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TWILLS WITH BOUNDED FLOAT LENGTH

JANET A. HOSKINS, CHERYL E. PRAEGER
AND ANNE PENFOLD STREET

The simple tw i l l s on n harnesses can be c lass i f i ed according to

t h e i r maximum float length. The number of n-harness twi l l s with

specified maximum float length is determined both by Burnside

enumeration and, for n < 20 , by an adaptation of a sieve

algorithm for t w i l l s .

Introduction

Every simple twill on n harnesses corresponds to an equivalence

class of cyclic binary sequences of length n , where two such sequences

S = (s., S-, ..., s ) and T = {t , t , ..., t ) are equivalent if and

only if one can be transformed into the other by a shift (s . = i^

reversal (s. = t .) , by complementation (s. = ~t.) , or by

finite sequence of these operations. (Subscripts are added modulo n .)

In other words, S and T are equivalent under the action of D x S ,

the direct product of the dihedral group of order 2n with the symmetric

group of degree 2 .

Conversely, every equivalence class of cyclic binary sequences of

some
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length n corresponds to a simple twill on n harnesses, except for the

all zero (or all one) sequence.

This correspondence between twills and sequences is explained in

Grunbaum and Shephard [2], Hoskins [3] and Hoskins and Street [4], for

example; see also the references cited in [4], It has been used to

determine the total number of twills on n harnesses, both by Burnside

enumeration [7 , p. 19l3 and by a sieving algorithm, and to determine the

number of twills on n harnesses with certain special properties. A

further case is now considered.

A sequence with s^ t S-+i = ••• = s-£+k *
 Si+fc+l :""s s a i d t o have a

float of length k , that is, a block of k consecutive symbols which are

equal. Since the maximum float length is an important property of a twill,

the number of twills on n harnesses with given maximum float length are

determined here.

The maximum float length is obviously closely related to the number of

breaks in the sequence, where [s , s , ..., ŝ J has m breaks if and

only if s. t s. for precisely m distinct values of i = 1, ..., m .

For example, the sequences 000111 and 00100111 both have maximum float

length three, and have two and four breaks respectively. Note that the

number of breaks must always be even.

In order to state our results, we introduce the following notation.

We denote by F(n, k) the number of equivalence classes of binary

sequences of length n , with maximum float length k , and by

F(n, k, m, x) the number of classes of such sequences with exactly m

breaks and exactly x floats of length k . Then

F{n, k) = X Hn, k, m, x) ,

where the summation i s over a l l m and x sa t i s fy ing the following

condi t ions :

(a) m i s even, and

\n/k\ + 6 S m S w - k + e ,

6, t = 0 or 1 , 6 = \n/k] (mod 2) , e H n - k (mod 2) ;
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(b) if n = kq + r , 0 < r < fc-1 , then

q if r > 2 ,

or if r = 1 , q odd,

1 5 i 5 i or if r = 0 , q even;

- 1 if r = 1 , q even,

or i f r = 0 , q odd;

(c) x S m S n - k x + x - e , e = n - k x + x (mod 2) , e = 0

or 1 , and i f m = x , then fc|rc , n/k i s even, and

x = n/k .

Similarly, we denote by F(n, k, - , x) the sum of F(n, k, m, x)

over al l m satisfying the conditions stated above, for given x .

Note that we assume k < n , for if k = n , then m = 0 , no

corresponding twill exists, and condition (a) becomes 2 5 m 5 0 . Hence

F(n, n) is not defined.

Let S(n, k, m, x) denote the set of binary sequences of length n ,

with maximum float length k , m breaks, and x floats of length k ,

and let S i S{n, k, m, x) , where S = (s , . . . , s I . We make the

convention that s # s (which is always possible since k < n ), and we

can associate with S the sequence of positive integers

r(s) = [r ,

w h e r e s = . . . = s * s • = . . . = s t a = . . . . (in the
1 1 1 2 1 2 x

traditional break notation of weaving, this would be written

— ^— ... .) Thus, for example, the sequence

2 h

S = (00101) € 5 ( 5 , 2 , U, 1)

has associa ted sequence

r ( s ) = ( 2 , 1 , 1 , 1) .

Let R(n, k, m, x) be the set of positive integer sequences of length

m , where

r = [rx, ..., rj € /?(«, k, m, x)
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satisfies

1 5 r . & k , for £ = 1, 2, . . . , m ,
Is

r.=k for exactly x values of i ,

and

m

(Note that r is actually a composition of n into m parts, where x

parts equal k , and m - x parts are less than k .) Then each

S € S(«, k, m, x) corresponds to r(S) € R(n, k, m, x) , and conversely

each r € R(n, k, m, x) corresponds to exactly two sequences

S, S' € S(n, k, m, x) , where one is the complement of the other. Thus

these two sequences, S and S' , are equivalent in S(n, k, m, x) .

