A GENERALIZATION OF z!

W. B. SMITH-WHITE and V. T. BUCHWALD

(received 7 November 1963)

Summary

A generalised factorial function (z:k)! is defined as an infinite product similar to the Euler product for z!, but with the sequences of integers replaced by the roots of $F(z) = \sin \pi z + k\pi z$. It is proved that, apart from poles in $\Re(z) < 0$, (z:k)! is analytic in both variables, and that F(z)may be expressed in the form $F(z) = \pi z/(z:k)!(-z:k)!$

As $|z| \to \infty$, it is shown that the function satisfies a Stirling formula $(z:k)! \sim \sqrt{2\pi z} z^z e^{-z}$.

1. Introduction

Koiter [1] has used certain approximations in order to apply the Wiener-Hopf technique to mixed boundary value problems associated with the infinite strip in plane elasto-statics. It has been pointed out by Noble [2] that it is possible in these cases to obtain an exact solution provided the function

$$H(z) = \sinh z + kz$$

can be factorised into a product $H(z) = zH_+(z)H_-(z)$ where H_+ and H_- are regular and non-zero in the upper and lower half planes, respectively. However, to apply this method it is necessary to know the asymptotic behaviour of the factors H_+ and H_- for large |z|.

In this paper, such a factorisation is obtained in terms of a generalised factorial function (z:k)! of two variables, defined by an infinite product somewhat similar to Euler's formula for the gamma function. It will be shown in Theorem 1 that this product represents an analytic function of both z and k. The important result that, as $|z| \rightarrow \infty$,

$$(z:k)! \sim \sqrt{(2\pi z)z^z/e^{-z}},$$

is given in Theorem 2.

It will be convenient to consider the function

(1)
$$F(z) = \sin \pi z + k\pi z,$$

which is obtained from H by trivial replacements.

2. The factorisation of F(z)

The function

$$G(t) = \frac{\sin \pi \sqrt{t}}{\pi \sqrt{t}} + k$$

is an integral function of order $\frac{1}{2}$. Thus, if $M(r) = \max_{|t|=r} |G(t)|$, then

$$M(r) \leq \frac{e^{\pi\sqrt{r}}}{\pi\sqrt{r}} + k < 2e^{\pi\sqrt{r}},$$

for large r. Hence, as $r \to \infty$, log $M(r) = O(r^{\frac{1}{2}})$; and, it is easy to see, log $M(r) = O(r^{\beta})$ does not hold for any $\beta < \frac{1}{2}$. By theorems due to Hadamard [3], G(t) has an infinity of roots τ ; for $\beta > \frac{1}{2}$ the infinite series

$$\sum_{\tau\neq 0} |\tau|^{-\beta}$$

converges; and, if $G(0) \neq 0$, i.e. $k \neq -1$,

$$G(t) = G(0) \prod_{\tau} \left(1 - \frac{t}{\tau}\right).$$

The infinite product converges absolutely, and uniformly in $|t| \leq R$, for any R > 0.

If G(0) = 0, the same theorems, applied to G(t)/t, give

$$G(t) = G'(0)t \prod_{\tau} \left(1 - \frac{t}{\tau}\right),$$

where the infinite product is over the non-zero roots of G(t).

Replacing t by z^2 and τ by ζ^2 , we have

(2)
$$F(z) = \begin{cases} (1+k)\pi z \prod_{\zeta} \left(1-\frac{z^2}{\zeta^2}\right), & k \neq -1, \\ -\frac{\pi^3}{6} z^3 \prod_{\zeta} \left(1-\frac{z^2}{\zeta^2}\right), & k = -1, \end{cases}$$

where now, the products are taken over the non-zero roots $\zeta = \xi + i\eta$ of F(z) with $\xi \ge 0$. If k is real and k < -1 (and in this case only) F(z) has purely imaginary roots; there are exactly two such roots, they are simple and conjugate. The product in (2) is then understood to contain a factor corresponding to one only of these two roots. The second formula in (2) follows formally from the first by taking the limit $k \to -1$, when one root ζ occurring in the product tends to 0, and

$$\frac{1+k}{\zeta^2} \to \frac{\pi^2}{6}$$

https://doi.org/10.1017/S1446788700024095 Published online by Cambridge University Press

 $\mathbf{328}$

A generalization of *s*!

