A GENERALIZATION OF \boldsymbol{z} !

W. B. SMITH-WHITE and V. T. BUCHWALD

(received 7 November 1963)

Summary

A generalised factorial function $(z: k)!$ is defined as an infinite product similar to the Euler product for z !, but with the sequences of integers replaced by the roots of $F(z)=\sin \pi z+k \pi z$. It is proved that, apart from poles in $\mathscr{R}(z)<0,(z: k)!$ is analytic in both variables, and that $F(z)$ may be expressed in the form $F(z)=\pi z /(z: k)!(-z: k)$!

As $|z| \rightarrow \infty$, it is shown that the function satisfies a Stirling formula $(z: k)!\sim \sqrt{2 \pi z} z^{z} e^{-z}$.

1. Introduction

Koiter [1] has used certain approximations in order to apply the Wiener-Hopf technique to mixed boundary value problems associated with the infinite strip in plane elasto-statics. It has been pointed out by Noble [2] that it is possible in these cases to obtain an exact solution provided the function

$$
H(z)=\sinh z+k z
$$

can be factorised into a product $H(z)=z H_{+}(z) H_{-}(z)$ where H_{+}and H_{-} are regular and non-zero in the upper and lower half planes, respectively. However, to apply this method it is necessary to know the asymptotic behaviour of the factors H_{+}and H_{-}for large $|z|$.

In this paper, such a factorisation is obtained in terms of a generalised factorial function ($z: k$)! of two variables, defined by an infinite product somewhat similar to Euler's formula for the gamma function. It will be shown in Theorem 1 that this product represents an analytic function of both z and k. The important result that, as $|z| \rightarrow \infty$,

$$
(z: k)!\sim \sqrt{ }(2 \pi z) z^{z} / e^{-z}
$$

is given in Theorem 2.
It will be convenient to consider the function

$$
\begin{equation*}
F(z)=\sin \pi z+k \pi z \tag{1}
\end{equation*}
$$

which is obtained from H by trivial replacements.

2. The factorisation of $F(z)$

The function

$$
G(t)=\frac{\sin \pi \sqrt{ } t}{\pi \sqrt{ } t}+k
$$

is an integral function of order $\frac{1}{2}$. Thus, if $M(r)=\max _{|t|-r}|G(t)|$, then

$$
M(r) \leqq \frac{e^{\pi \sqrt{ } r}}{\pi \sqrt{ } r}+k<2 e^{\pi \sqrt{ } r}
$$

for large r. Hence, as $r \rightarrow \infty, \log M(r)=O\left(r \frac{1}{\Delta}\right)$; and, it is easy to see, $\log M(r)=O\left(r^{\beta}\right)$ does not hold for any $\beta<\frac{1}{2}$. By theorems due to Hadamard [3], $G(t)$ has an infinity of roots τ; for $\beta>\frac{1}{2}$ the infinite series

$$
\sum_{\tau \neq 0}|\tau|^{-\beta}
$$

converges; and, if $G(0) \neq 0$, i.e. $k \neq-1$,

$$
G(t)=G(0) \prod_{\tau}\left(1-\frac{t}{\tau}\right)
$$

The infinite product converges absolutely, and uniformly in $|t| \leqq R$, for any $R>0$.

If $G(0)=0$, the same theorems, applied to $G(t) / t$, give

$$
G(t)=G^{\prime}(0) t \prod_{\tau}\left(1-\frac{t}{\tau}\right)
$$

where the infinite product is over the non-zero roots of $G(t)$.
Replacing t by z^{2} and τ by ζ^{2}, we have

$$
F(z)= \begin{cases}(1+k) \pi z \prod_{\zeta}\left(1-\frac{z^{2}}{\zeta^{2}}\right), & k \neq-1 \tag{2}\\ -\frac{\pi^{3}}{6} z^{3} \prod_{\zeta}\left(1-\frac{z^{2}}{\zeta^{2}}\right), & k=-1\end{cases}
$$

where now, the products are taken over the non-zero roots $\zeta=\xi+i \eta$ of $F(z)$ with $\xi \geqq 0$. If k is real and $k<-1$ (and in this case only) $F(z)$ has purely imaginary roots; there are exactly two such roots, they are simple and conjugate. The product in (2) is then understood to contain a factor corresponding to one only of these two roots. The second formula in (2) follows formally from the first by taking the limit $k \rightarrow-1$, when one root ζ occurring in the product tends to 0 , and

$$
\frac{1+k}{\zeta^{2}} \rightarrow \frac{\pi^{2}}{6}
$$

Now define a function $(z: k)$! by the limit

$$
\begin{equation*}
\frac{1}{(z: k)!}=h(z, k)=(1+k)^{\frac{1}{2}} \lim _{X \rightarrow \infty} X^{-z} \prod_{0 \leq \xi<x}\left(1+\frac{z}{\zeta}\right) \tag{3}
\end{equation*}
$$

It will be proved that this limit exists for all z and all $k(\neq-1)$ and represents an analytic function of z and k, provided the k-plane is cut from -1 to $-\infty$. For $k=-1$ the definition is

$$
\begin{equation*}
\frac{1}{(z:-1)!}=h(z:-1)=\frac{\pi z}{\sqrt{6}} \lim _{x \rightarrow \infty} X^{-z} \prod_{0<\xi<x}\left(1+\frac{z}{\zeta}\right) \tag{4}
\end{equation*}
$$

