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Electron-cyclotron resonance heating (ECRH) is the main heating mechanism in the
Wendelstein 7-X (W7-X) stellarator. Although second-harmonic ECRH (X2) has been
used routinely for plasma startup, startup at third harmonic (X3) is known to be
much more difficult. In this work, we investigate the energy gain of particles during
nonlinear wave–particle interaction for conditions relevant to second- and third-harmonic
startups in W7-X. We take into account both the beam and the ambient magnetic field
inhomogeneities. The latter is shown to significantly increase the mean energy gain
resulting from a single wave–particle resonant interaction. In W7-X-like conditions,
the improvement in maximum gained energy is up to 4 times the analogous uniform
magnetic field case. However, this improvement is not enough to ensure X3 startup. The
optimal magnetic field inhomogeneity length scale for average energy gain and start up
in W7-X-like conditions is found to be in the range of 1 to 3 km−1. A possibility of
using multiple beams with neighbouring resonances is also considered. A considerable
enhancement of the energy gain is demonstrated.
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1. Introduction

Electron-cyclotron resonance heating (ECRH) is one the most common mechanisms of
plasma heating. It is applied in both tokamak and stellarator experiments. At high plasma
temperature, linear theory describes the heating. However, during plasma initiation,
nonlinear effects are very important because both the time of flight of an electron through
the beam and the collision time are larger than the wave–particle interaction time (Taylor,
Cairns & O’Brien 1988; Farina & Pozzoli 1991).

The importance of nonlinear wave–particle interaction during plasma initiation
was previously demonstrated for a plane-wave approximation (Jaeger, Lichtenberg &
Lieberman 1972; Carter et al. 1986), and in a homogeneous magnetic field for a
Gaussian beam structure (Farina & Pozzoli 1991; Seol, Hegna & Callen 2009; Farina
2018). Therefore, it is instrumental to understand the nonlinear interaction when
designing and optimising reactor startup scenarios, such as ECRH-assisted startup in the
International Thermonuclear Experimental Reactor (ITER), and higher-harmonic startup
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2 C.A. Johansson and P. Aleynikov

in Wendelstein 7-X (W7-X) (Marushchenko et al. 2019). In particular, Farina (2018)
highlights the difficulty of using the third harmonic (X3) for startup, demonstrating that,
in a homogeneous background field, the interaction is too weak to support a startup using
modern gyrotrons.

At the earliest stages before breakdown, the characteristic energy of the particles is
assumed to be in the range of meV. Nonlinear wave–particle interaction in such conditions
has been studied by Seol et al. (2009) and Farina (2018). The ionisation avalanche,
however, is facilitated by the secondary electrons. These electrons have a typical energy
of a few eVs. Successful ionisation avalanche requires that the secondary electron energy
gain exceed the ionisation potential and losses. Energy gain of such electrons is the main
focus of our work.

Both the ambient magnetic field inhomogeneity and relativistic effects can have a
significant effect on resonance detuning, i.e. the imperfection in the resonance condition

ω − k‖v‖ − nωc

γ
= 0, (1.1)

where ω and k‖ are the wave frequency and parallel component (to the unperturbed
magnetic field B) of the wave vector, v‖ is the particle parallel velocity, γ ≡ 1/

√
1 − v2/c2

is the relativistic gamma factor for the electron with speed v, n is the resonance number and
ωc ≡ e|B|/m is the non-relativistic electron-cyclotron frequency. Here e is the elementary
charge, m is the electron rest mass and c is the speed of light. For instance, a 10 eV electron
with parallel energy of 1 eV executes around 5 × 103 gyrations as it passes through a 4 cm
beam in a 1.7 T magnetic field. The resulting accumulated relativistic phase shift is of
order unity, since the relativistic detuning per gyration is of order 2π(γ − 1) ≈ 10−4 for a
10 eV electron. A similar variation of the ambient magnetic field would also yield a phase
shift of order unity.

In this paper, we outline the derivation of the equations of motion relevant for an
inhomogeneous beam shape and ambient magnetic field using the relativistic guiding-
centre motion. Apart from parameters changing on long length scales compared with the
gyro-radius, there is no assumption on the beam structure (wave-vector or field-strength
variations). These equations are used to numerically solve the single wave-interaction
energy gain for experimentally relevant magnetic field inhomogeneity length scales.
We demonstrate that, at third harmonic in W7-X-relevant conditions, it is possible for
electrons to gain energies up to 100 eV starting from a few eV – a condition necessary
for the ionisation avalanche. However, the phase-space region where this is the case is
very narrow. The region can be extended by using multiple beams with neighbouring
resonances. Combining the resonance regions of multiple beams results in a much larger
energy gain.

The results are analysed using the Hamiltonian phase-space structure. We analyse the
impact of power, beam field inhomogeneity and plasma temperature on the averaged
energy gain.

2. Electron cyclotron resonance extension to guiding-centre theory

In W7-X, several gyrotrons, each with a power output of 1 MW, are responsible
for the breakdown process. The electromagnetic wave created by a single gyrotron is
approximately of Gaussian profile. At the focus, the wave is spread out over a disc with a
radius of the order of 2 cm (Hailer et al. 2003). The maximum wave magnetic field strength
is of order 10−3 to 10−2 T. In SI units, the maximum wave electric field is 1.1 MV m−1

for a 1 MW beam focused to a 2 cm beam waist. In this case, the wave introduces a small

https://doi.org/10.1017/S0022377823001423 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823001423


Electron cyclotron resonance during plasma initiation 3

perturbation to the otherwise large background magnetic field. This permits usage of the
guiding-centre approach.

A number of ECRH extensions of the guiding-centre theory have been considered
previously (Grebogi, Kaufman & Littlejohn 1979; Rognlien 1983; Taylor et al. 1988;
Ye & Kaufman 1992). Here, we outline the derivation of the equations of motion and
wave–particle Hamiltonian using the Lagrangian formalism, paying particular attention to
the role of the ambient field inhomogeneity.

2.1. Wave correction to guiding-centre Lagrangian
Particle motion in electromagnetic fields can be described using a Lagrangian formalism,
with the relativistic phase-space Lagrangian given by

L(r, p, ṙ, t) = −mc2

√
1 + p2

m2c2
+ ṙ · (qA + p)− qφ, (2.1)

where r represents the particle position, p the momentum and φ and A are the scalar and
vector potentials. By splitting the field term, A, into a sum of a slowly varying background
field, AB, and a wave field, Aw, and similarly for the scalar potential φ = φB + φ̃w, the
Lagrangian in (2.1) may be represented as a sum of a part corresponding to the waveless
relativistic guiding-centre motion dependent on AB, φB, LGC and the wave part Lw = qṙ ·
Aw − qφ̃w

L = LGC + Lw. (2.2)

We consider the wave field in the form

Aw(r, t) = E(r)
ω

sin(ϕ(r)− ωt), (2.3)

φ̃w = φw(r) sin(ϕ(r)− ωt), (2.4)

where ω is the wave frequency. We assume that the wave amplitude, E(r), potential
amplitude φw and the wave vector

k(r) ≡ ∇ϕ(r). (2.5)

vary slowly. We suppose that the wave field created by Aw, φ̃w is small, in the sense that
it introduces only a small correction to the fast time-scale gyro-motion. The details of the
ordering scheme can be found in Appendix A.