Now define a function (z:k)! by the limit

(3)
$$\frac{1}{(z:k)!} = h(z,k) = (1+k)^{\frac{1}{2}} \lim_{X \to \infty} X^{-z} \prod_{0 \le \xi < X} \left(1 + \frac{z}{\zeta} \right).$$

It will be proved that this limit exists for all z and all $k \ (\neq -1)$ and represents an analytic function of z and k, provided the k-plane is cut from -1 to $-\infty$. For k = -1 the definition is

(4)
$$\frac{1}{(z:-1)!} = h(z:-1) = \frac{\pi z}{\sqrt{6}} \lim_{X \to \infty} X^{-z} \prod_{0 < \xi < X} \left(1 + \frac{z}{\zeta}\right)$$

We agree to regard (3) as double valued for real k, k < -1, i.e. on the cut in the k-plane. For such a $k = k_0$, F(z) has the two roots $\pm \zeta_0$, which are purely imaginary, and we agree that the product (3) contains a factor corresponding to one only of these two roots. This ambiguity in the meaning of (3) corresponds to the two limiting values of (3) as k approaches the value k_0 , from one or other of the two sides $\mathscr{I}(k) > 0$, or $\mathscr{I}(k) < 0$. If $\zeta_0 = i\eta_0$ is the root with positive imaginary part ($\eta_0 > 0$) it is easy to see that the choice of factor $(1+z/\zeta_0)$ in (3) corresponds to the approach $k \to k_0$ from $\mathscr{I}(k) > 0$.

Thus, if ζ be the root near ζ_0 for k near k_0 we find

$$\frac{dk}{d\zeta} = k\left(\left(\pi \cot \pi \zeta - \frac{1}{\zeta}\right)\right).$$

For $k = k_0$, $\zeta = \zeta_0 = i\eta_0$ this gives $dk = i\rho d\zeta$, where

$$\rho = -k_0 \pi \left(\coth \pi \eta_0 - \frac{1}{\pi \eta_0} \right) > 0.$$

This means that as k moves from k_0 into $\mathscr{I}(k) > 0$, so ζ moves from ζ_0 into $\xi > 0$.

From (2), (3), (4)

(5)
$$(z:k)! (-z:k)! = \frac{\pi z}{\sin \pi z + k\pi z}$$

or, equivalently

(6)
$$F(z) = \pi z h(z:k)h(-z:k).$$

Obviously, h(z) has no roots or poles in $\Re(z) > 0$, and h(-z) has no roots or poles in $\Re(z) < 0$. This is then an explicit factorisation of the type sought.

In the products (2), (3) and (4) multiple roots of F(z) are allowed for by a corresponding repetition of the factors. In fact (excepting for k = -1, when the triple root at z = 0 is the sole multiple root of F(z)), only double roots occur; more precisely, F(z) has multiple roots only for a discrete set of values of k, these being all real and in the range -1 < k < 1. For each of these values of k, F(z) has exactly two double roots $\pm \zeta$, and these are real. The product (3) contains then just one repeated factor. To prove these statements, let ζ be a multiple root of F(z). Then $k = -\cos \pi \zeta$, and $\pi \zeta = \tan \pi \zeta$. The last equation has real roots only, and, for its different positive roots, the values of $\cos \pi \zeta$ are all different. Finally $F'''(\zeta) = k\pi^2 \zeta \neq 0$, so that the multiple root ζ is actually a double root.

In order to establish the limit (3), it is sufficient to replace the continuous variable X by an increasing sequence of values X_n . We shall select the sequences $X_n = 2n + \frac{1}{2}$, and $X_n = 2n + \frac{3}{2}$, for $n = 0, 1, 2, 3, \dots$. To treat the complete range of values of k, it will be necessary to consider both these sequence replacements for X. However, for a discussion of the limit (3), it is first necessary to obtain some results concerning the roots of F(z).

3. The roots of F(z)

We prove three lemmas concerning the roots $\zeta = \xi + i\eta$. The first is concerned with showing that, for a root ζ , $|\eta|$ is 'not too large' compared with ξ . The others concern the way in which the roots ζ are related to the sequences X_n .

LEMMA 1. For any $\alpha > 0$, as $\xi \to \infty$, (7) $\eta = O(\xi^{\alpha})$.

If G > 0, be any positive number, then (7) holds uniformly with respect to k in $|k| \leq G$.