We agree to regard (3) as double valued for real $k, k<-1$, i.e. on the cut in the k-plane. For such a $k=k_{0}, F(z)$ has the two roots $\pm \zeta_{0}$, which are purely imaginary, and we agree that the product (3) contains a factor corresponding to one only of these two roots. This ambiguity in the meaning of (3) corresponds to the two limiting values of (3) as k approaches the value k_{0}, from one or other of the two sides $\mathscr{F}(k)>0$, or $\mathscr{F}(k)<0$. If $\zeta_{0}=i \eta_{0}$ is the root with positive imaginary part ($\eta_{0}>0$) it is easy to see that the choice of factor $\left(1+z / \zeta_{0}\right)$ in (3) corresponds to the approach $k \rightarrow k_{0}$ from $\mathscr{I}(k)>0$.

Thus, if ζ be the root near ζ_{0} for k near k_{0} we find

$$
\frac{d k}{d \zeta}=k\left(\left(\pi \cot \pi \zeta-\frac{\mathbf{1}}{\zeta}\right)\right.
$$

For $k=k_{0}, \zeta=\zeta_{0}=i \eta_{0}$ this gives $d k=i \rho d \zeta$, where

$$
\rho=-k_{0} \pi\left(\operatorname{coth} \pi \eta_{0}-\frac{1}{\pi \eta_{0}}\right)>0
$$

This means that as k moves from k_{0} into $\mathscr{I}(k)>0$, so ζ moves from ζ_{0} into $\xi>0$.

From (2), (3), (4)

$$
\begin{equation*}
(z: k)!(-z: k)!=\frac{\pi z}{\sin \pi z+k \pi z} \tag{5}
\end{equation*}
$$

or, equivalently

$$
\begin{equation*}
F(z)=\pi z h(z: k) h(-z: k) \tag{6}
\end{equation*}
$$

Obviously, $h(z)$ has no roots or poles in $\mathscr{R}(z)>0$, and $h(-z)$ has no roots or poles in $\mathscr{R}(z)<0$. This is then an explicit factorisation of the type sought.

In the products (2), (3) and (4) multiple roots of $F(z)$ are allowed for by a corresponding repetition of the factors. In fact (excepting for $k=-1$,
when the triple root at $z=0$ is the sole multiple root of $F(z)$), only double roots occur; more precisely, $F(z)$ has multiple roots only for a discrete set of values of k, these being all real and in the range $-1<k<1$. For each of these values of $k, F(z)$ has exactly two double roots $\pm \zeta$, and these are real. The product (3) contains then just one repeated factor. To prove these statements, let ζ be a multiple root of $F(z)$. Then $k=-\cos \pi \zeta$, and $\pi \zeta=\tan \pi \zeta$. The last equation has real roots only, and, for its different positive roots, the values of $\cos \pi \zeta$ are all different. Finally $F^{\prime \prime \prime}(\zeta)=$ $k \pi^{2} \zeta \neq 0$, so that the multiple root ζ is actually a double root.

In order to establish the limit (3), it is sufficient to replace the continuous variable X by an increasing sequence of values X_{n}. We shall select the sequences $X_{n}=2 n+\frac{1}{2}$, and $X_{n}=2 n+\frac{3}{2}$, for $n=0,1,2,3, \cdots$ To treat the complete range of values of k, it will be necessary to consider both these sequence replacements for X. However, for a discussion of the limit (3), it is first necessary to obtain some results concerning the roots of $F(z)$.

3. The roots of $\boldsymbol{F}(\boldsymbol{z})$

We prove three lemmas concerning the roots $\zeta=\xi+i \eta$. The first is concerned with showing that, for a root $\zeta,|\eta|$ is 'not too large' compared with ξ. The others concern the way in which the roots ζ are related to the sequences X_{n}.

Lemma 1. For any $\alpha>0$, as $\xi \rightarrow \infty$,

$$
\begin{equation*}
\eta=O\left(\xi^{\alpha}\right) \tag{7}
\end{equation*}
$$

If $G>0$, be any positive number, then (7) holds uniformly with respect to k in $|k| \leqq G$.

Proof. Clearly, we may choose a constant $c=c(\alpha, G)$, such that, for $x>\pi c, y>x^{x}$,

$$
\frac{1}{2} e^{y}>2 G y+2
$$

and

$$
\frac{1}{2} e^{z^{\alpha}}>2 G x .
$$

Then, for $\pi z=x+i y$,

$$
|2 i F(z)| \geqq\left|e^{-i \pi z}\right|-\left|e^{i \pi z}\right|-|2 k \pi z|,
$$

where

$$
\begin{aligned}
\left|e^{-i \pi z}\right| & >\frac{1}{2} e^{x^{x}}+\frac{1}{2} e^{y}>2 G x+2 G y+2, \\
\left|e^{i \pi z}\right| & =e^{-y}<1, \\
|2 k \pi z| & <2 G x+2 G y,
\end{aligned}
$$

so that $|2 F(z)|>1$. This means that, if $\zeta=\xi+i \eta$ is a root of $F(z)$, and $\xi>c$, we must have $\pi \eta<\pi(\xi)^{\alpha}$. A similar argument shows that $\pi \eta>-(\pi \xi)^{\alpha}$, and from these two inequalities, $\pi|\eta|<(\pi \xi)^{\alpha}$ for $\xi>c=c(\alpha, G)$. This proves the lemma.