We ultimately want to describe wave–particle resonance on a time scale of many
gyrations. An appropriate transformation of (2.1) into slowly varying variables has to
be found. Without the wave it is appropriate to use the guiding-centre coordinates,
corresponding to a transformation to the frame moving with the velocity −(∇φ +
∂AB/∂t)× B/B2 in which the fast time-scale equations of motion reduce to

ṗ ≈ q
p

mγ
× B. (2.6)

However, the guiding-centre coordinates are perturbed by high frequency fields. In
Appendix C, we find that, in the presence of a wave, the correction to the guiding-centre
velocity yielding the fast time scale equation of motion (2.6) is given by (C9) (which
yields (C10)). This correction scales linearly with |E| for both resonant and non-resonant
particles. In this work, we consider resonant particles for which the long term deviation
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from the unperturbed trajectories is expected to scale as
√|E|. This implies that, for

small enough fields, the deviation significantly exceeds the coordinate correction. We
therefore ignore this correction and rely on the unperturbed guiding-centre coordinates in
the guiding-centre formulation. Furthermore, we verify the validity of this approximation
against full orbit calculations.

The waveless guiding-centre part takes the form of Wimmel (1983), Littlejohn (1983)
and Cary & Brizard (2009) as

LGC =
[
qAB(R, t)+ p‖b̂(R, t)

]
· Ṙ + mμ

−q
ζ̇ − mc2

√
1 + 2μB(R, t)

mc2
+ p2

‖
m2c2

− qφ(R, t),

(2.7)
where the dynamical variables are the position of the guiding centre R, the momentum
parallel to the magnetic field p‖, the gyro-phase ζ and the magnetic moment μ, which
is related to the perpendicular momentum, p⊥, through μ ≡ p2

⊥/2 mB. The vector b̂
denotes the field direction, b̂ ≡ B/B. The particle position r differs from the ζ -independent
guiding centre R by the gyro-radius ρ, i.e. r = R + ρ.

We introduce a local coordinate system with x̂ ≡ k⊥(R)/|k⊥| and ŷ ≡ b̂ × x̂. The
perpendicular wave vector is given by k⊥ ≡ k − k‖, where the parallel wave vector is
k‖ ≡ k · b̂b̂. Then, the wave part of the Lagrangian is

Lw = qṙ · Aw − qφ̃w. (2.8)

The wave-vector potential part of Lw can be rewritten approximately as

qṙ · Aw ≈ q
Ṙ + ρ̇

ω
· {Ex(R)x̂ + Ey(R)ŷ + Ez(R)ẑ

}
sin(ρ · ∇ϕ(R)+ ϕ(R)− ωt), (2.9)

and similarly for the wave scalar potential

φ̃w ≈ φw(R) sin(ρ · ∇ϕ(R)+ ϕ(R)− ωt). (2.10)

Field strengths and the wave vector are approximated by the value at the guiding-centre
position R. The gyro-radius is given by

ρ = p⊥(R, μ, t)
−qB(R)

(cos(ζ )x̂ + sin(ζ )ŷ), (2.11)

and to lowest order in ρ, the particle velocity perpendicular to B

ρ̇ = ζ̇
p⊥(R, μ, t)

qB(R)
(sin(ζ )x̂ − cos(ζ )ŷ). (2.12)

The ordering in Appendix A allows us to use the gyro-radius and velocity at the guiding
centre, where B(r) ≈ B(R), even for the wave phase.
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Equation (2.9) describes different types of interaction: longitudinal X-mode interaction
with Ex, and transverse X-mode interaction with Ey, interaction due to the gyro-motion

ρ̇ · Aw,i ≡ ρ̇

ω
· Eiî sin(−b(R, μ, t) cos(ζ )+ ϕ(R)− ωt), (2.13)

and the interaction due to the guiding-centre motion, which mainly comes from O-mode
interaction

Ṙ · Aw,i ≡ Ṙ
ω

· Eiî sin(−b(R, μ, t) cos(ζ )+ ϕ(R)− ωt). (2.14)

The interpretation of Ex being longitudinal is true if k‖ = 0, otherwise the Ex term could
consist of some combination of longitudinal/transverse components. The variable

b(R, μ, t) ≡ p⊥(R, μ, t)
qB(R, t)

|k⊥(R)|, (2.15)

is the product of the perpendicular wave vector and gyro-radius, possibly with a sign
from q. With these definitions, Lw can be written as

Lw ≈ −qφw(R) sin(ρ · ∇ϕ(R)+ ϕ(R)− ωt)+
∑

i=x,y,z

(qρ̇ · Aw,i + qṘ · Aw,i). (2.16)

Equation (2.16) is expanded in terms of Bessel functions (see for e.g. Shafranov 1967,
p. 145). Focusing on resonant waves, we introduce a new slow variable

ψ ≡ ζ − ω

n
t, (2.17)

which represents the phase shift between the phase of the wave and the phase of the
particle gyro-motion. Here, n is the integer corresponding to the resonance of interest.
The frequency ω is assumed to be positive, and we work with negatively charged particles.
Equations for positively charged particles can be obtained by letting ω < 0. A time average
of (2.16) removes all non-resonant terms from the expansion series, resulting in

ζ̇W ≡ 1
2T

∫ T

−T

∑
i=x,y,z

qρ̇ · Aw,i dt

≈ ζ̇
p⊥

2ωB

{
Ex(R)[Jn−1(b)+ Jn+1(b)] sin

(
nψ + ϕ(R)− n

π

2

)
− Ey(R)[Jn−1(b)− Jn+1(b)] cos

(
nψ + ϕ(R)− n

π

2

)}
. (2.18)

Here, we can replace ζ̇ ≈ ω/n since ψ̇/ω is small and ω|Aw|/cB ∼ O(1).
The time average of Ṙ · Aw,i is computed analogously, but can be further simplified

because Ṙ⊥ is negligible. Only the Ez term is of importance and
∑

Ṙ · Aw,i ≈ Ṙ · Aw,z,
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6 C.A. Johansson and P. Aleynikov

resulting in

Ṙ · Āw ≡ 1
2T

∫ T

−T

∑
i=x,y,z

Ṙ · Aw,i dt ≈ Ṙ · b̂
Ez

ω
Jn(b) sin

(
nψ + ϕ(R)− n

π

2

)
. (2.19)

The time average of φ̃w is analogous to the time average of Ṙ · Aw,z and yields

φ̄w ≡ 1
2T

∫ T

−T
φ̃w dt ≈ φwJn(b) sin

(
nψ + ϕ(R)− n

π

2

)
. (2.20)

A formal approach to removal of the non-resonant terms is presented in Appendix B.
Combining these results, the full Lagrangian in (2.8) in guiding-centre coordinates

becomes

L = Lw + LGC = −H + mμ
−q

ψ̇ +
[
qAB(R, t)+ qĀw(R, ψ,μ)+ p‖b̂(R, t)

]
· Ṙ, (2.21)

where the guiding-centre Hamiltonian is given by

H = mc2

√
1 + 2μB

mc2
+ p2

‖
m2c2

− ω

n

(
mμ
−q

+ W
)

+ q
[
φ + φ̄w

]
. (2.22)

This Hamiltonian reduces to the one obtained in Suvorov & Tokman (1988), Taylor et al.
(1988), Farina & Pozzoli (1991) and Litvak et al. (1993) for the cases studied therein. The
resonance number n is governed by the resonance condition −nqB/(mγ )+ k‖v‖ − ω = 0.
Note that, far away from the resonance, the ‘resonant’ terms given by (2.18) and (2.19)
decrease and become comparable to the other neglected terms of the corresponding series.
The term (ω/n)(mμ/−q + W) originates from changing to a rotating frame of reference
when introducing ψ in (2.17).