PROOF. Clearly, we may choose a constant $c = c(\alpha, G)$, such that, for $x > \pi c$, $y > x^{x}$,

$$\frac{1}{2}e^{y} > 2Gy+2,$$

and

 $\frac{1}{2}e^{x^{\alpha}} > 2Gx.$

Then, for $\pi z = x + iy$,

$$|2i F(z)| \geq |e^{-i\pi z}| - |e^{i\pi z}| - |2k\pi z|,$$

where

$$\begin{aligned} |e^{-i\pi z}| &> \frac{1}{2}e^{x^{z}} + \frac{1}{2}e^{y} > 2Gx + 2Gy + 2, \\ |e^{i\pi z}| &= e^{-y} < 1, \\ |2k\pi z| &< 2Gx + 2Gy, \end{aligned}$$

so that |2F(z)| > 1. This means that, if $\zeta = \xi + i\eta$ is a root of F(z), and $\xi > c$, we must have $\pi\eta < \pi(\xi)^{\alpha}$. A similar argument shows that $\pi\eta > -(\pi\xi)^{\alpha}$, and from these two inequalities, $\pi|\eta| < (\pi\xi)^{\alpha}$ for $\xi > c = c(\alpha, G)$. This proves the lemma.

LEMMA 2. Suppose G > 0, $0 < \varepsilon < \pi/2$.

(i) Let $X_n = 2n + \frac{1}{2}$. We can find $n_0 = n_0(\varepsilon, G)$ such that, for $|k| \leq G$, $|\arg k| \leq \pi - \varepsilon$, F(z) has exactly 2n roots in

$$0 < \mathscr{R}(z) < X_n$$

provided $n \geq n_0$.

(ii) Let $X_n = 2n + \frac{3}{2}$. We can find $n_0 = n_0(\varepsilon, G)$ such that, for $|k| \leq G$, $|\arg(-k)| \leq \pi - \varepsilon$, and k+1 not a negative number, F(z) has exactly 2n+1 roots in

$$0 < \mathscr{R}(z) < X_n$$

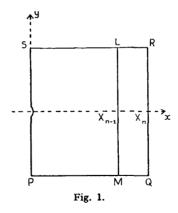
In both cases, for $n > n_0$, F(z) has just two roots ζ , ζ^* , in

$$X_{n-1} < \mathscr{R}(z) < X_n.$$

PROOF. Consider the integral

(8)
$$I = \frac{1}{2\pi i} \int_{\Gamma} \frac{F'(z)}{F(z)} dz$$

where Γ is the rectangle PQRS, indented at the origin, with sides $\Re(z) = 0$,



 X_n , and $\mathscr{I}(z) = \pm y/\pi$, as illustrated in Figure 1. On the sides PQ, RS, as $y \to \infty$,

$$|F(z)| = |\sin \pi z + k\pi z| \sim \frac{1}{2}e^{y},$$

so that for large y, F(z) does not vanish on these sides. Also F(z) does

not vanish on SP nor, as we shall see, on QR for *n* sufficiently large. Then I is the number of roots of F(z) inside Γ .

On PQ, RS, as $y \to \infty$,

(9)
$$\frac{F'(z)}{F(z)} = \frac{\pi \cos \pi z + k\pi}{\sin \pi z + k\pi z} = \mp i\pi + O(ye^{-y}),$$

the upper and lower signs corresponding to RS, PQ, respectively. Thus these two sides contribute altogether $X_n + O(ye^{-y})$ to the integral (7). Also the side SP, with indentation, contributes

(10)
$$-\frac{1}{2\pi i} \int_{P}^{S} \left(\frac{F'(z)}{F(z)} - \frac{1}{z}\right) dz - \frac{1}{2\pi i} \int_{P}^{S} \frac{dz}{z} = -\frac{1}{2},$$

since the integrand in the first term changes sign with z, and the integral is therefore zero. The remaining side QR gives a contribution

$$\left[\log F(z)\right]_{Q}^{R} = \log \frac{F(z)}{F(\bar{z})}$$

where $\pi z = \pi X_n + iy$ and the logarithm is properly interpreted.

(i) Take $X_n = 2n + \frac{1}{2}$, and write $x = \pi X_n$. If

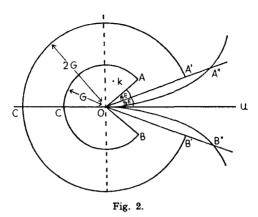
$$w = \frac{\sin \pi z}{\pi z} = \frac{x - iy}{x^2 + y^2} \cosh y = re^{i\theta},$$

we have

(11)
$$r = \sin \theta \frac{\cosh (x \tan \theta)}{x \tan \theta}$$

where $y = -x \tan \theta$. For $x = (2n + \frac{1}{2})\pi$, (11) is the polar equation of the path of w when z describes the line QR. Then $y \leq 0$ according as $\theta \geq 0$. The curve is symmetrical with respect to the real axis, and cuts it at the point 1/x.