Lemma 2. Suppose $G>0,0<\varepsilon<\pi / 2$.
(i) Let $X_{n}=2 n+\frac{1}{2}$. We can find $n_{0}=n_{0}(\varepsilon, G)$ such that, for $|k| \leqq G$, $|\arg k| \leqq \pi-\varepsilon, F(z)$ has exactly $2 n$ roots in

$$
0<\mathscr{R}(z)<X_{n}
$$

provided $n \geqq n_{0}$.
(ii) Let $X_{n}=2 n+\frac{3}{2}$. We can find $n_{0}=n_{0}(\varepsilon, G)$ such that, for $|k| \leqq G$, $|\arg (-k)| \leqq \pi-\varepsilon$, and $k+1$ not a negative number, $F(z)$ has exactly $2 n+1$ roots in

$$
0<\mathscr{R}(z)<X_{n}
$$

In both cases, for $n>n_{0}, F(z)$ has just two roots ζ, ζ^{*}, in

$$
X_{n-1}<\mathscr{R}(z)<X_{n}
$$

Proof. Consider the integral

$$
\begin{equation*}
I=\frac{1}{2 \pi i} \int_{\Gamma} \frac{F^{\prime}(z)}{F(z)} d z \tag{8}
\end{equation*}
$$

where Γ is the rectangle $P Q R S$, indented at the origin, with sides $\mathscr{R}(z)=0$,

Fig. 1.
X_{n}, and $\mathscr{I}(z)= \pm y / \pi$, as illustrated in Figure 1. On the sides $P Q, R S$, as $y \rightarrow \infty$,

$$
|F(z)|=|\sin \pi z+k \pi z| \sim \frac{1}{2} e^{y}
$$

so that for large $y, F(z)$ does not vanish on these sides. Also $F(z)$ does
not vanish on $S P$ nor, as we shall see, on $Q R$ for n sufficiently large. Then I is the number of roots of $F(z)$ inside Γ.

On $P Q, R S$, as $y \rightarrow \infty$,

$$
\begin{equation*}
\frac{F^{\prime}(z)}{F(z)}=\frac{\pi \cos \pi z+k \pi}{\sin \pi z+k \pi z}=\mp i \pi+O\left(y e^{-x}\right) \tag{9}
\end{equation*}
$$

the upper and lower signs corresponding to $R S, P Q$, respectively. Thus these two sides contribute altogether $X_{n}+O\left(y e^{-v}\right)$ to the integral (7). Also the side $S P$, with indentation, contributes

$$
\begin{equation*}
-\frac{1}{2 \pi i} \int_{P}^{S}\left(\frac{F^{\prime}(z)}{F(z)}-\frac{1}{z}\right) d z-\frac{1}{2 \pi i} \int_{P}^{S} \frac{d z}{z}=-\frac{1}{2} \tag{10}
\end{equation*}
$$

since the integrand in the first term changes sign with z, and the integral is therefore zero. The remaining side $Q R$ gives a contribution

$$
[\log F(z)]_{Q}^{R}=\log \frac{F(z)}{F(\bar{z})}
$$

where $\pi z=\pi X_{n}+i y$ and the logarithm is properly interpreted.
(i) Take $X_{n}=2 n+\frac{1}{2}$, and write $x=\pi X_{n}$. If

$$
w=\frac{\sin \pi z}{\pi z}=\frac{x-i y}{x^{2}+y^{2}} \cosh y=r e^{i \theta},
$$

we have

$$
\begin{equation*}
r=\sin \theta \frac{\cosh (x \tan \theta)}{x \tan \theta} \tag{11}
\end{equation*}
$$

where $y=-x \tan \theta$. For $x=\left(2 n+\frac{1}{2}\right) \pi$, (11) is the polar equation of the path of w when z describes the line $Q R$. Then $y \lessgtr 0$ according as $\theta \gtrless 0$. The curve is symmetrical with respect to the real axis, and cuts it at the point $1 / x$.

Suppose $|\arg k| \leqq \pi-\varepsilon,|k| \leqq G$, and that in Figure 2 the point K is $w=-k$ in the w plane. Then K lies somewhere in the sector $O A C B$ shown in this tigure, with $O A=G, A O U=\varepsilon$. Draw also the sector $O A^{\prime} C^{\prime} B^{\prime}$, with $O A^{\prime}=2 G$, and $A^{\prime} O U=\frac{1}{2} \varepsilon$. Now let y_{0} be the value which minimizes the function $y^{-1} \cosh y$. Choose x_{0} so that $x_{0} \tan \varepsilon / 2>y_{0}$, and so that, if r_{0} is the value given by (11) for $x=x_{0}, \theta=\varepsilon / 2$, then $r_{0}>2 G$. Now any curve (11) with $x>x_{0}$ does not meet $O A^{\prime}$ or $O B^{\prime}$, and for $\theta>\varepsilon / 2$ absolutely, the curve lies entirely outside the sector $O A^{\prime} C^{\prime} B^{\prime}$ of the circle of radius $2 G$. Thus we may choose $n_{0}=n_{0}(\varepsilon, G)$ such that for all $n>n_{0}$, and, therefore, $x>x_{0}$, both $w=0$ and $w=-k$ lie on the same side of the curve (11).