In the case of multiple waves with different k or E, their contributions can be accounted
for in an additive manner, i.e. L = LGC + ∑

i L(i)w . No new independent variables need to be
introduced in this case. If they have different ω (by factor of R \ Q) no common rotating
frame of reference exists and the Hamiltonian becomes time dependent.

2.2. Equations of motion
By varying the Lagrangian in (2.16) with respect to p‖,R, μ, and ψ , the following
equations of motion are obtained:

b̂ · Ṙ = p‖
mγ

(2.23a)

ṗ‖b̂ = qṘ × B∗ + qE − p‖
∂ b̂
∂t

− μ∇B
γ

+ ω

n
∇W − q∇φ̄w − μ̇q

∂Āw

∂μ
− ψ̇q

∂Āw

∂ψ
(2.23b)

ψ̇ = −ω
n

(
1 − q

m
∂W
∂μ

+ q2n
mω

∂φ̄w

∂μ

)
− qB

mγ
+ q2

m
Ṙ · ∂Āw

∂μ
(2.23c)

μ̇ = −qω
mn

∂W
∂ψ

+ q2

m
∂φ̄w

∂ψ
− q2

m
Ṙ · ∂Āw

∂ψ
, (2.23d)

where the effective magnetic field is

B∗ ≡ B + p‖
q

∇ × b̂ + ∇ × Āw. (2.24)
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Electron cyclotron resonance during plasma initiation 7

These equations of motion reduce to, for example, the ones in Litvak et al. (1993) for the
case studied there.

Substituting ψ̇ and μ̇ in (2.23b) it is simplified and takes the form

ṗ‖b̂ = qṘ × B∗ + F , (2.25)

where the effective force is

F ≡ qE − p‖
∂ b̂
∂t

− μ

γ
∇B + ω

n
∇W − q∇φ̄w

+ q
(

qB
mγ

+ ω

n

)
∂Āw

∂ψ
+ q2ω

mn

(
∂W
∂ψ

∂Āw

∂μ
− ∂W
∂μ

∂Āw

∂ψ

)
. (2.26)

We used(
Ṙ · ∂Āw

∂ψ

)
∂Āw

∂μ
−

(
Ṙ · ∂Āw

∂μ

)
∂Āw

∂ψ
= Ṙ ×

(
∂Āw

∂μ
× ∂Āw

∂ψ

)
= 0, (2.27)

since ∂Āw/∂μ and ∂Āw/∂ψ are parallel.

3. The X3 startup in the W7-X stellarator

Startup at the third harmonic is prohibitively difficult in homogeneous magnetic fields,
due to a very week interaction. Farina (2018) demonstrated that, for slow particles, the
nonlinear energy gain is well below 1 eV, which is not enough to support startup. In
this section, we discuss numerical solutions of the equations of motion for electrons.
These simulations account for both the wave field and the background magnetic field
inhomogeneity. They show that the energy gain can be much larger than in a homogeneous
background magnetic field.

For these numerical solutions, we use a background field structure relevant to a reduced
B-field W7-X configuration. This field can be represented approximately by

AB =
[

B0 + B1 cos
(

2π

L
z − α

)]
xŷ, (3.1)

and the electron trajectories lie approximately on x = y = 0 (since the cross-field drifts are
small during the time of one beam interaction). A typical mirror ratio in W7-X is of order
|Bmax − Bmin|/|Bmin| ≈ 0.1. We therefore let B1 = 0.069004 T and B0 is varied slightly
around B(z = 0) = 1.6671 T depending on the exact desired location of the resonance
within the structure given by (3.1).

The wave field in W7-X is created by 140 GHz gyrotrons. Such a gyrotron is assumed
to create a beam with a Gaussian profile with elliptic polarisation and plane-wave phase.
That is, the wave field is

ωAw = −Ey exp
{
− r2

w2

}
ŷ cos(k · r − ωt)

+ Ex′ exp
{
− r2

w2

}
(ŷ × k̂) sin(k · r − ωt), (3.2)

where r here is the radial distance from the centre axis of the beam, i.e. r2 = y2 +
(−xk‖/k + zk⊥/k)2 and w = 2 cm (Hailer et al. 2003). In a vacuum, the total field must be
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8 C.A. Johansson and P. Aleynikov

such that ∇ · E = 0. The Gaussian profile (3.2) has a small non-zero divergence

∇ · E = −2
∂Aw

∂t
·
(

y
w2

ŷ + (−xk‖/k + zk⊥/k)
w2

ŷ × k̂
)
, (3.3)

and must be compensated with the scalar potential. This potential enters the equations of
motion at one higher order in k⊥ρ than the field created by Aw and is therefore ignored
(compare (2.20) and (2.18) where b = k⊥ρ).

Expanding the Bessel functions in (2.23a) to (2.23d) in k⊥ρ 
 1, the wave term
becomes

ω

n
W = mc2

(
μB
mc2

)n/2

ε(z) sin(nψ + k‖z), (3.4)

where the interaction parameter ε is

ε =

⎧⎪⎪⎨
⎪⎪⎩

mk⊥c
2eB

E−
2cB

for X2

ck2
⊥

m2

9e2B2

3
√

2E−
8B

for X3,

(3.5)

where
E− ≡ Ex′(ŷ × k̂) · x̂ − Ey. (3.6)

The other terms are of higher order. Then, the equations of motion to relevant order take
the form

ż = p‖
mγ

(3.7a)

ṗ‖ = −μ
γ

dB
dz

+ μB
(
μB
mc2

)n/2−1 dε(z)
dz

sin(nψ + k‖z)

+ k‖μB
(
μB
mc2

)n/2−1

ε(z) cos(nψ + k‖z) (3.7b)

ψ̇ = eB
mγ

− ω

n
− neB

2m

(
μB
mc2

)n/2−1

ε(z) sin(nψ + k‖z) (3.7c)

μ̇ = nec2

(
μB
mc2

)n/2

ε(z) cos(nψ + k‖z), (3.7d)

where the cross-field drifts are ignored together with terms containing (dB/dz)ε(z).
This system is solved numerically using Runge–Kutta–Fehlberg 4,5 explicit scheme

from the GNU science library (2009) with a fixed time step of 10m/eB(z = 0). This
numerical scheme ensures conservation of the Hamiltonian to 12 decimal places (i.e.
approximately 0.5 μeV). The evaluation is stopped when either teB(z = 0)/m = 4 × 106

or when the particle leaves the beam, i.e. |z/w| > 2 for an X3 single beam, |z/w| > 4 for
two X3 beams and |z/w| > 3 for X2. This yields a single interaction energy gain.

Figure 1 (solid curves) shows an example trajectory of an electron interacting with
the beam once. The perpendicular energy evolution is shown in the top graph together
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(a)

(b)

FIGURE 1. Example electron trajectory in X3 wave (solid curves). The dash–dotted curve shows
the same trajectory in a homogeneous case. The dashed curve represents the particle trajectory
in the absence of the wave, highlighting that the bounce is caused by the increase in magnetic
moment. These trajectories are for very slow parallel velocities of 0.1vth,300 K. A trajectory of a
particle from inside the 80 eV contour of figure 2 is shown with the red dotted curve.

with the z motion in the bottom graph. In this case, the cold resonance is located
at z = −1.32 cm with α = 0.013538 and the magnetic field is B0 = 1.598133 T. The
corresponding field inhomogeneity length scale is B/b̂ · ∇B = 2045 m. The beam centre
is always at z = 0 (see (3.2)). The initial perpendicular particle energy is 1.03 eV, whilst
the initial parallel energy is very small at 0.25 meV. The initial phase of the particle is
chosen to maximise the energy gain. The corresponding unperturbed trajectory is plotted
as a dashed curve. The energy gain of the particle with the same initial conditions but
in homogeneous magnetic field is also shown with the dashed–dotted curve. In this case,
B0 = 1.667107 T and B1 = 0. We observe that the interaction is extended considerably
in the inhomogeneous case, which results in much higher excursions during nonlinear
trapping in the wave field and approximately a doubling in the single interaction energy
gain. Note that this particle turns around near z = 0 due to the mirror force. This particle
has a very slow initial parallel velocity of 0.1vth,300 K.