Suppose $|\arg k| \leq \pi - \varepsilon$, $|k| \leq G$, and that in Figure 2 the point K is w = -k in the w plane. Then K lies somewhere in the sector OACB shown in this figure, with OA = G, $AOU = \varepsilon$. Draw also the sector OA'CB', with OA' = 2G, and $A'OU = \frac{1}{2}\varepsilon$. Now let y_0 be the value which minimizes the function $y^{-1} \cosh y$. Choose x_0 so that $x_0 \tan \varepsilon/2 > y_0$, and so that, if r_0 is the value given by (11) for $x = x_0$, $\theta = \varepsilon/2$, then $r_0 > 2G$. Now any curve (11) with $x > x_0$ does not meet OA' or OB', and for $\theta > \varepsilon/2$ absolutely, the curve lies entirely outside the sector OA'C'B' of the circle of radius 2G. Thus we may choose $n_0 = n_0(\varepsilon, G)$ such that for all $n > n_0$, and, therefore, $x > x_0$, both w = 0 and w = -k lie on the same side of the curve (11).



Thus, as $y \to \pm \infty$, both arg (w+k) and arg w have limits $\pm \pi/2$. Hence arg $[(w+k)/w] \to 0$ as $y \to \pm \infty$. Then

(12)
$$F(z) = \pi z (w+k) = \frac{w+k}{w} \cosh y,$$

so that F(z) does not vanish on QR, and

(13)
$$\arg F(z) \to 0 \text{ as } y \to \pm \infty,$$

for $n > n_0$. From (12)

(14)
$$\log F(z) = \log \cosh y + \log \left(1 + \frac{k}{w}\right),$$

where the logarithms on the right are principal values when |y| is sufficiently large. Hence, as $y \to \infty$,

(15)
$$\log \frac{F(z)}{F(\bar{z})} = \log \left(\frac{1+k/w}{1+k/\bar{w}}\right) = O\left(\frac{1}{|w|}\right) = O(ye^{-y}).$$

From (9), (10), and (15) we find that

$$I = X_n - \frac{1}{2} + O(ye^{-y}).$$

We infer that the 'error' term is zero if y is sufficiently large and F(z) has exactly $X_n - \frac{1}{2} = 2n$ roots in $0 < \Re(z) < X_n$.

This result holds for all $n > n_0$, so that under the same conditions, F(z) has exactly two roots ζ , ζ^* , in the strip $X_{n-1} < \Re(z) < X_n$.

(ii) The same calculations apply when $X_n = 2n + \frac{3}{2}$. In this case we set

$$re^{i\theta} = w = -\frac{\sin \pi z}{\pi z}$$

The path of w is still given by (11), but now

$$F(z) = -\pi z(w-k).$$

In the discussion we suppose $|\arg(-k)| \leq \pi - \varepsilon$, and refer to the same Figure 2, but now K is the point w = k. Equations (12) to (15) still hold, provided that k is replaced by -k and F(z) by -F(z). It follows now also that

$$I = X_n - \frac{1}{2}.$$

For $n > n_0$, there are 2n+1 roots in the strip $0 < \xi < X_n$, and exactly two roots ζ , ζ^* in the strip $X_{n-1} < \xi < X_n$. In the case k+1 real and negative, one of the 2n+1 roots counted lies on the imaginary axis.

LEMMA 3. If ζ , ζ^* are the two roots of F(z) in the strip $X_{n-1} < \xi < X_n$, then, as $n \to \infty$,

(16)
$$\zeta + \zeta^* = X_{n-1} + X_n + O\left(\frac{\log n}{n}\right),$$

uniformly with respect to k in $|k| \leq G$ and (i) for the sequence $X_n = 2n + \frac{1}{2}$, in $|\arg k| \leq \pi - \varepsilon$; (ii) for the sequence $X_n = 2n + \frac{3}{2}$, in $|\arg (-k)| \leq \pi - \varepsilon$.

PROOF. (i) Let $X_n = 2n + \frac{1}{2}$, and take $n > n_0(\varepsilon, G)$. In Figure 1, if y is sufficiently large, F(z) is not zero on the rectangular contour *MQRL*, $\Re(z) = X_{n-1}, X_n; \mathscr{I}(z) = \pm y/\pi$, and, therefore,

$$\zeta + \zeta^* = \frac{1}{2\pi i} \int z \, \frac{F'(z)}{F(z)} \, dz,$$

taken round this contour. On the horizontal side RL, we find, using (9), that

$$\frac{1}{2\pi i} \int_{R}^{L} z \frac{F'(z)}{F(z)} dz = -\frac{1}{2} \int_{R}^{L} z dz + O(y^2 e^{-y}),$$