Fig. 2.
Thus, as $y \rightarrow \pm \infty$, both arg $(w+k)$ and arg w have limits $\pm \pi / \mathbf{2}$. Hence arg $[(w+k) / w] \rightarrow 0$ as $y \rightarrow \pm \infty$. Then

$$
\begin{equation*}
F(z)=\pi z(w+k)=\frac{w+k}{w} \cosh y \tag{12}
\end{equation*}
$$

so that $F(z)$ does not vanish on $Q R$, and

$$
\begin{equation*}
\arg F(z) \rightarrow 0 \quad \text { as } \quad y \rightarrow \pm \infty \tag{13}
\end{equation*}
$$

for $n>n_{0}$. From (12)

$$
\begin{equation*}
\log F(z)=\log \cosh y+\log \left(1+\frac{k}{w}\right) \tag{14}
\end{equation*}
$$

where the logarithms on the right are principal values when $|y|$ is sufficiently large. Hence, as $y \rightarrow \infty$,

$$
\begin{equation*}
\log \frac{F(z)}{F(\bar{z})}=\log \left(\frac{1+k / w}{1+k / \bar{w}}\right)=O\left(\frac{1}{|w|}\right)=O\left(y e^{-v}\right) \tag{15}
\end{equation*}
$$

From (9), (10), and (15) we find that

$$
I=X_{n}-\frac{1}{2}+O\left(y e^{-v}\right)
$$

We infer that the 'error' term is zero if y is sufficiently large and $F(z)$ has exactly $X_{n}-\frac{1}{2}=2 n$ roots in $0<\mathscr{R}(z)<X_{n}$.

This result holds for all $n>n_{0}$, so that under the same conditions, $F(z)$ has exactly two roots ζ, ζ^{*}, in the strip $X_{n-1}<\mathscr{R}(z)<X_{n}$.
(ii) The same calculations apply when $X_{n}=2 n+\frac{3}{2}$. In this case we set

$$
r e^{i \theta}=w=-\frac{\sin \pi z}{\pi z}
$$

The path of w is still given by (11), but now

$$
F(z)=-\pi z(w-k)
$$

In the discussion we suppose $|\arg (-k)| \leqq \pi-\varepsilon$, and refer to the same Figure 2, but now K is the point $w=k$. Equations (12) to (15) still hold, provided that k is replaced by $-k$ and $F(z)$ by $-F(z)$. It follows now also that

$$
I=X_{n}-\frac{1}{2}
$$

For $n>n_{0}$, there are $2 n+1$ roots in the strip $0<\xi<X_{n}$, and exactly two roots ζ, ζ^{*} in the strip $X_{n-1}<\xi<X_{n}$. In the case $k+1$ real and negative, one of the $2 n+1$ roots counted lies on the imaginary axis.

Lemma 3. If ζ, ζ^{*} are the two roots of $F(z)$ in the strip $X_{n-1}<\xi<X_{n}$, then, as $n \rightarrow \infty$,

$$
\begin{equation*}
\zeta+\zeta^{*}=X_{n-1}+X_{n}+O\left(\frac{\log n}{n}\right) \tag{16}
\end{equation*}
$$

uniformly with respect to k in $|k| \leqq G$ and (i) for the sequence $X_{n}=2 n+\frac{1}{2}$, in $|\arg k| \leqq \pi-\varepsilon$; (ii) for the sequence $X_{n}=2 n+\frac{3}{2}$, in $|\arg (-k)| \leqq \pi-\varepsilon$.

Proof. (i) Let $X_{n}=2 n+\frac{1}{2}$, and take $n>n_{0}(\varepsilon, G)$. In Figure 1, if y is sufficiently large, $F(z)$ is not zero on the rectangular contour $M Q R L$, $\mathscr{R}(z)=X_{n-1}, X_{n} ; \mathscr{I}(z)= \pm y / \pi$, and, therefore,

$$
\zeta+\zeta^{*}=\frac{1}{2 \pi i} \int z \frac{F^{\prime}(z)}{F(z)} d z
$$

taken round this contour. On the horizontal side $R L$, we find, using (9), that

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{R}^{L} z \frac{F^{\prime}(z)}{F(z)} d z & =-\frac{1}{2} \int_{R}^{L} z d z+O\left(y^{2} e^{-y}\right) \\
& =\frac{1}{2}\left[X_{n-1}+X_{n}\right]+i y / \pi+O\left(y^{2} e^{-y}\right)
\end{aligned}
$$

and, there is a similar contribution from the lower side $M Q$. The two sides $R L, M Q$, together give a contribution to the above integral of

$$
X_{n-1}+X_{n}+O\left(y^{2} e^{-y}\right)
$$

Now consider

$$
\begin{equation*}
\int_{Q}^{R} z \frac{F^{\prime}(z)}{F(z)} d z=[z \log F(z)]_{Q}^{R}-\int_{Q}^{R} \log F(z) d z \tag{17}
\end{equation*}
$$