We also show a typical orbit for high energy gain at higher parallel velocity in dotted
red. Because the beam travel time is shorter, the interaction strength must be stronger
for a significant interaction. Because the interaction strength scales with v3

⊥, see (3.7d),
increasing initial v⊥ achieves just that. The interaction is no longer several energy
excursions but an interaction with an approximately stationary phase. The interaction is
significantly extended compared with the homogeneous case because γ and B change in
conjunction.

https://doi.org/10.1017/S0022377823001423 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823001423


10 C.A. Johansson and P. Aleynikov

FIGURE 2. Contours of the energy gain (eV), maximised over initial phase for a range parallel
and perpendicular initial energy of the particles in an X3 wave. Inhomogeneous magnetic field
as per (3.1) with B0 = 1.599343 T, B1 = 0.069004 T and α = 0.190400. The 1 MW beam is
assumed to have a Gaussian profile with 2 cm width.

Figure 2 shows contours (in eV) of the single interaction energy gain for electrons
with various initial energies and pitch angles. The energy gain is maximised over the
initial phase. The inhomogeneous background field is the same as in figure 1 (B0 =
1.6671). Positive parallel energy corresponds to electrons moving toward increasing B.
The maximised energy gain in an analogous homogeneous situation is shown in figure 3.
These calculations show that a small inhomogeneity not only increases the maximum
gain to around 80 eV, but also significantly extends the phase-space region over which
efficient interaction takes place. A factor of 4 increase in energy gain can alternatively be
achieved by a 10–100 times increase of the ECRH beam power if the ambient magnetic
field is homogeneous. This is because the X3 interaction scales between

√
E− ∼ P1/4 and

E− ∼ P1/2 (see (4.9)). However, for electrons, where the stationary phase is the major
interaction, energy gain scales as E− ∼ P1/2 and 16 times power would be required to
achieve an energy increase of a factor 4.

Note, however, that these results are quantitatively sensitive to the location of the
resonance. They merely highlight a significant effect of the inhomogeneity on the energy
gain. More general results are presented in the next sections.

The energy gain averaged over the initial phase is lower. It is shown in figure 4.
The red contour corresponds to a gain of 13.6 eV, which is necessary for maintaining
the ionisation avalanche process. However, this phase-space region is very narrow, in
particular in v‖. Because secondary electrons are distributed uniformly over the pitch
angles during ionisation avalanche it is unlikely that such a beam can maintain ionisation.

Another feature of the 13.6 eV contour in figure 4 is that its minimal initial electron
energy is above 13.6 eV, i.e. an electron needs to already have more than 13.6 eV in order
to gain significant energy. This feature (the location of the 13.6 eV phase-space contour),
however, depends on the inhomogeneity length scale. This is discussed for in the next
section (see figure 14).
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FIGURE 3. Same as figure 2, but homogeneous field B0 = 1.667078 T so resonance is fulfilled
at 24 eV.

FIGURE 4. Contours of the mean energy gain (eV), averaged over initial phase for the
parameters of figure 2.

3.1. Configuration with multiple beams
The energy gain required for the breakdown process during startup is approximately
13.6 eV. Robust breakdown requires that a significant fraction of particles are accelerated
from below 13.6 eV to tens of eV during the interaction. As shown in the previous section,
this is difficult to achieve with a single beam set-up. In the presence of multiple beams, an
overlap of multiple resonances can lead to significantly larger overall gains. We consider
such a scenario in this section.
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FIGURE 5. Contours of maximum energy gain in a case of 2 X3 beams with injection
geometry optimised for maximum energy gain.

The second beam is set up analogously to the first one with an extra shift along the field
line, z0,

E(2)(0, 0, z) = E0 exp
(

−k2
⊥,2
(z − z0)

2

k2w2

)
. (3.8)

The relative phase shift is generally important. Due to the chaotic nature of the slow phase
drifts of the gyrotrons, we expect that all phase shifts are present during a startup scenario.
The relative phase shift is indirectly controlled through z0 and difference in k‖. Therefore,
we ignore the explicit relative phase shift to reduce the number of optimisation variables.

Figures 5 and 6 demonstrate the results of an optimisation procedure. In figure 5 the
maximum single interaction energy gain is optimised, whereas in figure 6 optimisation is
of energy gain maximised over initial ψ and then averaged over initial v‖ and v⊥. Both
results are in the presence of two beams. The conditions are similar to those of figure 2,
with the optimisation parameters being B0, α (i.e. b̂ · ∇B/B), k‖1, k‖2 and the second
beam position z0. The Nealder–Mead method with 50 random starting points and 250 000
trajectories per step is used.

The first optimisation maximises the energy gain in μB0 ∈ [0, 13.6 eV], and mv2
‖/2 ∈

[0, 4 eV]. The best result is k‖c/ω = 0.243/3, k‖,2c/ω = 0.214/3, 1 − mω/3eB =
−5.28/511 000, z0 = −0.826w, α = 2.90. The results are shown in figure 5. The
maximum energy gain is ∼200 eV, which is approximately twice as high as that in the
case of one beam. Moreover, the initial energy required for reaching 13.6 eV is now lower
than 13.6 eV and the initial v‖ range is increased significantly.

The second optimisation optimises energy gain maximised over initial ψ and then
averaged over initial v‖ and v⊥ in the phase-space area μB0 ∈ [0, 13.6 eV], and mv2

‖/2 ∈
[0, 4 eV]. The best result is k‖c/ω = 0.0259/3, k‖,2c/ω = 0.0193/3, 1 − mω/3eB =
−0.8125/511 000, z0 = 0.741, α = 0.0775. The maximum energy gain is shown in
figure 6. Although it was not possible to achieve mean energy gains comparable to those
from the second harmonic interaction, which is several hundreds of eVs (see figure 8), the
optimisation procedure has extended the range of v‖ for which high gain is expected by at
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FIGURE 6. Same as figure 5 but optimisation for the average maximum energy gain in
E⊥ × E‖ ∈ [0, 13.6 eV] × [0, 4 eV].

least an order of magnitude. Kinetic modelling of the ionisation avalanche is required in
order to answer the question as to whether such double beam X3 particle energisation is
efficient to sustain startup.

3.2. Effect of magnetic field inhomogeneity on X2 interaction
The X2 ECRH startup is routinely performed at W7-X. In this section, we look into effects
of inhomogeneity on X2 interaction. In the second-harmonic case, the cold resonance is
at 2.5 T for a 140 GHz W7-X gyrotron.

Once again, the equations (3.7) are solved numerically, with n = 2 this time. Figures 7
and 8 show the mean (over initial gyro-phase) single interaction energy gain for the
homogeneous and inhomogeneous cases, respectively. For the homogeneous case we set
ω = 2π × 140 GHz, and the magnetic field strength such that the resonance energy is
μB = 186.5 eV. For the inhomogeneous case, we set B1 = 0.1 T and B0 ≈ 2.5 T, so that
the μB = 186.5 eV resonance is at z = 0. The inhomogeneity at z = 0 is B/b̂ · ∇B =
174 m. We let k‖ = 0.