= $\frac{1}{2} [X_{n-1} + X_n] + iy/\pi + O(y^2 e^{-y}),$

and, there is a similar contribution from the lower side MQ. The two sides RL, MQ, together give a contribution to the above integral of

$$X_{n-1} + X_n + O(y^2 e^{-y}).$$

Now consider

(17)
$$\int_{Q}^{R} z \frac{F'(z)}{F(z)} dz = \left[z \log F(z)\right]_{Q}^{R} - \int_{Q}^{R} \log F(z) dz.$$

Using (14),

$$\begin{bmatrix} z \log F(z) \end{bmatrix}_{Q}^{R} = X_{n} \log \frac{F(z)}{F(\bar{z})} + \frac{iy}{\pi} \log F(z)F(\bar{z}),$$
$$= 2 \log (\cosh y) + O(y^{2}e^{-y}),$$

334

[9]

as $y \to \infty$, where the logarithms take their principal values. Since $X_n - X_{n-1} = 2$, $F(z-2) - F(z) = -2k\pi$, we find that, as $y \to \infty$,

$$\left(\int_{Q}^{R} - \int_{M}^{L}\right) z \frac{F'(z)}{F(z)} dz = -\int_{Q}^{R} \log F(z) dz + \int_{Q}^{R} \log \left[F(z) - 2k\pi\right] dz + O(y^{2}e^{-y}),$$
(18)
$$= \int_{Q}^{R} \log \left[1 - \frac{2k\pi}{F(z)}\right] dz + O(y^{2}e^{-y}).$$

Thus, adding all these contributions to the integral, and letting $y \to \infty$,

(19)
$$\zeta + \zeta^* = X_{n-1} + X_n + \frac{1}{2\pi^2} \int_{-\infty}^{\infty} \log\left[1 - \frac{2k\pi}{F(z)}\right] dy,$$

where $\pi z = \pi X_n + iy = x + iy$.

Returning to Figure 2, suppose OA' meets the curve (11) at A'', so that A'' separates the curve into two parts. For one part, the distance from K to this part exceeds G, so, for w on it,

$$|w+k| \ge G \ge |k|.$$

The other part is separated from K by the line OA', so the distance from K to any point on it exceeds the distance from K to OA', and hence $|w+k| \ge |k| \sin \varepsilon/2$. We have supposed that K is, as marked, in the sector *AOC*. But by symmetry, the same inequalities hold for K in the sector *BOC*. Thus, for $x > x_0$, and any w on the curve (11),

(20)
$$\left|\frac{k}{w+k}\right| < \operatorname{cosec} \frac{1}{2}\varepsilon.$$

This inequality holds for $n > n_0(\varepsilon, G)$, and $|k| \leq G$, $|\arg k| \leq \pi - \varepsilon$. Thus, in (19),

(21)
$$\left|\frac{2k\pi}{F(z)}\right| = \left|\frac{2k}{z(w+k)}\right| < \frac{2}{X_n} \left|\frac{k}{w+k}\right| < \frac{2\cos \varepsilon/2}{X_n}.$$

We may suppose X_n sufficiently large in (21) so that $|2k\pi/F(z)| < \frac{1}{2}$. Then the logarithm in (19) must represent the principal value in the whole range $-\infty < y < \infty$. Hence, from the logarithmic series expansion, and (21)

(22)
$$\left|\log\left[1-\frac{2\pi k}{F(z)}\right]\right| < \left|\frac{4k\pi}{F(z)}\right| < \frac{4\operatorname{cosec}\varepsilon/2}{X_n}.$$

We can now estimate the integral in (19). Take $y > \log x^2$, then

$$\begin{aligned} \left|\frac{F(z)}{k}\right| &= \left|\frac{\cosh y}{k} + x + iy\right| > \frac{\cosh y}{G} - x - y, \\ &\geq \frac{e^y}{2G} - x - y \geq \frac{e^y}{6G} + \left(\frac{e^{\log x^2}}{6G} - x\right) + \left(\frac{e^y}{6G} - y\right), \\ &> \frac{e^y}{6G}, \end{aligned}$$

for $x > c_1$, a suitable constant depending on G only. Then

$$\left|\int_{\log x^1}^{\infty} \log\left[1-\frac{2k\pi}{F(z)}\right] dy\right| < 24G\pi \int_{\log x^1}^{\infty} e^{-y} dy = \frac{24\pi G}{x^2},$$

if $x > c_1$. The same estimate applies to the integral over the range $-\infty$ to $-\log x^2$.