Using (14),

$$
\begin{aligned}
{[z \log F(z)]_{Q}^{R} } & =X_{n} \log \frac{F(z)}{F(\bar{z})}+\frac{i y}{\pi} \log F(z) F(\bar{z}) \\
& =2 \log (\cosh y)+O\left(y^{2} e^{-v}\right)
\end{aligned}
$$

as $y \rightarrow \infty$, where the logarithms take their principal values. Since $X_{n}-X_{n-1}=2, F(z-2)-F(z)=-2 k \pi$, we find that, as $y \rightarrow \infty$,

$$
\begin{align*}
\left(\int_{Q}^{R}-\int_{M}^{L}\right) z \frac{F^{\prime}(z)}{F(z)} d z= & -\int_{Q}^{R} \log F(z) d z+\int_{Q}^{R} \log [F(z)-2 k \pi] d z+O\left(y^{2} e^{-y}\right) \\
& =\int_{Q}^{R} \log \left[1-\frac{2 k \pi}{F(z)}\right] d z+O\left(y^{2} e^{-y}\right) \tag{18}
\end{align*}
$$

Thus, adding all these contributions to the integral, and letting $y \rightarrow \infty$,

$$
\begin{equation*}
\zeta+\zeta^{*}=X_{n-1}+X_{n}+\frac{1}{2 \pi^{2}} \int_{-\infty}^{\infty} \log \left[1-\frac{2 k \pi}{F(z)}\right] d y \tag{19}
\end{equation*}
$$

where $\pi z=\pi X_{n}+i y=x+i y$.
Returning to Figure 2, suppose $O A^{\prime}$ meets the curve (11) at $A^{\prime \prime}$, so that $A^{\prime \prime}$ separates the curve into two parts. For one part, the distance from K to this part exceeds G, so, for w on it,

$$
|w+k| \geqq G \geqq|k| .
$$

The other part is separated from K by the line $O A^{\prime}$, so the distance from K to any point on it exceeds the distance from K to $O A^{\prime}$, and hence $|w+k| \geqq|k| \sin \varepsilon / 2$. We have supposed that K is, as marked, in the sector $A O C$. But by symmetry, the same inequalities hold for K in the sector $B O C$. Thus, for $x>x_{0}$, and any w on the curve (11),

$$
\begin{equation*}
\left|\frac{k}{w+k}\right|<\operatorname{cosec} \frac{1}{2} \varepsilon . \tag{20}
\end{equation*}
$$

This inequality holds for $n>n_{0}(\varepsilon, G)$, and $|k| \leqq G,|\arg k| \leqq \pi-\varepsilon$. Thus, in (19),

$$
\begin{align*}
\left|\frac{2 k \pi}{F(z)}\right| & =\left|\frac{2 k}{z(w+k)}\right|<\frac{2}{X_{n}}\left|\frac{k}{w+k}\right| \tag{21}\\
& <\frac{2 \operatorname{cosec} \varepsilon / 2}{X_{n}}
\end{align*}
$$

We may suppose X_{n} sufficiently large in (21) so that $|2 k \pi / F(z)|<\frac{1}{2}$. Then the logarithm in (19) must represent the principal value in the whole range $-\infty<y<\infty$. Hence, from the logarithmic series expansion, and (21)

$$
\begin{equation*}
\left|\log \left[1-\frac{2 \pi k}{F(z)}\right]\right|<\left|\frac{4 k \pi}{F(z)}\right|<\frac{4 \operatorname{cosec} \varepsilon / 2}{X_{n}} \tag{22}
\end{equation*}
$$

We can now estimate the integral in (19). Take $y>\log x^{2}$, then

$$
\begin{aligned}
\left|\frac{F(z)}{k}\right| & =\left|\frac{\cosh y}{k}+x+i y\right|>\frac{\cosh y}{G}-x-y \\
& \geqq \frac{e^{y}}{2 G}-x-y \geqq \frac{e^{y}}{6 G}+\left(\frac{e^{\log x^{2}}}{6 G}-x\right)+\left(\frac{e^{y}}{6 G}-y\right), \\
& >\frac{e^{y}}{6 G}
\end{aligned}
$$

for $x>c_{1}$, a suitable constant depending on G only. Then

$$
\left|\int_{\log x^{2}}^{\infty} \log \left[1-\frac{2 k \pi}{F(z)}\right] d y\right|<24 G \pi \int_{\log x^{2}}^{\infty} e^{-y} d y=\frac{24 \pi G}{x^{2}}
$$

if $x>c_{1}$. The same estimate applies to the integral over the range $-\infty$ to $-\log x^{2}$.