As expected, the gain in both cases is much greater than for X3. In addition, the v||
range is much broader as well: note the difference in x-axis scale between figures 4 and 8.
A relatively strong effect of inhomogeneity on X2 mean energy gain is observed for low
v‖, where the nonlinear interaction is also extended considerably. The affected phase-space
region is quite narrow for typical plasmas after startup, but quite large when considering
low temperature plasma or breakdown. We therefore expect at least a small improvement
of X2 interaction by the inhomogeneity.

These results are analysed in the next sections from the point of view of the Hamiltonian
phase-space structure.
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FIGURE 7. Contours of the energy gain (eV), averaged over initial phase, X2 homogeneous
background field (B1 = 0).

FIGURE 8. Same as figure 7, but with inhomogeneous magnetic field (α = π/2,B1 = 0.1 T).

4. Phase-space structure

In the previous section we demonstrated that the ambient B-field inhomogeneity has a
significant effect on the resonant electron dynamics and the energy gain of electrons. We
will use the known weakly relativistic Hamiltonian expression to analyse these results.

The Hamiltonian (2.22) can be transformed and expanded into a weakly relativistic form
to

H
mc2

= 1 +ΔnΦ − (1 − ξ 2)
Φ2

2
+Φn/2ε∗ cos(χ)+ P2

2
− P4

8
, (4.1)

for the X mode (Farina & Pozzoli 1991; Litvak et al. 1993; Farina 2018), where
the normalised perpendicular energy Φ = nPχ(−qB)/m2c2 is introduced together with
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the normalised canonical Z momentum P = PZ/mc. The canonical momentum Pχ is
associated with the gyro-motion through

nPχ ≡ −m
q
μ, (4.2)

and the canonical momentum PZ is associated with the parallel motion

PZ ≡ p‖−k‖Pχ + q
Ez

ω
Jn(bz) sin(χ)+ qA · b̂. (4.3)

The wave-phase coordinate is χ = nψ + ϕ(R)− n(π/2). These canonical coordinates
were introduced by the use of the generating function

F2 = Pχ
(

nψ + ϕ(R)− n
π

2

)
+ R · b̂PZ. (4.4)

Resonant particles typically experience quick quasi-periodic motion in the (χ,Pχ )
plane. The structure of the corresponding Hamiltonian contours provides important
insights into the particle dynamics (see e.g. Neishtadt & Timofeev 1987; Farina & Pozzoli
1991; Kotel’Nikov & Stupakov 1991; Litvak et al. 1993). The shape of a given Hamiltonian
contour in the (χ,Pχ ) plane is set by the three remaining ‘slower changing’ parameters of
(4.1). The first parameter is the relativistic frequency shift

Δn = 1 − ω

nΩ0
− P2

Z

2m2c2
+ k‖c

nΩ0

PZ

mc
, (4.5)

where Ω0 = eB/m is the non-relativistic gyro-frequency. The second parameter
characterises the Doppler shift ξn = k‖c/nΩ0. The third parameter is the interaction
strength as a function of the field strengths, ε∗ = ε(Ex,Ey), which is given by (3.5). It
is assumed that ε > 0. If ε < 0, a redefinition of ε �→ −ε and χ �→ χ + π restores the
Hamiltonian to its form with ε > 0.

The contours of the Hamiltonian in (2.22) for typical W7-X parameters at the peak
wave field are shown in figure 9 with the solid curves. Numerical solutions to the full
orbit equations of motion from (2.1) are shown in dotted green. These solutions include
fast time-scale wave effects, however, as discussed earlier, these effects have little effect
on the general character of the resonant dynamics. The parameters of the X2 case are
given by a plane wave with Ey = 1.46 × 10−3Bc, Ex = Ez = 0, k‖c/ω = 0, kc/ω = 1, in
a homogeneous magnetic field with the frequency relation ω = 2eB/m. This corresponds
to the maximum field created by a 1 MW gyrotron with a radius of 2 cm aimed at 2.5 T.
The parameters of the X3 case are given by Ey = 2 × 10−3Bc, Ex = Ez = 0, k‖c/ω = 0.25,
k⊥c/ω = 0.968, ω = 2.9999eB/m. This corresponds to the maximum field created by a
1 MW gyrotron with a radius of 2 cm aimed at 1.8 T (or slightly lower than maximum
electric field at 1.7 T).

The trapped region can be determined analytically through singular points, see for
e.g. Lichtenberg & Lieberman (2013), Farina & Pozzoli (1991), Litvak et al. (1993) and
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(a) (b)

FIGURE 9. Hamiltonian contours in X2 and X3. Centre of resonance in dash dotted, trapped
region in dashed. Full solution to (2.1) in green; (a) X2 and (b) X3.

references therein. The second harmonic has a trapped region inside

μ ∈ [μc − μexc, μc + μexc], (4.6)

where the energy excursions are given by

μexcB
mc2

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
√
εX2Δ2

1 − ξ 2
2

Δ2 − εX2

1 − ξ 2
2
> 0

μcB
mc2

Δ2 − εX2

1 − ξ 2
2
< 0,

(4.7)

and centre by
μcB
mc2

= Δ2 + εX2

1 − ξ 2
2
. (4.8)

These analytical trapped regions are shown with dashed lines in figure 9.
The third-harmonic Hamiltonian is not a polynomial in Pχ , so to work out the trapped

region we work with β2 ≡ 2Φ instead. Centre of resonance is found normally. To find
the maximum excursions we expand the Hamiltonian in perpendicular velocity around the
centre to avoid solving a fourth degree polynomial. This yields the trapped region as

μB
mc2

∈
[

1
2
(βc − βexc)

2,
1
2
(βc + βexc)

2

]
, (4.9)

with

βexc =
√√√√√Hsep − H|β=βc,χ=0

1
2
∂2H
∂β2

∣∣∣∣
β=βc,χ=0

=
√

q3/2εX3√
2|1 − ξ 2

3 |√q + 3
√

qεX3

, (4.10)

and centre of resonance

βc = 3εX3 + √
q

2
√

2(1 − ξ 2
3 )
, (4.11)

where
q = 9ε2

X3 + 16Δ3(1 − ξ 2
3 ), (4.12)

https://doi.org/10.1017/S0022377823001423 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823001423


Electron cyclotron resonance during plasma initiation 17

(a)

(b)

FIGURE 10. Resonance regions for resonance condition fulfilled at different perpendicular
energies; X2 (a) and X3 (b).

and Hsep is the value of the Hamiltonian on the separatrix. These regions are shown in
dashed lines of figure 9.

Figure 10 shows the width of the resonance as a function ofΔn, which can be interpreted
approximately as the “perpendicular relativistic Lorentz factor” γ⊥ ≡ √

1 + 2Φ yielding
perfect resonance. We use an electric field strength corresponding to the maximum field
from a 1 MW beam spread over a disc with radius 2 cm. For X2 this is E−/cB =
1.46 × 10−3 (with B = 2.5 T) whereas for X3 it corresponds to E−/cB ≈ 2.15 × 10−3

(with B = 1.7 T). A small parallel component of the wave vector is introduced, k‖c/ω =
sin(10◦) for both X2 and X3 cases, although k‖ only plays a minor role until it approaches
ω/c (almost full parallel propagation). The�v‖ axis is calculated assumingΔn = ξnP and
is only valid for small P as Δn is also dependent on P2. Figure 10 demonstrates a large
resonance width for X2 (this is typical for a broad range of startup-relevant parameters).
The resonance region reaches all the way to low initial particle energies and therefore no
special conditions are necessary for X2 startup.