The equivalence relation on sequences in S(n, k, m, x) , induced by

the action of D * 5_ , corresponds to an equivalence relation on

R(n, k, m, x) , where two sequences in i?(n, k, m, x) are equivalent if

and only if one can be transformed into the other by a cyclic shift, O ,

by a reversal p , or by some finite sequence of these operations.

If r = [r±, r2, . . . , V l > rj , then m = ( V r^ r 2 , . . . ,

r p = ( V V i ' •••' V *y) •
Hence the equivalence relation on R{n, k, m, x) is induced by the

dihedral group of order 2m defined by

(1) G = (o , p> .

Thus F{n, k, m, x) , the number of equivalence classes of binary

sequences in S(n, k, m, x) under the action of D x S , equals the

number of equivalence classes of positive integer sequences in

R{n, k, m, x) under the action of G .

Our counting arguments will involve a(N, M, n) , the number of

compositions of n into exactly M parts, none exceeding H , and we

recall that
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(2) c(N, M, n) =
M

where the summation is over a l l partitions II of n into b• parts equal

to a. , i = 1, . . . , t , so that

. . . a

t t
where Y a.b. = n , Y b. = M , 1 s a § . . . S a. § ff .

_•_•• t- t- • , t I t

We make the convention that

a{N, 0, n) =
1 if n = 0 ,

,0 i f n > 0 .

Finally, we l e t <}> denote Euler's phi function.

We are now ready to state our main resul t , evaluating F(n, k, m, x)

when n, k, m, x are such that F(n, k, m, x) > 0 . (This rules out, for

example, the case where x is odd and F(n, k, x, x) = 0 .)

THEOREM 1. (a) If n = kx , then m = x = n/k is even, and

F{n, k, n/k, n/k) = 1 .

(b) If n > kx , then m > x 3 and two oases arise:

(i) if x is odd, then

(a) either m = x + 1 , so that n - kx < k and

F{n, k, m, m-l) = 1 y

(6) or m > x + 1 and

Fin, k, m, x) = ^ f, , m-x n-kx

(m-2)/2 \ y ( m-l-x n-kx-u)

j ^ I ' 2 ' 2 J '
where the summations are (respectively) over all d such

that d|gcd(n, m, x) and all u such that

1 S u § min(/c-l, n-{k-l)x-m+l) , u = n - kx (mod 2) ;
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(ii) if x is even, then

(a) either m = x + 2 , so that n - kx 5 2k - 2 and

m(n-kx-l+&)/h for n - kx S k ,

F(n, k, m, m-2) = •

m{2k-l+S-(n-kx)'j/h , for k 5 n - kx ,

(3) or m > x + 2 and

r,r 7 \ 1 v A/ J\ {m/d\ f, n tn-x n-kx

, f(m-2)/2) v f, w-x-2

where 6 = 0 or X , 6 = n - 1 (mod 2) , and the

summations are (respectively) over all d such that

d\gcd(n, m, x) , and all u, v such that .1. 5 u < v 5 fc-1 3

u+ 5 i « - (k-l)x - m + 2 , u + V = n - kx (mod 2) . D

In certain cases, the statement of Theorem 1 can be greatly-

simplified. For example, i f x = 1 , so that only one float of length k

occurs, then by Theorem 1 (b) (i) , either m = 2 , and F(M, k, 2, l ) = 1

or w g h , and

(«, k, m, 1) = fej(fc-l, m-1, n-k) + % £ e(fcl ^

where the summation is over a l l u such that 1 § u s min(fc-l, M-fe-

and u = n - k (mod 2) .

In particular, if k > n/2 , then x = 1 , giving the following

resul t .

THEOREM 2. If n/2 < k s n-3 , then

F(n, k) =

/liso F{n, n-X) = F(n, n-2) = 1 . D

Again if n/3 ^ k & n/2 , then x = 1 or x = 2 . Considering the

case x = 1 f i r s t , we have the following result.

THEOREM 3. If n/3 § k § n/2 , tfcen

(a) either n = 2k or 2k + 1 , and
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F(n, k, - , 1)

(B) or n a 2k+2 , and

F(n, k, -, 1) = 2 " - k " 3
 + 2 U

D

Next, if x = 2 , so that only two floats of length k occur, we may

simplify Theorem 1 slightly differently. If n = 2k , then by part (a), we

have F(n, k, 2, 2) = 1 = F{n, k, - , 2) . Otherwise, we apply part (b)

(ii), since n > 2k . Either m = h , so that in fact n g 2fc+2 , and

F(n, k, h, 2) = n - 2k - 1 + 6 , or » a 6 , so tha t n £ 2fe+U , and

F ( n , k, m , 2 ) = ^

m-X
- r—

(fc-1, m-2, n-2 6 • f

^ I a\k-l, 2ti.