Also, from (22),

$$
\left|\int_{-\log x^{2}}^{\log x^{2}} \log \left[1-\frac{2 k \pi}{F(z)}\right] d y\right|<\frac{8 \operatorname{cosec} \varepsilon / 2}{X_{n}} \log x^{2}
$$

Since $x=\pi X_{n}$, we obtain from these two inequalities,

$$
\begin{equation*}
\int_{-\infty}^{\infty} \log \left[1-\frac{2 k \pi}{F(z)}\right] d y=O\left(\frac{\log n}{n}\right) \tag{23}
\end{equation*}
$$

as $n \rightarrow \infty$. Now (16) follows from (19) and (23).
(ii) Let $X_{n}=2 n+\frac{3}{2},|\arg (-k)| \leqq \pi-\varepsilon$. Now we set

$$
w=r e^{i \theta}=-\frac{\sin \pi z}{\pi z}
$$

Then the proof of (19) and hence (16) follows exactly as in (i). In figure 2, K is now the point $w=k$ and all the formulae in (i) hold if we replace k by $-k$ and $F(z)$ by $-F(z)$.

4. Some properties of ($z: k)$!

Theorem 1. Except for a branch point at $k=-1$, the function $h(z, k)=[(z: k)!]^{-1}$, defined in (3), is an analytic function of z, k, for all values of these arguments.

Proof. Let

$$
\begin{equation*}
\Pi_{n}=(1+k)^{\frac{1}{2}} X_{n}^{-z} \prod_{0<\zeta<X_{n}}\left(1+\frac{z}{\zeta}\right) \tag{24}
\end{equation*}
$$

Take $|z| \leqq R,|k| \leqq G$ and $|\arg (\pm k)| \leqq \pi-\varepsilon$ according as $X_{n}=2 n+\frac{1}{2}$,
or $X_{n}=2 n+\frac{3}{2}$. Choose $n_{1}>n_{0}(\varepsilon, G)$, such that $R / X_{n_{1}}<\frac{1}{2}$. Also, let

$$
\begin{equation*}
\sigma_{r}=\log X_{r}-\sum_{0<\xi<x, \zeta} \frac{1}{\zeta} . \tag{25}
\end{equation*}
$$

Now we may write, for $q>p \geqq n>n_{1}$,

$$
\begin{equation*}
\log \frac{\Pi_{q}}{\Pi_{p}}=-z\left(\sigma_{q}-\sigma_{p}\right)+\sum_{x_{p} \leq \xi<x_{q}}\left[\log \left(1+\frac{z}{\zeta}\right)-\frac{z}{\zeta}\right] . \tag{26}
\end{equation*}
$$

In the summation $|z / \zeta| \leqq R / X_{y}<\frac{1}{2}$, and $\log (1+z / \zeta)$ is understood as the principal value; this of course implies the appropriate meaning for a logarithm on the left. By Lemma 2, as $n \rightarrow \infty$, and uniformly with respect to z and k,

$$
\begin{equation*}
\sum_{x_{,} \leq \xi<x_{q}}\left[\log \left(1+\frac{z}{\zeta}\right)-\frac{z}{\zeta}\right]=\sum_{x_{p} \leq \varepsilon<x_{q}} O\left(\frac{1}{\zeta^{2}}\right)=O\left(\frac{1}{n}\right) \tag{27}
\end{equation*}
$$

Also, in accordance with lemma 2, if ζ_{t} and ζ_{i}^{*} be the two roots ζ in $X_{t-1}<\xi<X_{t}$, then

$$
\sigma_{Q}-\sigma_{p}=\sum_{t=p+1}^{q}\left(\frac{1}{t}-\frac{1}{\zeta_{t}}-\frac{1}{\zeta_{t}^{*}}\right)+O\left(\frac{1}{n}\right) .
$$

By lemma 1, which $0<\alpha<1, \zeta_{t}$ and ζ_{t}^{*} are equal to $2 t+O\left(t^{\alpha}\right)$ and hence $\sigma_{q}-\sigma_{p}=O\left(1 / n^{1-\alpha}\right)$. Then, from (26) and (27), as $n \rightarrow \infty$,

$$
\log \frac{\Pi_{q}}{\Pi_{p}} \rightarrow 0
$$

uniformly for $q>p \geqq n$ and z, k, restricted in the manner specified.
By the general principle of convergence, the sequence $\log \left(\Pi_{n} / \Pi_{n_{1}}\right)$ and hence also the sequence $\Pi_{n} / \Pi_{n_{1}}$ converges as $n \rightarrow \infty$ and uniformly with respect to z and k. Moreover each term of this sequence is an analytic function z and k; this is obvious for z, and it is clear also for k when we note that $\Pi_{n} / \Pi_{n_{1}}$ involves symmetrically all the roots ζ of $F(z)$ with $X_{n_{1}} \leqq \xi<X_{n}$ and that there are no roots on the bounding line $\xi=X_{n_{2}}$. Thus the limit $\Pi_{\infty} / \Pi_{n_{1}}$ is an analytic function of z and k.

For $X_{n}=2 n+\frac{1}{2}$ it is clear that $\Pi_{n_{2}}$ is analytic in z, k, in $|z| \leqq R$, $|k| \leqq G,|\arg k| \leqq \pi-\varepsilon$.