For X3, the resonance width is much more narrow, and to sustain ionisation a careful
selection of inhomogeneous ambient magnetic field and beam properties is required.

This is further evident from consideration of the resonance width as a function of power.
Figure 11 shows the dependence of the resonance regions ((4.6) and (4.9)) on the beam
power assuming W7-X magnetic field strengths andΔn = 2 × 10−5. The relation to power
and electric field strength is taken as

Ewave = 2

√
P × 376.73Ω

4πcm2
. (4.13)

Note that, in the case of X2, the trapped region scales differently with power depending
on the sign of (Δ2 − εX2)/(1 − ξ 2

2 ) (4.6). For small powers, the width scales as P1/4, and
for higher powers (in relation to Δ2) it scales as P1/2. Due to our choice of low Δ2, only
the P1/2 is visible in figure 11.
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(a)

(b)

FIGURE 11. Resonance regions for different power; X2 (a) and X3 (b).

With the analysis of the general differences between X2 and X3 introduced (based
essentially on the homogeneous picture), we proceed to the analysis of our numerical
results for the inhomogeneous cases presented in the previous section. We first consider
X2 calculations presented in figures 7 and 8. These figures show that a significantly large
phase space exhibits very efficient energy gain in the inhomogeneous case, specifically in
low v‖ region.

The value of the Hamiltonian is always conserved on particle trajectories, but the shape
of the Hamiltonian contours in (χ,Pχ ) plane evolves with the passage of the particle
through higher field strengths. The character of the particle trajectory changes accordingly:
a resonant particle becomes nonlinearly trapped in the wave field and will follow the closed
contours instead. This occurs when the trapping region reaches the electron phase-space
position. As the particle continues toward the weaker wave field the closed contours
disappear, leaving the particle with new values of Pχ ,PZ . This is demonstrated with a
solid line in figure 1, where a sequence of spikes on the energy curve corresponds to
quasi-periodic motion of the particle around the resonance.

Equation (4.1) has only two solutions for Φ outside the beam for fixed H,P,Δn, ξn.
If these quantities are conserved before and after the interaction, as they are for the
case of constant field and adiabatic interaction (see for e.g. Farina 2018), then the jump
in orthogonal energy Φ is two times the distance to the line Φ = Δn/(1 − ξ 2

n ). The B
field inhomogeneity changes Δn and P during the interaction so that the interaction is a
complicated four-dimensional motion.

If B increases as the electron transverses the magnetic field line, the resonance centre
Δn will move upwards and ultimately allow large energy gain. This is easiest observed
in a plane-wave interaction. In this case, adiabacity forces a new constant of the motion∮

Pχ dχ . We show constant Hamiltonian intersected with this constant in z,Pχ , χ space
in figure 12. Here, we clearly see the resonance centre moving upwards in energy, and
the particle trajectory follows. Movement of the resonance centre plays a favourable role,
regardless of adiabatic interaction or not.
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FIGURE 12. An X2 toy example of the adiabatic case, inhomogeneous magnetic field, plane
wave. Hamiltonian surface (red) and particle trajectory (blue).

If B decreases instead, the resonance centre Δn will come from above, and allow for
large excursions and energy gains. These are larger than the homogeneous case because
there typically exists a more optimal Δn along the path than in the homogeneous case.

The adiabatic interaction is only valid for very low parallel velocities. Seol et al. (2009)
calculate the frequency of revolving the nonlinear trapped region. Dividing this frequency
with the beam travel time (the second fastest time scale) we find

fnlw
v‖

≈ 5

√
P

kBT‖

eV
MW

, (4.14)

where kBT‖ is the parallel kinetic energy and P the beam power. The ratio is independent
of beam width, and large only for very very low parallel velocities.

It is the beam structure that breaks the adiabatic condition. The beam shaping creates a
finite k‖ component of the wave vector, which breaks the conservation of PZ even in the
case of k‖ = 0 in the wave phase. Generally, a small kick in PZ is allowed due to shaping
of εX2 in z. This allows for a larger energy gain compared with the adiabatic case, even for
a very small kick δP in P = PZ/mc. This can be understood by perturbing the Hamiltonian
with a small kick δP and equating it with a kick δPχ . We find the energy change by solving

δΦ
∂H
∂Φ

+ δΦ2 1
2
∂2H
∂Φ2

+ δP
∂H
∂P

= 0, (4.15)

which results in (for relativistic PZ only inside Δn)

δΦ ≈ Δn − (1 − ξ 2
n )Φ ± √

[Δn − (1 − ξ 2
n )Φ]2 + 2(1 − ξ 2

n )(P + ξn)δP
1 − ξ 2

n

∼ (P + ξn)δP
(1 − ξ 2

n )Φ −Δn
, |Δn − (1 − ξ 2

n )Φ| 
 |4(1 − ξ 2
n )(P + ξn)δP|, (4.16)

due to PZ no longer being conserved. This change in PZ,Pχ is the difference between
figure 7 and an adiabatic interaction.
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The X3 interaction is much weaker than the X2, so that several excursions for single
beam pass is only possible for electrons with very low transverse energy (meV). As the
consequence, if the resonance centre moves from above, the particles do not typically
complete a single revolution around the resonance centre before the electron is outside the
trapped region. Therefore, we see the larger asymmetry with respect to v‖ in figures 2 and
4 to 6 than in figure 7 and 8.

In this type of interaction, the particle motion in the phase space coincides with
the trapped region evolution such that the phase χ is approximately constant. This
kind of interaction is very efficient. This ‘stationary phase’ regime of the interaction
is demonstrated with the dotted red curve in figure 1. It should not be confused with
the stationary phase approximation of the liner wave–particle interaction, since several
nonlinear effects cancel to allow for a long interaction time in our case.

The main reason for the enhanced energy gain in X3 is extended period of the stationary
phase, where B and γ changes in conjunction to extend the resonance interaction. The
particle is then allowed to travel ‘up’ in figure 10, because Δ3 changes accordingly. Long
stationary phase is characterised by ψ̇ = 0 and ψ̈ = 0 which, for k‖ = 0, is equivalent to

−qB
mγ 2

γ̇ = −q
mγ

dB
dz
v‖. (4.17)

Approximating γ̇ ≈ Φ̇ ∼ εX3Φ
3/2 ∼ εX3(v

3
⊥/c

3) we find

εX3
v3

⊥
c3

∼ 1
B2

∂B
∂z
v‖, (4.18)

so that, for the longer magnetic field length scales, lower energies satisfy the stationary
phase condition. This scaling approximately yields the shape of the contours of figures 2
and 4. For example, the 13.6 eV line in figure 2 that starts at 0 energy and goes to 90 eV
perpendicular energy at 0.04 eV parallel energy follows the scaling (4.18).

Numerical solution to (3.7) shows that the nonlinear energy gain scales approximately
as a square with the maximum of εX3. This quadratic scaling is shown in figure 13. Here,
the average energy gain is shown as function of maximum εX3. The rest of the parameters
match those of figure 2, except α = π/10. This scaling sets the scaling of the average
energy gain to be linear in beam power for fixed beam width and is expected from linear
wave absorption theory.