, _ „, > 6(m+l) f, ,
- l , m-2, n-2k) + —W—^ • e fc-1,

+ — • c^k-1, — ,

ro-2 n-2k]
2 ' 2

where 6 = 0 o r 1 , 6 = n - 1 (mod 2) , t h e sunmation i s over a l l u

and U such t h a t 1 § w < v § k - 1 , w + u § n - 2 f c + U - m , and

M + U = n - 2k (mod 2) and t h i s te rm w i l l occur only for n § 2k+6 and

m ^ n - 2k + 1 .

Now we can finish dealing with the range n/3 § fe = n/2 , with x = 2 .

THEOREM 4. J / n/3 s U n/2 , then

F{n, k, - , 2) =

i f n § 2k+6 j then

n, k, - , 2) = (n-2k-l+6) +

1 i f rz = 2k ,

0 i f n = 2k + 1 ,

2 if n = 2k + 2 or 2k + 3 ,

T i f n = 2k + l» ,

10 i f n = 2k + 5 ,

n-2k-l . 2L(n-2k-5)/2j n-2k-l
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where 6 = 0 or 1 , 6 = n - 1 (mod 2) . D

Theorems 2, 3 and h result from simplifying Theorem 1 for n/k small,

which forces a l l possible x to be small. If k is small instead,

Theorem 1 also simplifies.

THEOREM 5. If k = 2 , then F\.n, 2, tn, x) = 0 unless n = m + x ,

so that

F{n, 2, - , a;) = Fin, 2, n-x, x) .

Moreover if n = m + x , then two cases arise:

(i) if x is odd, then

(a) either m = x + 1 and

F{2x+1, 2, x+1, x) = 1

(3) or m § ar*-3 orccf

2 , m , x ) o A .

i i j if x is even, then

(a) either m = x and

F{2x, 2, x, x) = 1

(3) or m = x + 2 and

F(2x+2, 2 , ar+2, x) = (x+2)/2

(Y) or m S x+U and

The summations in both cases are over all d such that d|gcd(n, m, x) .

THEOREM 6. If k = 3 and m > x , two eases arise:

(i) if x is odd, then

(a) either m = x + 1 3 so that n - 3x < 3 and

F(n, 3 , m, m-l) = 1 ,

(B) or m > x + 1 and

, , _ 1
, 3, ra, x) - 2^ ' [x/dJl(n-2x-m)/dj

J(m-2)/2
] l(n-2«-

where M = 1 or 2., u = n - x (mod 2) ;

(ii) if x is even, then

(a) either m = x + 2 , so that n-3x 5 h and
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F(w, 3, m, m-2) = m(n-3x-l+&)A ,

(3) or m > x + 2

Fin, 3, m, x) = ̂  I <>(d) ̂ /dJ Un_BI_2a:)/dJ

(m-2)/2]f (m
3x-3)/2j + 2<S U / 2

where ( 5 , e = 0 o r 1 , 6 = n - 1 (mod 2) ^ e = n (mod 2) .

summations -in both, cases are over all d such that d|gcd(w, m, x) . •

Values of F(n, k, -, x) for n s 20 , and x = 1 to 10 , have been

calculated by a sieving algorithm, based on that described in [4]. These

values have been checked against the results of Theorems 1 to 6. For

h ^ k < n/3 , we have been unable to simplify the statement of Theorem 1

into any more convenient form. In checking F{n, 3, -, x) from Theorem 6,

we must sum over m , as m runs through all even numbers from |(n-x)/2|

to 2[~(n-2x-l)/2l .

Details of proofs

We shall use several binomial identities, especially the following:

(Bl) I Q = 2" ,
k=o K

<-> 55 © • - 1 •

Proof of Theorem 1. Each r-sequence determines uniquely an

(unordered) partition

t t
of n - kx = Y. o.b. into m - x = £ i>. parts, where

i=l *" v i=l l
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1 S a < a < . . . < at & k-l , and t U ; namely, r has b. entries

equal to a. for each i = 1, . . . , t . Conversely, any partition II of
Is

n - kx into m - x parts, each part at most k - 1 , corresponds to some

r-sequences in R(n, k, m, x) , and the set /?(IT) of resequences

corresponding to a given partition II is fixed setwise by the group G ,

defined in ( l ) . If n = kx , then m = x = n/k . Either m is even, and

F(n, k, n/k, n/k) = 1 , or m i s odd and F(n, k, n/k, n/k) = 0 . We may

now assume that n > kx , and hence t ha t m > x .