Also, from (22),

$$\left|\int_{-\log x^2}^{\log x^2} \log \left[1 - \frac{2k\pi}{F(z)}\right] dy\right| < \frac{8 \operatorname{cosec} \varepsilon/2}{X_n} \log x^2.$$

Since $x = \pi X_n$, we obtain from these two inequalities,

(23)
$$\int_{-\infty}^{\infty} \log\left[1 - \frac{2k\pi}{F(z)}\right] dy = O\left(\frac{\log n}{n}\right),$$

as $n \to \infty$. Now (16) follows from (19) and (23). (ii) Let $X_n = 2n + \frac{3}{2}$, $|\arg(-k)| \le \pi - \epsilon$. Now we set

$$w=re^{i\theta}=-\frac{\sin \pi z}{\pi z}$$

Then the proof of (19) and hence (16) follows exactly as in (i). In figure 2, K is now the point w = k and all the formulae in (i) hold if we replace k by -k and F(z) by -F(z).

4. Some properties of (z:k)!

THEOREM 1. Except for a branch point at k = -1, the function $h(z, k) = [(z : k)!]^{-1}$, defined in (3), is an analytic function of z, k, for all values of these arguments.

PROOF. Let

(24)
$$\Pi_n = (1+k)^{\frac{1}{2}} X_n^{-z} \prod_{0 < \xi < X_n} \left(1 + \frac{z}{\zeta} \right).$$

Take $|z| \leq R$, $|k| \leq G$ and $|\arg(\pm k)| \leq \pi - \varepsilon$ according as $X_n = 2n + \frac{1}{2}$,

[10]

336

or $X_n = 2n + \frac{3}{2}$. Choose $n_1 > n_0(e, G)$, such that $R/X_{n_1} < \frac{1}{2}$. Also, let

(25)
$$\sigma_r = \log X_r - \sum_{0 < \xi < X_r} \frac{1}{\zeta}.$$

Now we may write, for $q > p \ge n > n_1$,

(26)
$$\log \frac{\Pi_q}{\Pi_p} = -z(\sigma_q - \sigma_p) + \sum_{X_p \le \xi < X_q} \left[\log \left(1 + \frac{z}{\zeta} \right) - \frac{z}{\zeta} \right]$$

In the summation $|z/\zeta| \leq R/X_p < \frac{1}{2}$, and $\log(1+z/\zeta)$ is understood as the principal value; this of course implies the appropriate meaning for a logarithm on the left. By Lemma 2, as $n \to \infty$, and uniformly with respect to z and k,

(27)
$$\sum_{\boldsymbol{X}_{p} \leq \boldsymbol{\xi} < \boldsymbol{X}_{q}} \left[\log \left(1 + \frac{z}{\zeta} \right) - \frac{z}{\zeta} \right] = \sum_{\boldsymbol{X}_{p} \leq \boldsymbol{\xi} < \boldsymbol{X}_{q}} O\left(\frac{1}{\zeta^{2}} \right) = O\left(\frac{1}{n} \right).$$

Also, in accordance with lemma 2, if ζ_i and ζ_i^* be the two roots ζ in $X_{i-1} < \xi < X_i$, then

$$\sigma_q - \sigma_p = \sum_{t=p+1}^q \left(\frac{1}{t} - \frac{1}{\zeta_t} - \frac{1}{\zeta_t^*} \right) + O\left(\frac{1}{n}\right).$$

By lemma 1, which $0 < \alpha < 1$, ζ_i and ζ_i^* are equal to $2t + O(t^{\alpha})$ and hence $\sigma_q - \sigma_p = O(1/n^{1-\alpha})$. Then, from (26) and (27), as $n \to \infty$,

$$\log \frac{\Pi_q}{\Pi_p} \to 0$$

uniformly for $q > p \ge n$ and z, k, restricted in the manner specified.

By the general principle of convergence, the sequence $\log (\Pi_n/\Pi_{n_1})$ and hence also the sequence Π_n/Π_{n_1} converges as $n \to \infty$ and uniformly with respect to z and k. Moreover each term of this sequence is an analytic function of z and k; this is obvious for z, and it is clear also for k when we note that Π_n/Π_{n_1} involves symmetrically all the roots ζ of F(z) with $X_{n_1} \leq \xi < X_n$ and that there are no roots on the bounding line $\xi = X_{n_1}$. Thus the limit Π_{∞}/Π_{n_1} is an analytic function of z and k.

For $X_n = 2n + \frac{1}{2}$ it is clear that \prod_{n_1} is analytic in z, k, in $|z| \leq R$, $|k| \leq G$, $|\arg k| \leq \pi - \epsilon$.