5. Optimal B field inhomogeneity

The discussion in the previous section hints at the existence of an optimal B field
inhomogeneity length scale for every characteristic parallel velocity and therefore every
plasma temperature. The inhomogeneity length scale dependence of the minimal initial
energy required for a significant gain is investigated in figure 14. Orange, blue and
green curves correspond to gains of 5, 13.6 and 25 eV, respectively. These calculations
demonstrate that, when the inhomogeneity length scale varies, electrons with as low
energy as 2–3 eV can be accelerated to above 13.6 eV by a 1 MW beam in W7-X-like
conditions. We also observe that a smaller magnetic field slope is favourable for lower
initial energies, in agreement with the predictions of (4.18).

In figure 14 we have set B0, so that resonance at z = 0 is at 2.58 eV. This then creates a
maximum energy gain of around 5 eV at constant field. Moving the centre of resonance at
z = 0 to arbitrary energy then yields an absolute maximum energy gain of approximately
the width of resonance, given approximately by the separatrix width, see figure 10. Thus,
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FIGURE 13. Average energy gain as function of interaction parameter εX3 (3.5).

FIGURE 14. Minimal initial energy of an electron gaining 5 eV (dashed curve), 13.6 eV (solid
curve) and 25 eV (dash–dotted curve) as a function of B gradient.

we could gain 13.6 eV at no magnetic field gradient. The cost is that the first particle that
gains a substantial amount of energy must have an initial energy of approximately 10 eV,
see figure 3. Therefore, resonance at around 2 eV is chosen as this is a typical low energy
during the ionisation avalanche.

Figure 15 shows the effect of the inhomogeneity on the average energy gain from a single
beam pass for a Maxwellian population of incoming particles. The varied parameters are
the B field gradient length scale and the plasma temperature. Because the beam typically
propagates across field lines with different magnetic field strengths, for each magnetic field
gradient we maximise over different magnetic field strengths at z = 0.
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FIGURE 15. Average energy gained in meV by electrons passing the beam once at different
magnetic field inhomogeneities. The average energy gain was maximised over magnetic field
strengths near cold resonance, motivated by that the beam cuts different field lines with slightly
different field strengths at beam centre.

The contours show average energy gain in meV. Note that the maximum energy gain
(reaching 100 eV) is much larger than the average, since only the narrow region of the
phase space experiences the nonlinear enhancement from the inhomogeneity.

The gradients chosen are those approximately available to W7-X with a 10 % mirror
ratio. Note that the maximum energy gained is not fully correlated with the average
energy gain. Increasing the inhomogeneity length scale also forces particles to bounce,
particularly with low v‖, which had the strongest normal interaction at no field gradient.
Although the inhomogeneity length scaled increased the maximum energy gained by
a factor of 4 or more, the average energy gained increase is lower, partly because
the phase-space area that gains energy is lower. We observe an optimum at magnetic
field-scale gradients of the order of 1 km−1 to 3 km−1 for both average energy gain and
lowest minimal energy required for 13.6 eV energy gain.

6. Conclusion

In this paper, we have considered electron orbits in W7-X-like background fields with
microwave heating in the X2 and X3 startup scenarios. The main effect of the background
magnetic field inhomogeneity is to extend the interaction, resulting in a significant increase
of the maximum energy gain during the interaction. A large energy gain is made possible
for lower initial energies.

In the adiabatic interaction regime, the particles would be trapped in the resonance,
which follows the strength of the inhomogeneous B-field. Unfortunately, adiabatic
interaction does not apply to the majority of orbits in X3, which complicates the analysis.
Yet, the magnetic field inhomogeneity can be chosen favourably to increase both the
overall energy gain and to extend the phase space of the efficient interaction. We find
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a 4-fold increase of the maximum energy gain of a few eV electrons with the introduction
of a small inhomogeneity. To achieve similar increase in energy gain in homogeneous
fields a 10 times higher beam power is required. Moreover, we find that the magnetic field
gradient allows electrons with 2 eV to gain above 13.6 eV in W7-X-like conditions.

A scan in magnetic field gradient shows that the average energy gain can be increased
by around a factor of 1.5–3 for electron temperatures in the eV range, when inhomogeneity
is taken into account. The optimal beam inhomogeneity is found to be 1 to 3 km−1.
However, the single third-harmonic X mode with a 1 MW wave is not sufficient to achieve
breakdown in W7-X-like conditions – the mean energy gain remains much smaller than in
the analogous X2 case.

When two 1 MW beams are present, their resonance regions can be combined. The
beams’ focal points are placed next to each other. In this case, the maximum energy gain
approaches the energy gain observed in a single beam X2 case (up to 200 eV compared
with ∼1 keV), which is known to produce a startup in W7-X. However, the phase-space
area for efficient interaction is still found to be much smaller than in an analogous X2 case.
This area is limited by the parallel energy, and has a width of around 0.1 eV, whereas the
corresponding width in X2 is of the order of 300 eV. The energy increase for low energy
electrons is still stronger than using a single beam with twice the power.

We conclude that, while a B field inhomogeneity plays an important role in
wave–particle interaction in startup conditions, yielding a noticeable increase of the
electron energy gain, inhomogeneity alone is unlikely to achieve X3 startup in W7-X-like
conditions. A careful design of a multi-wave set-up is shown to improve the situation
considerably. A further work study is required to find an optimal scheme. Furthermore, a
kinetic modelling of the ionisation process is needed for a predictive study of X3 and X2
startups.
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Appendix A. Ordering

The ordering of ambient fields is performed using the same scheme as in Cary & Brizard
(2009). Denoting by a subscript w the wave fields, we add the wave fields into the ordering
scheme in table 1. The ordering is in the Lorentz–transformed frame moving at the E × B
drift velocity vE. Therefore, there is no perpendicular electric field in our frame.
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Order Fields Distances Rates Velocities Dimensionless

ε−1 B — Ω , ω — vB/Ew
1 E‖,Bw L v/L, τ−1, ψ̇ — kρ
ε — ρ, 1/k Ṙ⊥/L Ṙ⊥ ρ/L

TABLE 1. Ordering scheme for the Guiding-centre Lagrangian with wave field. The parameters
L and τ give the length scale and time scale at which fields change. Only exception is that the
time scale of the phase of the wave is ω, and the length scale of its wavelength is 1/k. The
changes of the wavelength in length and time are of order L and τ , respectively.

Appendix B. Formal removal of non-resonant terms for further simplification

Consider a Lagrangian which yields equations of motion such that its solution has a
quasi-periodic motion in r with frequency ω/2π. If we can transform to coordinates q
such that they have the property

q̇
ω

∂

∂q
L = O(ε) q̈

ω

∂

∂ q̇
L = O(ε), (B 1a,b)

then a Fourier expansion of the Lagrangian yields

L(q̇, q, t) =
∑

n

Ln(q̇, q, τ (t)) exp(−inωt), (B2)

where τ is to be seen as the slow time variation of Ln compared with ω, and must be
slow for the time averaging procedure to be valid. In our case, this is done by the ordering
scheme and a transformation to the slowly varying guiding-centre coordinates. For n �= 0
we have

Ln exp(inωt) = d
dt

1
inω

Ln exp(inωt)−
∑

z=q,q̇,τ

1
inω

∂z
∂t
∂Ln

∂z
. (B3)

The full time derivative can always be removed without changing the equations of motion.
The sum is of order ε so, to order 1, the Lagrangian is only L0. This argument can be used
on the non-resonant terms instead of an time average. Because a time average also results
in L0, there is no formal difference between the two. In a stricter setting, where q = q(εt)
and |δmLn| < M, the time average becomes exact through repetitively expressing terms as
exact time derivatives. With δmLn, we mean any combination of partial derivatives to a
total of mth order (with respect to q, q̇, τ ), and M is an arbitrary fixed constant.

