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CABLE KNOTS AND INFINITE NECKLACES OF KNOTS

SIEGFRIED MORAN

The group of an arbitrary companion knot is determined using the theory of braids.
This seems to be a new result as far as the resulting group is concerned. The latter
part of the paper considers infinite necklaces of knots, their groups and in special
cases their Alexander power series.

The group of a cable knot (or more generally a companion knot) is determined in
an algebraic manner using the theory of braids. The results as stated in this paper seem
to be new. Other accounts of the theory can be found in Burau [2], Seifert [8], Burde
and Zieschang [3]. Some examples can also be found in Rolfsen [7]. The appropriate
theory will be preceded by an account of some relevant notation from the theory of
braids.

The last part of this paper will be devoted to a consideration of infinite necklaces of
a countable number of knots. They give rise to certain Alexander formal power series.

In this paper it is assumed that the reader is familar with the standard theory of
braids and knots as given in Birman [1] and Moran [5]. The last part of this paper also
assumes a knowledge of the results contained in Moran [6].

1. SOME NOTATION FROM BRAID THEORY

Suppose that i and j are positive integers with i ^ j . We shall be concerned with
the usual generators

of a braid group. We denote

<Ti&i+l •• .<Tj b y i<Tj

and

iCj-iGj-l •••iO'i+l-tTi by iAj.

i Aj is abbreviated to A j .
We study braids of braids which are generated by braids of the form
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18 S. Moran

1 2 n n+1 n+2 2n

[2]

where n is a fixed positive integer. This braid is given by

LEMMA 1 . 1 . The above given braid a is equal to

PROOF:

- l •n-\O'2n-2- •"• - n - i ^ n - t - l - • " •3"'n+2

7 ' 0 '

• lan+2

0' C

Continuing to collect in this way one has that

LEMMA 1.2 .

xli. A2n_i. A J L J = A£n_!. (A2^_1. An_i. A2n-i) -k

D

for aii integers k.

PROOF: We first note that A^n-i commutes with all terms in the above expres-
sion and also that An_i and A^n-i • An-i . A2n-i commute. Hence it is sufficient to
consider the case when A; is a positive integer. We proceed by induction on k.

. , . An_x . A ^
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LEMMA 1 . 3 .

PROOF:

Cable knots and infinite necklaces of knots

n _ l • An_i . A2n-1 — n+lA2n-l

19

, - 1

• An_i

= An_i.

D
The counterpart to <T\ in Braid Theory is played here by Aj which we define to

be

A n l ! . A2 n_i . A B I i . n + i A2n
2_j.

We also have, by Lemma 1.3, that

A(
1
n) = Aan_1.A-I1.n+1AJB'_1.

This has a picture of the following form in the particular case when n = 4:

1 2 3 4 5 6 7

It is a routine matter to show that
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20 S. Moran [4]

2. FREE AUTOMORPHISMS CORRESPONDING TO SOME BRAIDS, LONGITUDES

We determine the automorphism of the free group corresponding to A^ and hence
more generally that corresponding to A; . It is well known that

)~

for 1 ^ j ^ n. Using this result, a tedious calculation shows that

» (n) f K*! ' ' ' Xr>)(xn+1 ' ' ' ̂ n)'*] • Xn+j . [• • • ]~X for 1 < j < U

;-n for n < j < 2n.
B i A i -

We now define A\n' for general i.

V = (
for i = l, 2, . . . , m — 1. These braids all lie in the braid group Bmn. It follows from
the above given automorphism corresponding to Aj that the automorphism of the
free group corresponding to Â  is as follows:

jA) = ,

Xj-r

Xi

for 1 ^ j ^ n(t — 1)

for n(* — 1) < j ^ ni

for m < j ^ n(t + 1)

•̂  for j > n{% + 1).

Hence one can deduce that the automorphism corresponding to its inverse is given by

for 1 < j ^ n(i - 1)

for n(i — 1) < j ^ m

-««* ) ] - « i - n . [•••I"1

for ni < j < n(i + 1)

< Xi for j > n(i + 1).

Both these automorphisms are defined for i — 1, 2, . . . , m — 1.