For $X_n = 2n + \frac{3}{2}$, Π_{n_1} is analytic in z, k, in $|z| \leq R$, $|k| \leq G$, $|\arg(-k)| \leq \pi - \varepsilon$ provided we add the additional restriction that k+1 be not zero or a negative number. This is because the first factor in Π_{n_1} changes discontinuously as k crosses the cut from -1 to $-\infty$ in the k plane.

These results, for the two sequences X_n , taken together show that the limit (3) exists and represents an analytic function of z, k as stated in the theorem.

[11]

338

From the proof just given it is clear that σ_r , defined by (25), tends to a limit as $r \to \infty$, which is an analytic function of k in the cut plane. We may therefore define a generalised Euler' 'constant' γ_k by

(28)
$$\gamma_k = \lim_{r \to \infty} \left[\sum_{0 < \xi < r} \frac{1}{\zeta} - \log r \right]$$

Then (z:k)! may be represented by the generalised Weierstrass products

(29)
$$\frac{1}{(z:k)!} = (1+k)^{\frac{1}{2}} e^{\gamma_k z} \prod_{0 < \xi < \infty} \left(1 + \frac{z}{\zeta}\right) e^{-s/\zeta}, \qquad k \neq -1,$$

$$=\frac{\pi z}{\sqrt{6}}e^{\gamma_{-1}z}\prod_{0<\xi<\infty}\left(1+\frac{z}{\zeta}\right)e^{-z/\zeta},\qquad k=-1.$$

From (29),

(30)
$$\begin{array}{c} (0:k)! = (1+k)^{-\frac{1}{2}}, & k \neq -1, \\ (z:-1)! \sim \sqrt{6}/\pi z, & \text{as } z \to 0. \end{array}$$

And, if $\psi(z; k) = d/dz(z:k)!$,

$$-\frac{\psi(z:k)}{(z:k)!} = \gamma_k + \sum_{0 < \xi < \infty} \left(\frac{1}{z+\zeta} - \frac{1}{\zeta}\right).$$

In particular

(31)
$$\psi(0:k) = -\frac{\gamma_k}{(1+k)^{\frac{1}{2}}}$$

5. Stirling's formula for (z:k)!

THEOREM 2. As $|z| \rightarrow \infty$,

(32)
$$(z:k)! \sim \sqrt{2\pi z} z^z e^{-z}$$
,

uniformly with respect to $\arg z$ in $|\arg z| \leq \pi - \delta$, and uniformly with respect to k in $|k| \leq G$.

PROOF. Set $\lambda_n = \frac{1}{2}(X_{n-1} + X_n)$ and define

(33)
$$\phi(z) = \lim_{n \to \infty} X_n^{-z} \prod_{r=1}^n \left(1 + \frac{z}{\lambda_r} \right)^2$$

Naturally $\phi(z)$ depends on which of the two sequences X_n is taken.

Then as $|z| \to \infty$, uniformly in $|\arg z| \leq \pi - \delta$,

(34)
$$z! \phi(z) \sim \begin{cases} [(-\frac{1}{4})!]^2/\sqrt{\pi}, & \text{for } X_n = 2n + \frac{1}{2}, \\ \lceil (\frac{1}{4})! \rceil^2/z\sqrt{\pi}, & \text{for } X_n = 2n + \frac{3}{2}. \end{cases}$$

[12]

A generalization of a!

From (3),

(35)
$$\frac{1}{(z:k)!\phi(z)} = (1+k)^{\frac{1}{2}} \lim_{n \to \infty} \frac{\prod_{0 < \xi < \mathbf{X}_n} \left(1 + \frac{z}{\zeta}\right)}{\prod_{r=1}^n \left(1 + \frac{z}{\lambda_r}\right)^2}.$$

Take $p > n_0(\varepsilon, G)$ and, for the moment, ignore the earlier factors of the products in (35). Thus consider

(36)
$$\prod_{p+1}^{n} \frac{\left(1+\frac{z}{\zeta}\right)\left(1+\frac{z}{\zeta^{*}}\right)}{\left(1+\frac{z}{\lambda}\right)^{2}}$$

where, in accordance with lemma 2, ζ and ζ^* are the roots of F(z) in $X_{r-1} < \xi < X_r$. In the factor of (36) with $\lambda = \lambda_r$, write

$$\zeta = \lambda + h, \quad \zeta^* = \lambda + h^*.$$

By lemma 1, with any selected α , $0 < \alpha < \frac{1}{2}$, h and h^* are both $O(r^{\alpha})$. By lemma 3, $h+h^* = \zeta + \zeta^* - 2\lambda = O(\log r/r)$. Here the O-symbols are uniform with respect to k in $|k| \leq G$ and $|\arg(\pm k)| \leq \pi - \epsilon$, according as $X_n = 2n + \frac{1}{2}$ or $X_n = 2n + \frac{3}{2}$.