Consideration of arbitrary field strengths is only possible if we solve the motion
perturbed by the wave (on fast time scales) to order unity in Ew/(cB). We solve this
system in Appendix C, and show that it is sufficient in our case to use the gyro-motion
as approximation of our fast time-scale motion.

Convergence to the time-averaged equations of motion is found as

∂L0

∂q
≈
∂

∫
L dt

∂q
=

∫
∂L
∂q

dt, (B4)
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because q, q̇, τ are slowly varying. Analogously, we obtain

d
dt
∂L0

∂ q̇
≈ d

dt

∂

∫
L dt

∂ q̇
≈

∫
d
dt
∂L
∂ q̇

dt, (B5)

because q, q̇, τ are slowly varying.

Appendix C. Particle motion perturbed by the wave

The guiding-centre theory builds on knowing the solution to the fast time-scale equation
of motion and performing the time average in Appendix B. We could manipulate the
Lagrangian in the same manner, but using the fast time-scale solution to the wave–particle
interaction in a constant magnetic field instead. This would yield the interaction between
the wave and the perturbed orbit that the wave creates.

We numerically solved the system of equation in homogeneous magnetic field for a
plane wave to find when the electric field yields observable deviations of the particle orbits
from the Hamiltonian contours. These numerical checks show that the interaction between
the wave and the perturbed orbit from the wave is important for the X2 mode when the
fields are around E⊥/(cB) ≈ 0.05 and above. We will solve the relativistic equations of
motion for electrons, that is k · v 
 ω, to verify this numerical estimate and obtain an
estimate for X3. We assume that dγ /dt/(γω) ≈ 0 for the relativistic Lorentz factor γ .

Introduce the notation

|kω〉φ = sin(k · r − ωt + φ). (C1)

In this notation

∂|kω〉φ
∂t

= −ω cos(k · r − ωt + φ) = −ω|kω〉φ+π/2. (C2)

The Newtonian equation of motion in a constant magnetic field with a plane wave and
γ̇ ≈ 0 reads

mγ
dv

dt
= q

[
E|kω〉φ + v ×

(
k × E
ω

)
|kω〉φ

]
+ qv × ẑB0 ≈ qE|kω〉φ + qv × ẑB0.

(C3)
We neglect the wave magnetic term because vk 
 ω, and not because the magnetic field
of the wave is small. The wave electric field is E|kω〉φ and the wave magnetic field is
(k × E/ω)|kω〉φ . Shifting the velocity to

v = w − q
E‖

mγω
|kω〉φ−π/2, (C4)

removes the parallel electric field, that is

mγ
dw
dt

≈ qE⊥|kω〉φ + qw × ẑB0, (C5)

where E‖ = E · ẑẑ and E⊥ = E − E‖.
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The solution to this new equation in w is to introduce drift velocity uD0 so that duDn/dt
cancels with the electric field term. Taking

uD0 = −q
mγω

E⊥|kω〉φ−π/2 (C6a)

w = u0 + uD0, (C6b)

accomplishes just this. Inserting into the equation of motion yields

mγ
du0

dt
= q

Ω

ω
E⊥ × ẑ|kω〉φ−π/2 + qu0 × ẑB0, (C7)

where we assumed |k · v| 
 ω. Here, Ω = −qB0/mγ . This is now the same equation as
before but with the new field (Ω/ω)E × ẑ|kω〉φ−π/2. The idea is to shift the drift velocity
compared with the wave with phase −π/2 and that the new field will be multiplied with
Ω/ω and crossed with ẑ. Therefore, we introduce the nth drift velocities, together with un
as

uDn =
(
Ω

ω

)n+1 E⊥(×ẑ)n

B0
|kω〉φ−(n+1)π/2 (C8a)

un = un+1 + uDn, (C8b)

so that

v = u∞ − q
E‖
mω

|kω〉φ−π/2 +
∞∑

n=0

uDn. (C9)

The cross-product E⊥(×ẑ)n is to be evaluated as (. . . (E⊥ × ẑ) . . .)× ẑ. If |Ω| < |ω|, the
sum is convergent and the last equation reads

mγ
du∞
dt

= qu∞ × ẑB0. (C10)

This is just the gyro-motion, and thus gives the definition of the magnetic moment. If
|Ω| > |ω|, it is instead possible to introduce the drift velocities

uDn =
( ω
Ω

)n E⊥(×ẑ)n+1

B0
|kω〉φ−nπ/2, (C11)

so that the magnetic Lorentz force cancels with the electric field. One still reaches the
conclusion in (C8b), (C9) and (C10), but now for |Ω| > |ω|.

The sum in (C9) can be evaluated as a geometric sum by using |kω〉φ±π = −|kω〉φ and
E⊥(×ẑ)2 = −E⊥. This yields

∞∑
n=0

uDn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ωΩ

ω2 −Ω2

E⊥
B0

|kω〉φ−π/2 − Ω2

ω2 −Ω2

E⊥ × ẑ
B0

|kω〉φ |Ω| < |ω|

−ωΩ
Ω2 − ω2

E⊥
B0

|kω〉φ−π/2 + Ω2

Ω2 − ω2

E⊥ × ẑ
B0

|kω〉φ |ω| < |Ω|

= ωΩ

ω2 −Ω2

E⊥
B0

|kω〉φ−π/2 − Ω2

ω2 −Ω2

E⊥ × ẑ
B0

|kω〉φ. (C12)

This solution is to be added to the guiding-centre motion to be able to perform the time
average for arbitrary field strengths. Note that we then also need to solve the position
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equation. This is easily done if kv 
 ω, the position change is then the velocity divided
by −ω and phase of |kω〉 shifted by −π/2. This is realised by looking at (C2).

Now, interaction between the perturbed orbit and the wave field is important when

Aw ·
(

−q
E‖
mω

|kω〉φ−π/2 +
∞∑

n=0

uDn

)
∼ Aw · u∞. (C13)

We approximate this condition with∣∣∣∣∣−q
E‖
mω

|kω〉φ−π/2 +
∞∑

n=0

uDn

∣∣∣∣∣ ∼ |u∞|. (C14)

Equation (C10) is solved in terms of the magnetic moment, which yields

u∞ =
√

2μB
mγ 2

∼ qE‖
mω

+
∣∣∣∣∣

∞∑
n=0

uDn

∣∣∣∣∣ ∼ ωΩ +Ω2

|ω2 −Ω2|
E
B
. (C15)

The perturbed orbit is thus unimportant when

2μB �
(
ωΩ +Ω2

|ω2 −Ω2|
)2

mγ 2 E2

B2
, (C16)

that is, the perpendicular energy stored in gyro-motion is much greater than perpendicular
kinetic energy stored in instantaneous E × B drifting. For W7-X parameters the
right-hand side is 10−6mc2 ∼ 0.5 eV, but the resonance area is much larger than the
contours of 0.5 eV difference. Thus the wave perturbation to the orbit can be ignored.

Moreover, the first term in (C12) is π/2 out of phase with the electric field and the
second term orthogonal to it. This means that the time average of the power transferred
q
∑

uDn · E cos(ϕ(r)− ωt) yields 0 if the wave phase experienced by the particle has an
equal distribution of positive and negative interferences. The same assumption yields a
zero net drift in r.

Note that no conclusion is to be drawn for ω ∼ Ω because the geometric series is not
converging for |ω| = |Ω|. From a physics perspective, the perpendicular energy storing
argument should be sufficient for motivation of ignoring this term in the fast solution.
However, we cannot supply the correct coordinate transformation such that we achieve
(C10).
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