The braid Â  takes the *th strand (of n strings) over the (i + l)th strand (of
n strings) for i = 1,2, ..., m — 1. Suppose that one has an arbitrary word in these
operations which we denote by
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[5] Cable knots and infinite necklaces of knots 21

for short. Then the i th strand will terminate at tW, where n is a permutation of
1, 2, . . . , m . If one considers the jth string, then it lies in the <th strand, where t is
determined by the equation

j = (t-l)n + r

with 1 ̂  r ^ n and 1 ̂  t ^ m . The j t h string will then terminate at jir, where

jir = (in — l )n + r.

Using this notation we now determine the form of the automorphism of the free group
corresponding to A^™).

LEMMA 2 . 1 . Suppose that

is a word in t i e generators Aj , . . . , Aj^ij . Tien t i e automorphism of the free group

F({zi, x2, . . . , i n n } ) corresponding to A ^ is of the form

where the j tb string of A ^ belongs to the t tb strand of A ^ for 1 < J'^ mn. Further
A\ is a word in the elements X[ , X^ , •• •, Xm of the free group freely generated
by them, where

for 1 ^ 8, t ^ m. Also every A\ has exponent sum equal to xero when it is considered

as a word in the free group F({x[n), ..., X&°}) .

PROOF: This proceeds by induction on the length of the word w. The result has
already been proved true for a word of length 1 in the previous paragraphs. Now

which gives the required result. D

LEMMA 2 . 2 . Using t ie notation of the previous Lemma one has that

XJn) forj<i

X\n) forj=i + l

X<jn) forj^i + 2
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22 S. Moran [6]

where i = 1, 2, . . . , m — 1. Hence there is a natural one-to-one correspondence between
the automorphisms of the free group F({X[n', . . . , X£'}] induced by the braids

tuf Aj , . . . , A^ijJ and t ie automorphisms of the free group F({xi, . . . , xm}) in-

duced by the braids w{<T\, . . . , <rm_i). In fact one has that

-l

for t = 1, 2, . . . , m and

, - l

for a = 1, 2, . . . , m. Tie correspondence is obtained by mapping

Xj —y XJ for j = 1, 2, . . . , TO.

In particular one has that under this correspondence

A[n)(X) —» <4n)(a;) for t = 1, 2, . . . . m.

We give a simple proof of the following well known result on the longitude of a
knot. For a convenient reference concerning longitudes see Moran [5, Chapter 17]. For
a different proof see [3, Proposition 3.12].

LEMMA 2 . 3 . Tie longitude of a knot belongs to the second commutator sub-
group of the group of the knot.

PROOF: Let G be the group of the knot K. Then, by definition, the longitude
I belongs to the commutator subgroup G'. Now the required result is a consequence
of the following three well known facts. Firstly G/G' — (t; —) acts by conjugation on
the Abelian group G'/G". Secondly the Alexander polynomial f(t) of the knot K
annihilates all elements of G'/G" (see Moran [5, end of Chapter 11]). Thirdly the
longitude I commutes with its meridan and /(I) = ±1 . D

3. CABLE AND COMPANION THEOREMS

Suppose that the braid

is such that the permutation of its strands is an m-cycle. Then the associated link
£(A<n>) is said to be a thick knot. The loops x[n), X^n\ ...,X^ are each called
thick meridans and they have corresponding thick longitudes - the latter travel along
the thick knot.
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[7] Cable knots and infinite necklaces of knots 23

CABLE THEOREM 3 . 1 . Suppose that the braid

is such that the permutation W of its strands is an m-cycle. Then the permutation

corresponding to the mn-braid

is an mn-cycle. So the Hnk

corresponding to this braid is a knot - a cabie knot. The group

a(£(A( n ) . ( m_1 ) n + 1<rm B-i))

of this cable knot has generators

y(Tl) yr(Tl) y-(n)

with defining relations

/or < = 1, 2, . . . , m and

where the thick longitude lm belongs to the second commutator subgroup. Further if
the Alexander polynomial of the knot

L(W(<TI, <r2, . . . , o-m_i))

is / ( T ) , then the Alexander polynomial of the above given cable knot is / ( r n ) .