Let f ix g = ir € R(n, k, m, x) \ rg = r] , for each g € G . By

Burnside's lemma, the number of G-orbits in -ff(n) is

m
|fix g

Hence for each g in G we evaluate |fix g n R(K) \ and sum over al l

part i t ions II . We consider the various elements g in G .

(a) Let g = a , where 1 § I S m . Then Tg = r if and only if,

for a l l

ri = ri+(m/d) '

where m/d = gcd(£, m) , and subscripts are to be taken modulo m , that

is, r consists of d repetitions of a subsequence r' = \v , ..., r .-A

Also, x = dx' , b. = db'. where b'. is an integer, for
is if T*

i = 1, 2, . . . , t , Y, vi ~ nld = n> ' say> a n d t h e subsequence r '

corresponds to a partition

(it)

t t
of {n-kx)/d = n' - kx' = £ a-b>- i n t o (m-x)/d = m/d - x' = I b\

A ^ % i=l *
parts where 1 & a. < a^ < • • • < a. S k-l , and t s 1 .

We note of course that r ' determines p uniquely.

To determine |fix a | , we now sum over al l partitions II , bearing
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in mind that d = m/gcd(l, m) . Two cases ar ise:

( i ) 4gcd(rc, x) , and |fix 0l\ = 0 ;

( i i ) d|gcd(w, x) , and

IWI =Z
m/d \m/d]

[x/dj

(m-x)/d

where the sum is over all partitions II' satisfying (U).

But in terms of compositions (2), this becomes

, m-x n-kx) \m/d\
k-x' d - -T-) ' {x/d\ •

| fix a | =

Given Z , d = m/gcd(Z, m) divides gcd(n, m, x) , and conversely, given

a divisor d of gcd(«, m, x) , there are precisely <$>{d) integers I

with gcd(Z-, m) = m/d . Thus altogether

m
1

1=1
| fix ol\ m-x n-k

where the summation is again over a l l d such that d|gcd(n, m, x) .

(b) Let g = p . Then rg = r i f and only if, for a l l i ,

i m -̂l-̂

Thus fix p <"> /f(n) = 0 , unless x, b , . . . , b. are a l l even. So we

assume that

x = 2x" , b. = '2b". for i = 1, 2, . . . , t ,

and hence that II corresponds to a partition

n" = a , 1 .

(5)

K

of (n-x)/2 = Y, a-b" i n t o {m-x}/2 = T b". par ts , where

a < a2 < . . . <

In this case

|'fix p f>

i fc-1 , and t £ 1 .

ml2 } [m/2]
b",...,b''x

Summing over II , we have
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0 if gcd(n, x) is odd,

I fix p| = ml 2}
*/2) I if gcd(n, x) is even,

where the sum is over all partitions II" satisfying (5)-

In terms of compositions , this becomes

fo if gcd(n, x) is odd,

I fix p| = -Um/2] f, n m-x n-kx if gcd(w, x) is even.

(c) Let g = pa . Then rpo = r if and only if for all

i = 2, . . . , m , i t (m+2)/2 ,

v • = P

^ m+2-v

Again two cases arise:

(i) if r^ = r/m.2)/2 ' t h e n X' bl' '' ' ' bt a r e a 1 1 even> a n d

the argument of (b) above shows that such sequences make a

contribution to |fix per| of

, i f gcd(w, x) is odd,

) f, , m-x n-kx) . _ ,, .
• a\k-l, - 5 - , —3-— if gcd(n, x) is even;

I 2 2 J

( i i ) i f r t r(rm.o)/2 ' t h e n t W 0 c a s e s a 8 a i n arise, depending

on the parity of x .

If x is odd, then one of r and rrm.2)/2 e 1 u a l s ^ > ani ' t I l e

other equals u , say where 1 § u § min(fe-l, n-k) . The rest of the

sequence r is determined by the subsequence (r , . . . , r , ) which

contains (x-l)/2 terms equal to k . I ts remaining terms constitute a

composition of (n-kx-u)/2 into (m-x-l)/2 parts, each part at most

k - 1 . In this case the contribution to |fix po | is

f 2 , i f m = x + l , s o that u = n - kx < k ,

, i f m > x + l ,

where the summation is over all u such that

(6) 1 s u s min(fe-l, n-(fe-l)x-m+l) and u = n - kx (mod 2) ,

If x is even, then neither r, nor r, ^N .„ equals k ; le t
J. 177?+2) / 2
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where 1 § u < v & k-x . The rest of the sequence r is determined by the

subsequence (*" . . . , rmi2) which contains x/2 terms equal to k . Its

remaining terms constitute a composition of (n-kx-u-v)/2 into (m-x-2)/2

parts, each part at most k - 1 . In this case the contribution to

|fix pa| is

n - ?cx - 1 - 6 , i f m = x + 2 , a n d 3^u + v = n - k x ^ k ,

2k - 1 - 6 - {n-kx) , i f m = x + 2

It £ u + D = n - ( a S 2): - 3 ,

f(m-2)/2] . y f, m-x-2 n-kx-u-v] >
21 x/2 J ^ e^"-1-. 2 ' 2 J ' l f m x

] y f
x/2 J ^ e^"-1-. 2 ' 2

v]

where 6 = 0 or 1 , 6 = n - 1 (mod 2) ,. and the summation is over all

u, v such that

(7) 1 5 M < u < k-X , u+v < n-(k-X)x-m+2 , and u + V = n - kx (mod 2) .

