Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T11:25:28.068Z Has data issue: false hasContentIssue false

Enhanced ripening behavior of Mg-doped CdSe quantum dots

Published online by Cambridge University Press:  31 January 2011

Yun-Mo Sung*
Affiliation:
Department of Materials Science & Engineering, Korea University, Seoul 136-713, South Korea
Woo-Chul Kwak
Affiliation:
Department of Materials Science & Engineering, Korea University, Seoul 136-713, South Korea
Woong Kim
Affiliation:
Department of Materials Science & Engineering, Korea University, Seoul 136-713, South Korea
Tae Geun Kim
Affiliation:
Department of Electronic Engineering, Korea University, Seoul 136-713, South Korea
*
a)Address all correspondence to this author. e-mail: ymsung@korea.ac.kr
Get access

Abstract

Pure CdSe and Mg-doped CdSe nanocrystal quantum dots were synthesized into the zinc-blende structure at a low temperature by the inverse micelle technique using paraffin oil and oleic acid as surface capping agents. The ripening behavior of the nanocrystals was monitored using the red shift in ultraviolet (UV)-visible light absorption peaks, and their size variation was estimated using the so-called, quantum confinement theory. The Lifshitz–Slyozov–Wagner (LSW) kinetics analyses were performed based on the variation in size according to the ripening temperature and time period. The activation energy (Q) and reaction rate constant (Ko) were determined for the ripening reaction using Arrhenius-type plots. The kinetics analyses reveal that the volume diffusion through the liquid-phase solution is the governing mechanism for the ripening of both nanocrystals. The Mg-doped CdSe nanocrystals showed enhanced ripening kinetics due to the low activation energy for the volume diffusion.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Brus, L.E.: Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403 1984Google Scholar
2Murray, C.B., Norris, D.J.Bawendi, M.G.: Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706 1993CrossRefGoogle Scholar
3Alivisatos, A.P.: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933 1996CrossRefGoogle Scholar
4Huang, G.W., Chen, C.Y., Wu, K.C., Ahmed, M.O.Chou, P.T.: One-pot synthesis and characterization of high-quality CdSe/ZnX (X = S, Se) nanocrystals via the CdO precursor. J. Cryst. Growth 265, 250 2004Google Scholar
5Klimov, V.I., Mikhailovsky, A.A., Xu, S., Malko, A., Hollingsworth, J.A., Leatherdale, C.A., Eisler, H.J.Bawendi, M.G.: Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314 2000Google Scholar
6Guyot-Sionnest, P.Hines, M.A.: Intraband transitions in semiconductor nanocrystals. Appl. Phys. Lett. 72, 686 1998Google Scholar
7Bruchez, M.J., Moronne, M., Gin, P., Weiss, S.Alivisatos, A.P.: Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013 1998Google Scholar
8Sung, Y-M., Lee, Y-J.Park, K-S.: Kinetic analysis for formation of Cd1−xZnxSe solid-solution nanocrystals. J. Am. Chem. Soc. 128, 9002 2006Google Scholar
9Lee, Y-J., Kim, T.G.Sung, Y-M.: Lattice distortion and luminescence of CdSe/ZnSe nanocrystals. Nanotechnology 17, 3539 2006Google Scholar
10Kwak, W-C., Sung, Y-M., Kim, T-G.Chae, W-S.: Synthesis of Mn-doped zinc blende CdSe nanocrystals. Appl. Phys. Lett. 90, 173111 2007Google Scholar
11Kwak, W-C., Kim, T-G., Chae, W-S.Sung, Y-M.: Tuning the energy bandgap of CdSe nanocrystals via Mg doping. Nanotechnology 18, 205702 2007Google Scholar
12Awschalom, D-D.Kikkawa, J.M.: Electron spin and optical coherence in semiconductors. Phys. Today 52, 33 1999Google Scholar
13Okuyama, H., Nakano, K., Miyajima, T.Akimoto, K.: Epitaxial growth of ZnMgSe on GaAs substrate by molecular beam epitaxy. J. Cryst. Growth 117, 139 1992Google Scholar
14Erwin, S.C., Zu, L.J., Haftel, M.I., Efros, A.L., Kennedy, T.A.Norris, D.J.: Doping semiconductor nanocrystals. Nature 436, 91 2005Google Scholar
15Wong, E.M., Hoertz, P.G., Liang, C.J., Shi, B.M., Meyer, G.J.Searson, P.C.: Influence of organic capping ligands on the growth kinetics of ZnO nanoparticles. Langmuir 17, 8362 2001Google Scholar
16Hu, Z.S., Oskam, G., Penn, R.L., Pesika, N.Searson, P.C.: The influence of anion on the coarsening kinetics of ZnO nanoparticles. J. Phys. Chem. B 107, 3124 2003CrossRefGoogle Scholar
17Sung, Y-M., Park, K-S.Lee, Y-J.: Ripening kinetics of CdSe/ZnSe core/shell nanocrystals. J. Phys. Chem. C 111, 1239 2007Google Scholar
18Sung, Y-M., Kwak, W-C.Kim, T.G.: Coarsening kinetics of Mn-doped CdSe nanocrystals. Cryst. Growth Des. 8, 1186 2008Google Scholar
19Jun, Y.W., Choi, J.S.Cheon, J.: Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew. Chem. Int. Ed. Engl. 45, 3414 2006Google Scholar
20Zu, L.J., Norris, D.J., Kennedy, T.A., Erwin, S.C.Efros, A.L.: Impact of ripening on manganese-doped. ZnSe nanocrystals. Nano Lett. 6, 334 2006CrossRefGoogle ScholarPubMed
21Schmid, G.: Nanoparticles—From Theory to Application Wiley-VCH Weinheim 2004 4Google Scholar
22Lifshitz, I.M.Slyozov, V.V.: The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35 1961CrossRefGoogle Scholar
23Wagner, C.Z.: Theorie der alterung von niederschlägen durch umlösen (Ostwald–Reifung). J. Electrochem. 65, 581 1961Google Scholar
24Wong, E.M., Bonevich, J.E.Searson, P.C.: Ultrafast studies of photoexcited electron dynamics in γ- and α-Fe2O3 semiconductor nanoparticles. J. Phys. Chem. B 102, 770 1998Google Scholar
25Oskam, G., Nellore, A., Penn, R.L.Searson, P.C.: The growth kinetics of TiO2 nanoparticles from titanium(IV) alkoxide at high water/titanium ratio. J. Phys. Chem. B 107, 1734 2003Google Scholar
26Dean, J.A.: Lange’s Handbook of Chemistry McGraw-Hill New York 1999 441Google Scholar
27Perminov, V.P.Samsonov, G.V.: Metallochemistry of magnides. Powder Metall. Metal Ceram. 5, 464 1966Google Scholar