Now

(37)
$$\frac{\left(1+\frac{z}{\zeta}\right)\left(1+\frac{z}{\zeta^{*}}\right)}{\left(1+\frac{z}{\lambda}\right)^{2}} = \frac{1+\frac{\lambda}{z+\lambda}\cdot\frac{h+h^{*}}{\lambda}+\left(\frac{\lambda}{z+\lambda}\right)^{2}\frac{hh^{*}}{\lambda^{2}}}{1+\frac{h+h^{*}}{\lambda}+\frac{hh^{*}}{\lambda^{2}}},$$
$$= 1+O\left(\frac{1}{r^{2-2\alpha}}\right),$$

since $\lambda/z + \lambda$ is bounded in $\lambda > 0$, $|\arg z| \le \pi - \delta$. The O-term is uniform for $|\arg z| \le \pi - \delta$ and $|k| \le G$, $|\arg (\pm k)| \le \pi - \epsilon$. It follows that the infinite product

$$\prod_{r=p+1}^{\infty} \frac{\left(1+\frac{z}{\zeta}\right)\left(1+\frac{z}{\zeta^*}\right)}{\left(1+\frac{z}{\lambda_r}\right)^2}$$

converges to an analytic limit $\phi_1(z, k)$; and as $|z| \to \infty$ in $|\arg z| \le \pi - \delta$

[13]

$$\phi_1(z, k) \rightarrow \theta_1(k) = \prod_{r=p+1}^{\infty} \frac{\lambda_r^3}{\zeta \zeta^*}$$

uniformly with respect to k.

Now if we set

$$\theta_2(k) = (1+k)^{\frac{1}{2}} \frac{\prod_{r=1}^p \lambda_r^2}{\prod_{0 < \xi < X_p} \zeta},$$

and recall that, according to lemma 2, there are either 2p or 2p+1 roots ζ with $\langle \xi \rangle \langle X_p$, we have from (35), letting $|z| \to \infty$ in $|\arg z| \le \pi - \delta$,

$$\frac{1}{(z:k)!\,\phi(z)} \sim \begin{cases} \theta_1(k)\,\theta_2(k), & X_n = 2n + \frac{1}{2}, \\ z\theta_1(k)\,\theta_2(k), & X_n = 2n + \frac{3}{2}, \end{cases}$$

uniformly in $|k| \leq G$, $|\arg(\pm k)| \leq \pi - \varepsilon$.

Combining this with (34), as $|z| \rightarrow \infty$,

(38)
$$\frac{z!}{(z:k)!} = \frac{z!\phi}{(z:k)!\phi} \sim \begin{cases} \frac{[(-\frac{1}{4})!]^2}{\sqrt{\pi}} \theta_1(k) \theta_2(k), \\ \frac{[(\frac{1}{4})!]^2}{\sqrt{\pi}} \theta_1(k) \theta_2(k), \end{cases}$$

with the same uniformity as that just specified. Since the two statements in (38) hold for a common range of values of arg k so the two expressions in (38) are identical. There is of course no contradiction here since the functions θ_1 , θ_2 , like ϕ , are defined differently for the two sequences X_n . Thus we may write

$$\frac{z!}{(z:k)!} \sim C(k),$$

as $|z| \to \infty$ uniformly for $|\arg z| \le \pi - \delta$, $|k| \le G$. And, of course, C(k) is an analytic function of k.

From (5),

$$\frac{\sin \pi z + k\pi z}{\sin \pi z} = \frac{z! (-z)!}{(z:k)! (-z:k)!},$$

and, letting $|z| \rightarrow \infty$ along (say) the imaginary axis, we have

$$1 = [C(k)]^2.$$

Since C(0) = 1, so $C(k) \equiv 1$. This shows that (z : k)! behaves asymptotically like z! and Theorem 2 follows from Stirling's formula.

[14]

340

Acknowledgement

This work arose out of a problem posed by Mr. H. E. Doran, in connection with his work on applications of the Wiener-Hopf technique.

References

- [1] W. T. Koiter, Kon. Ned. Acad. Wet. Proc. B, 59 (1956), 558.
- [2] B. Noble, Methods Based on the Wiener-Hopf Technique, Pergamon Press, London (1958), 162.
- [3] E. C. Titchmarsh, Theory of Functions, Second Edition, Oxford (1939), Chapter 8.

Departments of Mathematics, University of Sydney.