Note here that the term for m = x + 2 is simply the number of solutions

of

u + v = n - kx ,

where 1 § M < v § k-1 . For convenience, we denote this number by

s(m, 2) .

Cases (a), (b), and (c) cover all possibilities, since G\(o)

consists of m/2 elements conjugate to p , and m/2 elements conjugate

to po , and conjugate elements fix sets of the same size. Hence we have

only to sum the appropriate terms.

First, suppose that x is odd. If m = x + 1 , then n - kx < k and

2m ' F{n, k, m, m-l) = \ ™, • e(fc-l, 1, n-kx) + m = 2m ;

i f m > x + 1 , then

2m • F(n, k, m, x)

where the summations are (respectively) over all d such that

d|gcd(n, m, x) and all u satisfying (6).
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This confirms Theorem 1 (b) (i).

Secondly, suppose that x is even. If m = x + 2 , then n-kx s 2k-2

and

2m • F{n, k, m, m-2) = Q • e(fc-l, 2, n-kx) + 6 • J • effc-1, 1, ~ ^

r in f, n-kx) m
+ 6 • m • ^ c [ f c l 1 j +

where 6 = 0 or 1 , S = n - 1 (mod 2) .

Now

n - kx - 1 , for n-kx

fe-l, 2 , n-fex) =

- 1 - (n-kx) , for fe § n-kx § 2k-2 ,

and s(m, 2) = c{k-\, 2, n-kx) - 6 . Hence

2
2m • F{n, k, m, m-2) = -g- {c (k- l , 2, n-kx)+6} .

I f m > x + 2 , then

2m • F(«, k

where 6 = 0 or 1 , 6 = n - l (mod 2) , and the summations are

( respec t ive ly) over a l l d such that <i|gcd(n, m, x) and a l l u, v

s a t i s f y i n g (?)• This confirms Theorem 1 (b) .

Note tha t in e i the r case d) where m = x + 1 , or ("ii^ where

m = x + 2 , i f we use the convention for c(N, 0, n) defined in ( 3 ) , then

the general formula includes these special cases a l so .

This completes the proof of the theorem. D

Proof of Theorem 2. I f k > n/2 and « g l | , so tha t n s k+3 , then

from Theorem 1 , we have already that

F(n, k, m, 1) = h ' e(fc-l , m-1, n-k) + h I a\k-l, ^ p , 2 = |

where the summation i s over a l l u such tha t 1 s ^ s min(fe-l, n-k-m+2)
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and u = n - k (mod 2) . That i s ,

Fin It m 1) - J " - ^ 1 ] + kT f("-fe-«-2)/2|F{n, k, m, 1) - ^ m_2 j + h L[ {m_h)/2 J •

Hence if n/2 < k § n-3 ,

F(n, k) = £F(n, k, m, l)

w h e r e t h e s u m m a t i o n is o v e r a l l e v e n m s u c h t h a t 2 ^ m = n - k + e , s o

t h a t

where the summations are (respect ively) over a l l m' such tha t

m = 2m' + 2 and 1 £ m' S [(w-fe-l)/2] , a l l u such that

l S M S n _ f e _ 2 and M = n - k (mod 2) , and a l l m" such tha t

0 £ m" S (n-k-u-2)/2 and m = 2m" + l t s « - f e - w + 2 .

Hence by (Bl) and (B2),

2 . i y 9(n-fc-w-2)/2
+ ^ 2 ^ 2 summing over a l l

u

M H n - fe (mod 2) such t h a t 0 § ~M~2 s

Proof of Theorem 3 . Here we have n / 3 S fe S n /2 , and x = 1 . Then

n-k S 2k , and m g k . Also i f m S n - 2k + 3 , then

e ( k - l , m- l , n-k) = e ( m - l , n-k) =

However i f m £ n - 2k + 2 , then c(fc- l , m-1 , n-k) < e ( m - l , n-k) , s ince

we must exclude the compositions of n - k i n t o m - 1 p a r t s , wi th one

pa r t of s i z e v , k&v&n-k+m+2. Each excluded composition

corresponds t o m - 1 compositions of n - k - v i n t o m - 2 p a r t s , so

t h a t in t h i s ca se ,

e ( k - l , m-1, n-k) = e ( m - l , n-k) - (m-l) J e(m-2, n-k-v)
v

( - , 1 f -v

„ - (m-1) > ,
m-2 J L { m-3 J
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s u m m i n g o v e r a l l V s u c h t h a t k & v ^ n - k - m + 2 . H e n c e , f r o m