For $X_{n}=2 n+\frac{3}{2}, \quad \Pi_{n_{1}}$ is analytic in z, k, in $|z| \leqq R,|k| \leqq G$, $|\arg (-k)| \leqq \pi-\varepsilon$ provided we add the additional restriction that $k+1$ be not zero or a negative number. This is because the first factor in $\Pi_{n_{1}}$ changes discontinuously as k crosses the cut from -1 to $-\infty$ in the k plane.

These results, for the two sequences X_{n}, taken together show that the limit (3) exists and represents an analytic function of z, k as stated in the theorem.

From the proof just given it is clear that σ_{r}, defined by (25), tends to a limit as $r \rightarrow \infty$, which is an analytic function of k in the cut plane. We may therefore define a generalised Euler' 'constant' γ_{k} by

$$
\begin{equation*}
\gamma_{k}=\lim _{r \rightarrow \infty}\left[\sum_{0<\xi<r} \frac{1}{\zeta}-\log r\right] . \tag{28}
\end{equation*}
$$

Then ($z: k$)! may be represented by the generalised Weierstrass products

$$
\begin{align*}
\frac{1}{(z: k)!} & =(1+k)^{\frac{1}{2}} e^{\gamma_{k}^{z}} \prod_{0<\xi<\infty}\left(1+\frac{z}{\zeta}\right) e^{-s / 6}, & & k \neq-1 \\
& =\frac{\pi z}{\sqrt{6}} e^{\gamma_{-1} \pi} \prod_{0<\xi<\infty}\left(1+\frac{z}{\zeta}\right) e^{-z / \zeta}, & & k=-1 . \tag{29}
\end{align*}
$$

From (29),

$$
\begin{array}{rrr}
(0: k)! & =(1+k)^{-\frac{1}{2}}, & k \neq-1 \\
(z:-1)!\sim \sqrt{ } 6 / \pi z, & \text { as } z \rightarrow 0 .
\end{array}
$$

And, if $\psi(z ; k)=d / d z(z: k)!$,

$$
-\frac{\psi(z: k)}{(z: k)!}=\gamma_{k}+\sum_{0<\xi<\infty}\left(\frac{1}{z+\zeta}-\frac{1}{\zeta}\right)
$$

In particular

$$
\begin{equation*}
\psi(0: k)=-\frac{\gamma_{k}}{(1+k)^{\frac{1}{2}}} \tag{31}
\end{equation*}
$$

5. Stirling's formula for $(z: k)$!

Theorem 2. As $|z| \rightarrow \infty$,

$$
\begin{equation*}
(z: k)!\sim \sqrt{2 \pi z} z^{z} e^{-z} \tag{32}
\end{equation*}
$$

uniformly with respect to $\arg z$ in $|\arg z| \leqq \pi-\delta$, and uniformly with respect to k in $|k| \leqq G$.

Proof. Set $\lambda_{n}=\frac{1}{2}\left(X_{n-1}+X_{n}\right)$ and define

$$
\begin{equation*}
\phi(z)=\lim _{n \rightarrow \infty} X_{n}^{-x} \prod_{r=1}^{n}\left(1+\frac{z}{\lambda_{\tau}}\right)^{2} \tag{33}
\end{equation*}
$$

Naturally $\phi(z)$ depends on which of the two sequences X_{n} is taken.
Then as $|z| \rightarrow \infty$, uniformly in $|\arg z| \leqq \pi-\delta$,

$$
z!\phi(z) \sim \begin{cases}{\left[\left(-\frac{1}{4}\right)!\right]^{2} / \sqrt{ } \pi,} & \text { for } X_{n}=2 n+\frac{1}{2}, \tag{34}\\ \Gamma\left(\frac{1}{4}\right)!\prod^{2} / z \sqrt{ } \pi, & \text { for } X_{n}=2 n+\frac{3}{2}\end{cases}
$$

From (3),

$$
\begin{equation*}
\frac{1}{(z: k)!\phi(z)}=(1+k)^{\frac{1}{2}} \lim _{n \rightarrow \infty} \frac{\prod_{0<\zeta<x_{n}}\left(1+\frac{z}{\zeta}\right)}{\prod_{r=1}^{n}\left(1+\frac{z}{\lambda_{r}}\right)^{2}} \tag{35}
\end{equation*}
$$

Take $p>n_{0}(\varepsilon, G)$ and, for the moment, ignore the earlier factors of the products in (35). Thus consider

$$
\begin{equation*}
\prod_{p+1}^{n} \frac{\left(1+\frac{z}{\zeta}\right)\left(1+\frac{z}{\zeta^{*}}\right)}{\left(1+\frac{z}{\lambda^{*}}\right)^{2}} \tag{36}
\end{equation*}
$$

where, in accordance with lemma $2, \zeta$ and ζ^{*} are the roots of $F(z)$ in $X_{r-1}<\xi<X_{r}$. In the factor of (36) with $\lambda=\lambda_{r}$, write

$$
\zeta=\lambda+h, \quad \zeta^{*}=\lambda+h^{*}
$$

By lemma 1, with any selected $\alpha, 0<\alpha<\frac{1}{2}, h$ and h^{*} are both $O\left(r^{\alpha}\right)$. By lemma 3, $h+h^{*}=\zeta+\zeta^{*}-2 \lambda=O(\log r / r)$. Here the O-symbols are uniform with respect to k in $|k| \leqq G$ and $|\arg (\pm k)| \leqq \pi-\varepsilon$, according as $X_{n}=2 n+\frac{1}{2}$ or $X_{n}=2 n+\frac{3}{2}$.

