The sequence $(x\chi_{C_n})$ is norm convergent to zero, because the function x is uniformly bounded on C_n , n = 1, 2, ..., and $\mu(C_n) \to 0$ as $n \to \infty$. Therefore, in order to prove that the sequence (x_n) is weakly convergent to x it suffices to prove that the sequence (y_n) , where $y_n = u_n\chi_{D_n} \operatorname{sgn} x$, is weakly convergent to zero. We have $y_n \in E^{\Phi}(\mu)$ for any $n \in \mathbb{N}$, where $E^{\Phi}(\mu) = \{x \in L^0(\mu) : I_{\Phi}(\lambda x) < \infty \text{ for any } \lambda > 0\}$. Hence it follows that any linear continuous singular functional over $L^{\Phi}(\mu)$ vanishes at y_n , n = 1, 2, ...(for the description of the dual space of $L^{\Phi}(\mu)$ see [1]). Thus, in order to prove that $y_n \to$

H. HUDZIK

0 weakly, it suffices to consider only regular (*i.e.* order continuous) linear continuous functionals over $L^{\Phi}(\mu)$. Take an arbitrary linear continuous regular functional ξ_f over $L^{\Phi}(\mu)$ generated by a function $f \in L^{\Phi^*}(\mu)$, where Φ^* is the function complementary to Φ in the sense of Young. Let $\lambda > 0$ be such that $I_{\Phi^*}(\lambda f) < \infty$. We have

$$\begin{aligned} |\xi_f(y_n)| &= \left| \int_T f(t) y_n(t) \, d\mu \right| = \frac{1}{\lambda} \left| \int_T \lambda f(t) y_n(t) \, d\mu \right| \\ &\leq \frac{1}{\lambda} \{ I_{\Phi^*}(\lambda f \chi_{D_n}) + I_{\Phi}(y_n) \} \\ &\leq \frac{1}{\lambda} \{ I_{\Phi^*}(\lambda f \chi_{D_n}) + 2^{-n} I_{\Phi}(x) \} \to 0 \end{aligned}$$

as $n \to \infty$ because $\mu(D_n) \to 0$ as $n \to \infty$. Moreover,

$$I_{\Phi}\left(\left(1+\frac{1}{n}\right)(x-x_n)\right) \ge I_{\Phi}\left(\left(1+\frac{1}{n}\right)y_n\right) = I_{\Phi}\left(\left(1+\frac{1}{n}\right)u_n\right)\mu(D_n)$$
$$> 2^{2n}\Phi(u_n)\mu(D_n) = 2^nI_{\Phi}(x) \ge 1$$

for $n \in \mathbb{N}$ large enough. Therefore

$$||x - x_n||_{\Phi} \ge 1/(1 + \frac{1}{n}) \ge 1/2$$

for sufficiently large $n \in \mathbb{N}$, which means that the sequence (x_n) is not norm convergent to x, *i.e.* x is not an *H*-point. Since $x \in S(L^{\Phi})$ was arbitrary, the proof is finished.

Recall that a point $x \in S(X)$ is said to be *strongly exposed* if there exists a functional $x^* \in S(X^*)$ such that $x^*(x) = 1$, and for any sequence (x_n) in X the condition $x^*(x-x_n) \rightarrow 0$ implies that $||x - x_n|| \rightarrow 0$.

Since any strongly exposed point is strongly extreme, we obtain from Theorem 1 the following:

COROLLARY. If Φ is an Orlicz function which does not satisfy the suitable Δ_2 -condition and if additionally in the case when μ is infinite Φ vanishes only at zero, then $S(L^{\Phi})$ has no strongly exposed point.

REFERENCES

- 1. T. Ando, Linear-functionals on Orlicz spaces, Nieuw Arch. Wisk. (3) 8(1960), 1-16.
- **2.** R. Grzaślewicz, H. Hudzik and W. Kurc, *Extreme and exposed points in Orlicz spaces*, Can. J. Math. (3) **44**(1992).
- 3. H. Hudzik and M. Mastyło, Strongly extreme points in Köthe-Bochner spaces, to appear.
- 4. M. A. Krasnoselskii and Ya. B. Rutickii, *Convex functions and Orlicz spaces*, Groningen, 1961, (translation).
- 5. W. Kurc, Strongly extreme points in Orlicz spaces with the Luxemburg norm, to appear.
- 6. W. A. J. Luxemburg, Banach function spaces, Thesis, Delft, 1955.

EXTREME POINTS AND H-POINTS

7. J. Musielak, *Orlicz spaces and modular spaces*, Lecture Notes in Math. **1034**, Springer-Verlag, 1983. **8.** M. A. Smith, *Strongly extreme points in* $L^{P}(\mu, X)$, Rocky Mtn. J. Math. **16**(1986), 1–5.

Institute of Mathematics Adam Mickiewicz University Matejki 48/49 60-769 Poznań Poland