T h e o r e m 1 ,

F{n, k, - , 1)

= h I
m

+ h

n-k-l
m-2

m

n-k-l
m-2

m u

{n-k-u-2)/2\
J '

where m is even, e = 0 or 1 , e = n - k (mod 2) , and the last
summation is over a l l u = n - k (mod 2) such that

1 S w s min(k-l, n-k-m+2)
(n-k-l\

- h n-k-v-i

2m'

(m-1)

k^vSn-k-i

w h e r e u = n - k = e ( m o d 2 ) , l S u

a n d

fc-1 , i f n

k-2 , i f n = 2k
i s even, m = 2m" + h and 0 S m" S (n-fe-u-

Now

by (B3) . Hence, by

(8) F(n, k, - , 1)

n-k-v-l n-k-v-l\ _ (n-2km"3 J " I *

(n-2k)
m

s u m m i n g o v e r a l l e v e n m s u c h t h a t h&m^n-2k+2 , a n d a l l

(k-1 , i f n > 2 k + 1
u = n - k (mod 2) such that U «

(n-2k)

lfc-2 , if n = 2k
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summing over \i = m - 3 , for m even and X ̂  \x = n - 2k - X ,
over v = m - 2 , for m even and 2 § V § n-2fc , and over j an

. , n-2k-X . . , n-fe-3
integer, ^ § j S — - —

n-2k-2
_ 2

Note that if n = 2k or 2k + 1 , the first and second summations in

equation (8) are vacuous, and the expression reduces to

F(n, fe, - , 1) = 2 J + 2 ^ J " ^ J - 1 . D

Proof of Theorem 4. Again w/3 S k § n/2 , but now x = 2 . If
w/3 ^ k § M/2 , and n £ 2fe+U , then 2k+h S n l $ , and for u> 6 we
have (by our remarks preceding the statement of Theorem h)

(9) Fin, k, m, 2) = — • [ ^ j J
m-2 y \{n-2k-(u+v)-2)/2) \u+V-l\

h £ v l (BI-6)/2 j L 2 J '

where the summation is over all u, V such that 1 S u < V S fe-1 ,

u + v = n - 2k (mod 2) , and

(10)

Consider the last term

L =

w-6 < n-2k-
2 =

n-2k-5

^v ( O T - 6 ) / 2
u+u-1

If m = 6 and n = 2k + U , then 1 = 0 . If m = 6 and n = 2k + 5 ,

then the only possible case is w = 1 , v = 2 , with n odd, so that

3-1- 6=1 . [(
0/2 J = 1 .

Letting u + v = w , we deal with the two cases that arise, for n > 2fe+6 .

(i) If n is odd, then w is odd, and

and
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Hence

L = Y, W-X

w-X _ n-2k-X n-2k-w
2 2 ~ 2

, where w' = (n-2k-w-2)/2 and the summation is over

m-6
all w' such that -^f- § w' S

V Hth. ( w'
~ ~ £, 2 l(m-

n-2k-X f(n-2k-3)/2)
£ + 2 " i (m-U)/2 J

m-k f(n-2k-l)/2i n-2fe-l f(n-2k-3)/2i
" " 2 * [ (m-2)/2 J 2 [ (m-U)/2 J '

using the same arguments as in the proof of Theorem 3-

(ii) If n is even, then w is even,

and

Hence

w-X W-2 n-2k-2 n-2k-W

L = r f w> 1
P, Um-6)/2j

W-2 , where w' = (n-2k-w-2)/2 , and the summation is

over all W' such that ^- § U' s n ^ ~

n-2fe-2 r-

V E^L f u'+l ] w-2fe-2 ((n-2k-h)/2)
' " j-, 2 ' [(m-U)/2j + 2 [ (m-h)/2 J

{n-2k-h)/2]
{m-h)/2 J '2 [ (m-2)/2 J 2

using the same arguments as in case (i) above.

Combining the results of (i) and (ii) with (9) above, we have, for

m § 6 ,
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. . * . . . 2) - ^

m-2 J n-2k-l [ \{n-2k-3)/2J] m-h f|jn-2fc-l)/2j)\
h |.L 2 J [ (m-h)/2 J 2 1 (m-2)/2 Jj

For M § 2fc+5 , so that m § 6 , we confirm the statement of Theorem h

immediately.