Now

$$
\begin{align*}
\frac{\left(1+\frac{z}{\zeta}\right)\left(1+\frac{z}{\zeta^{*}}\right)}{\left(1+\frac{z}{\lambda}\right)^{2}} & =\frac{1+\frac{\lambda}{z+\lambda} \cdot \frac{h+h^{*}}{\lambda}+\left(\frac{\lambda}{z+\lambda}\right)^{2} \frac{h h^{*}}{\lambda^{2}}}{1+\frac{h+h^{*}}{\lambda}+\frac{h h^{*}}{\lambda^{2}}} \tag{37}\\
& =1+O\left(\frac{1}{r^{2-2 \alpha}}\right)
\end{align*}
$$

since $\lambda \mid z+\lambda$ is bounded in $\lambda>0,|\arg z| \leqq \pi-\delta$. The O-term is uniform for $|\arg z| \leqq \pi-\delta$ and $|k| \leqq G,|\arg (\pm k)| \leqq \pi-\varepsilon$. It follows that the infinite product

$$
\prod_{r=p+1}^{\infty} \frac{\left(1+\frac{z}{\zeta}\right)\left(1+\frac{z}{\zeta^{*}}\right)}{\left(1+\frac{z}{\lambda_{r}}\right)^{2}}
$$

converges to an analytic limit $\phi_{1}(z, k) ;$ and as $|z| \rightarrow \infty$ in $|\arg z| \leqq \pi-\delta$

$$
\phi_{1}(z, k) \rightarrow \theta_{1}(k)=\prod_{r=p+1}^{\infty} \frac{\lambda_{r}^{2}}{\zeta \zeta^{*}},
$$

uniformly with respect to k.
Now if we set

$$
\theta_{2}(k)=(1+k)^{\frac{1}{2}} \frac{\prod_{r=1}^{p} \lambda_{r}^{2}}{\prod_{0<\xi<x_{p}} \zeta^{\prime}},
$$

and recall that, according to lemma 2 , there are either $2 p$ or $2 p+1$ roots ζ with $<\xi<X_{p}$, we have from (35), letting $|z| \rightarrow \infty$ in $|\arg z| \leqq \pi-\delta$,

$$
\frac{1}{(z: k)!\phi(z)} \sim\left\{\begin{aligned}
\theta_{1}(k) \theta_{2}(k), & X_{n}=2 n+\frac{1}{2} \\
z \theta_{1}(k) \theta_{2}(k), & X_{n}=2 n+\frac{3}{2}
\end{aligned}\right.
$$

uniformly in $|k| \leqq G,|\arg (\pm k)| \leqq \pi-\varepsilon$.
Combining this with (34), as $|z| \rightarrow \infty$,

$$
\frac{z!}{(z: k)!}=\frac{z!\phi}{(z: k)!\phi} \sim\left\{\begin{array}{l}
\frac{\left[\left(-\frac{1}{4}\right)!\right]^{2}}{\sqrt{ } \pi} \theta_{1}(k) \theta_{2}(k), \tag{38}\\
\frac{\left[\left(\frac{1}{4}\right)!\right]^{2}}{\sqrt{ } \pi} \theta_{1}(k) \theta_{2}(k),
\end{array}\right.
$$

with the same uniformity as that just specified. Since the two statements in (38) hold for a common range of values of $\arg k$ so the two expressions in (38) are identical. There is of course no contradiction here since the functions θ_{1}, θ_{2}, like ϕ, are defined differently for the two sequences X_{n}. Thus we may write

$$
\frac{z!}{(z: k)!} \sim C(k)
$$

as $|z| \rightarrow \infty$ uniformly for $|\arg z| \leqq \pi-\delta,|k| \leqq G$. And, of course, $C(k)$ is an analytic function of k.

From (5),

$$
\frac{\sin \pi z+k \pi z}{\sin \pi z}=\frac{z!(-z)!}{(z: k)!(-z: k)!},
$$

and, letting $|z| \rightarrow \infty$ along (say) the imaginary axis, we have

$$
1=[C(\bar{k})]^{2}
$$

Since $C(0)=1$, so $C(k) \equiv 1$. This shows that $(z: k)$! behaves asymptotically like z ! and Theorem 2 follows from Stirling's formula.

Acknowledgement

This work arose out of a problem posed by Mr. H. E. Doran, in connection with his work on applications of the Wiener-Hopf technique.

References

[1] W. T. Koiter, Kon. Ned. Acad. Wet. Proc. B, 69 (1956), 558.
[2] B. Noble, Methods Based on the Wiener-Hopf Technique, Pergamon Press, London (1958), 162.
[3] E. C. Titchmarsh, Theory of Functions, Second Edition, Oxford (1939), Chapter 8.
Departments of Mathematics, University of Sydney.