If n a 2k+6 , then

(11) F(n, k, - , 2) = F(n, k, h, 2) + £ F(n, k, m, 2)

= (n-2fc-l+6) + £ F (n , k , w, 2) ,

where t h e summations a r e over a l l even m such t h a t 6&m&n-2k+2

We sum the terms i n the second e x p r e s s i o n :

• Sti. f(»-2k-2)/2]
U I ( ^ ) / J

f ) . i [ (n-2k-2)/2)\
[ (m-h)/2 J + 2 1 (m-Jt)/2 J/

_ « r (n-2k-2 f(n-2k-U)/2| 5. f(n-2k-2)/2]1
2 ^ 1 2 I (»-6)/2 J 2 [ (m-10/2 Jj

= 6(n-2k-2) . 2(n-2k-h)/2 + 5<S .

= 6(«-2k-2) (n-2fc-6)/2

n-2k-l . ((n-2fc-S-6)/2)
(«-»»)/2 j

= h n-2k-l »-2k-3-6 ] f(n-2fc-3-6)/2]\
J + [ (»HU)/2 J /

= ||in-2fc-l)/2j]2Lin-2fc-5)/2j + ,. n-2k-\ ^2\in-2k-3)12_\_
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) / | | _ y [Un-2k-l)/2}\\[(n-2k-5)/2]
( m - 2 ) / 2 ) ~%[ 2 J [ ( m - 6 ) / 2

Note tha t terms in (c) and (d) occur only for m § n - 2k + 1 .

Adding the r e s u l t s of ( a ) , (b) , ( c ) , and ( d ) , and subs t i tu t ing in (11)

we have Theorem h. O

Proof of Theorem 5. I f k = 2 , then n = m + x in order to have any

sequences possible a t a l l . Hence

F(n, 2 , - , x) = F(n, 2, n-x, x) ,

and we evaluate F(n, 2, n-x, x) from Theorem 1. If x is odd, then

either n - x = x + 1 , and

F(2x+1, 2, x+1, x) = 1

or n-x £ x+3 and

, \ 1 V A/ J\ [(n-x)/d) f, n-2x n-2x]

(n, 2, *-x, x) = ^ - ^ ̂ J^ M{ g/d \o[l. — , —J
J(n-x-2)/2] f W-2X-1 w-

+ '(. (x-l)/2 J0!1 ' ~2~~> ^

^ J + M ( * - D / 2 J •
If x is even, then either n - x = x , and

F(2x, 2, x, x) = 1

or n - x = x + 2 , and

F(2x+2, 2, x+2, x) = (x+2)/2

or n-x a x+U and

f 1 f n~2x n-2

since no choice of u and U is possible,

Proof of Theorem 6. If k = 3 , and m > x , then
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—z- S m S n-2x ,

and m can take any even value in this range. Again two cases arise, from

Theorem 1.

If x is odd, then either m = x + 1 , so that n - 3x < 3 , and

F{n, 3 , m, m-X) = 1

or m ^ x+3 , and

M=n-x(mod2)

Now c (2 , Af, K) i s the number of compositions of n in to M p a r t s , where

each part i s 1 or 2 , so

for M S n S 2M ,
c(2, M, n) =

otherwise.

Hence

F(n, 3, m, x)

_ 1 y ArJ^f'"/dlf {m-x)/d

where 1 S U S 2 , u = n - x (mod 2) .

If x is even, then either m = x + 2 , so that «-3x § U , and

F{n, 3, m, m-2) = m(n-3x-l+6)/U

or m 6 x+k , and

u+u=n-3x(mod2)

where 6 = 0 or 1 , 6 = n - l (mod 2) . The second summand makes a

contribution here only if u = 1 , u = 2 , w = l (mod 2) . Hence

f(n, 3, m, x) = J-
d\Sckn,m,x) {x/d\{{n-

kUm

where 6 , e = 0 or 1 , 6 = n - 1 (mod 2) , e = n (mod 2) . O

m-2)/2\( (m-x-2)/2 } .,Jm/2)( (m-x)/2
x/2 Ji(n-2x-m-l)/2j + ^ [ x / j l
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Tables of results

The following tables l i s t values of F(n, k, -, x) for n £ 20 ,

1 S i S 10 . They were calculated using the algorithm of [4] with

appropriate sieving and have been checked against the results of the

theorems.

Results for other special cases have also been determined using

modified sieving algorithms and will appear subsequently.

TABLE 1. F{n, k, - , 1) , the number of twills on n harnesses, with
maximum float length k which occurs precisely once per period
for n = k, . . . , 20 , k = 1, ..., n-\ .

k l 2 3

h
5
6
7
8
9
10
11
12
13
11*
15
16
17
18
19
20

9 10 11 12 13 lU 15 16 17 18 19

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0

1
1
1
2
3
1*
7

10
16
25
1*0
62

101
159
257
1*10
663

1
1
2
2
5
7

11*
22
U3
72

136
238
M+5
796

H*76
267I*

1
1
2
3
5
9

17
30
58

106
205
381*
7l*0

ll*06
2710

1
1
2
3
6
9

19
33
66

122
21*2
1*60
909

1756

1
1
2
3
6

10
19
35
69

130
258
1*98
988

1
1
2
3
6

10
20
35
71

133
266
51U

1
1
2
3
6

10
20
36
71

135
269

1
1
2
3
6

10
20
36
72

135

1
1
2
3
6

10
20
36
72

1
1
2
3
6

10
20
36

1
1
2
3
6

10
20

1
1
2
3
6

10

1
1
2
3
6

1
1 1
2 1 1
3 2 1 1
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TABLE 2. F(n, k, - , 2) = number of tw i l l s of n harnesses with maximum
float length k which occurs precise ly twice per period for
n = k, . . . , 20 , fc = 1 , . . . , b ]

10
11
12
13
1U
15
16
17
18
19
20

1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

2

1
0
2
0
3
0
It
0
5
0
6
0
7
0
8
0
9

3

1
0
2
2
5
6
15
18
hi
58
113
17U
325
51U
929

h

1
0
2
2
7
8
23
3U
80
13U
291
52U
1079

5

r-l

0
2
2
7

10
25
U2
98
178
392

6

1
0
2
2
7
10
27
UU
106

7

1
0
2
2
7
10
27

8

1
0
2
2
7

9 10

1
0
2 1

TABLE 3. F(n, k, - , 3) = number of tw i l l s on n harnesses with maximum
float length k which occurs precise ly three times per period
for n = h, . . . , 20 , k = 1 , . . . , [ (n- l ) /3J •

n
1*
5
6
7
8
9
10
11
12
13
lU
15
16
17
18
19
20

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
3
0
5
0

C
O

0
12
0
16
0
21
0

1
1
3
6
11
22
H6
82
163
306
572

1
1
1*
6
17
32
77
158

1
1
U
7 1
17 1

https://doi.org/10.1017/S000497270002092X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270002092X


278 Janet A. Hoskins, Cheryl E. Praeger and Anne Penfold Street

TABLE 4. F{n, k, -, h) = number of twills on n harnesses with maximum
float length k , which occurs precisely four times per period,
for n = h, ... , 20 , k = 1, • •.

h
5
6
7
8
9
10
11
12
13
1U
15
16
17
18
19
20

1

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

2

1
0
3
0
8
0
16
0
29
0
hi
0
72

3

1
0
3
3

11
19
k9
85

211

h 5

1
0
3
3

lU 1

TABLE 5. F(n, k, -, 5) = number of twills on n harnesses with maximum
float length k , which occurs precisely five times per period
for n = 6, ..., 20 , k = i, ..., [{n-i)/3J .

n —i
6
7
8
9
10
11
12
13
1»»
15
16
17
18
19
20

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
0
5
0
16
0
38
0
79
0

1
1
5

12
28
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TABLE 6. F{n, k, -, 6) = number of twills on n harnesses with maximum
float length k , which occurs precisely six times per period
for n = 6, .... 20 , k = 1, ..., [n/6j .

7
8
9
10
11
12
13
1U
15
16
17
18
19
20

1

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0

2

1
0
h
0

16
0

50
0

126

3

1
0
h

TABLE 7. F(n, k, -, 7) = number of twills on n harnesses with maximum
float length k , which occurs precisely seven times per period
for n = 8, ..., 20 , k = 1, ..., | _ ( n j

9
10
11
12
13
14
15
16
17
18
19
20

1

0
0
0
0
0
0
0
0
0
0
0
0
0

2

1
0
8
0

38
0
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TABLE 8. F(n, k, -, 8) = number of twills on n harnesses with maximum
float length k , vhich occurs precisely eight times per period
for n = 8, ..., 20 , k = 1, ..., [w/8_| .

n "̂>
8
9
10
11
12
13
lit
15
16
IT
18
19
20

1
0
0
0
0
0
0
0
0
0
0
0
0

1
0
5
0
29

TABLE 9. F(n, k, -, 9) = number of twills on n harnesses with maximum
float length k , which occurs precisely nine times per period
for n = 10, ..., 20 , k = 1, ..., ]_(n-l)/9J .

n ^
10
11
12
13
lU
15
16
17
18
19
20

0
0
0
0
0
0
0
0
0
0 1
0 0

TABLE 10. F(n, k, -, 10) = number of twills on n harnesses with maximum
float length k , which occurs precisely ten times per period
for n = 10, ..., 20 , k = 1, ..., [jn-l)/9j .

n ^
10
11
12
13
1U
15
16
IT
18
19
20

1
0
0
0
0
0
0
0
0
0
0 1
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