PROOF: According to the Theorem of Artin and Birman (see Moran [5, Chapter
6]) one has that the group of the cable knot has generators

( ) • • > xmn

and defining relations

*,-A(n) = U jdm- i^+ i^n - i ) " 1 for 1 < j ^ mn.
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24 S. Moran [8]

These relations are equivalent to the denning relations

{
Xj for 1 ̂  j ^ (m - l)n

xj+i for (m - l)n < j < mn
0"(m-l)n+2 • • • *mn) • 3(m-l)n+l •(•••) for J

Here, by Lemmas 2.1 and 2.2, we have that

where j — (t — l)n + r with 1 ̂  r ^ n and 1 ̂  t ^ m. We also use the generators

Xi , X2 , • •., Xm with defining relations

/ i \ y ( n ) n> rf

for 1 ̂  8 ^ m. Consequences of these relations are the relations

- 1

for t = 1, 2, . . . , m. The last relation of (f) is superfluous and hence can be ignored.

Suppose that we now were to eliminate the generators xk for all k ^ (m — l)n

from the defining relations

- 1

for (m — l)n < j < mn

by using the defining relations

4 n > . xklr. ( 4 n > ) "* = xk for 1 ̂  k < (m - l)n

of (f). Then we obtain the relations

lm . XJ . Z"1 = XJ+I for (m - l)n < j < mn,

where lm denotes the thick longitude of the thick knot relative to the thick meridan

Xm i by Lemma 2.1 (see also Moran [5, Chapter 17]). By Lemma 2.3, we know that

lm and Xm commute and lm belongs to the second commutator subgroup. So we

obtain the relations

*m • x(m-l)n+l • 'm = x(m-l)n+h+l

for h = 1, 2, . . . , n - 1 .
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[9] Cable knots and infinite necklaces of knots 25

We now do eliminate the generators x^ for all k ^ (m — l)n from the defining
relations. This gives that the group of the cable knot has generators

and defining relations:

(*)t fort = 1,2, . . . , m ;

(t)m;

Hence one obtains the required defining relations.
Finally let A denote the Alexander matrix of the relations (*)t with t =

1, 2, . . . , m on the generators X\ , ..., Xm with the variable T being put equal
to Tn. Then the Alexander matrix of the cable knot is equal to

0

The elementary ideal of this matrix is the ideal generated by the determinant

0 - 0 1

where Ai denotes the ith row of the matrix A for t = 1,2, ..., m — 1. By Lemma
2.2, the above given determinant is equivalent to f(T) = f(rn). D

NOTE 3.2. A similar Cable Theorem holds for the cable knot corresponding to the
braid

Some straight forward modifications of the proof of the Cable Theorem 3.1 give
the following generalisation of this theorem.
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26 S. Moran [10]

COMPANION THEOREM 3 . 3 . Suppose that the braid

is such that the permutation n of its strands is an m-cycle. Further suppose that <r is
an mn-braid which acts nontrivially only on the last n strings in such a way that the

corresponding permutation is an n-cycle. Then the permutation corresponding to the

mn-braid

AW.<r

is an mn-cycle. So the Hnk

corresponding to this braid is a knot — a companion knot. The group

of this companion knot has generators

X(n) iLr(n) Y-(n)

1 > -*• a > • • • > -A-m ' a : ( m - l ) n + l j • • • i xmn

with defining relations

- l

for t — 1, 2, . . . , m and

and

for j = (m — l ) n + l , . . . , mn. Here lm denotes the thick longitude which is an element

of the second commutator subgroup. If the Alexander polynomials of the knots

L(w(<ri, <r2, •••, o ' m - i ) ) a n d L(a)

are / ( T ) and g(r) respectively, where a is considered to be an n-braid, then the

Alexander polynomial of the above given companion knot is

COROLLARY 3 . 3 . 1 . The group
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[11] Cable knots and infinite necklaces of knots 27

is isomorphic to the free product with amalgamation

%m = z(m-l)n+l • • • xmn

which amalgamates a free Abelian subgroup of rank two. Here £(A^n^) is considered

to be a link on the strands of A(n) as strings and so <?(.L(A(n))) ias generators

Tie braid p is defined to be the (n + l)-braid

P =

and a will now be considered to be an (n + l)-braid.

See Moran [5, Chapter 20] for the relevant facts concerning the braid p, whose

corresponding automorphism of a free group behaves like an inner automorphism with

respect to the generator z m n + i iQ the group

4. TYING BRAIDS

Suppose that a and T are finite braids on s +1 strings, where a operates trivially
on the last t strings while r operates trivially on the first s strings. Then the following
lemma is a variant of a well known result.

THE THAI LEMMA 4 . 1 . Tie group Q{L{OT<T,)) has the following decomposi-
tion into a free product with amalgamation

wiere t ie braids a and T~X are considered to operate only on the £rst a strings and
tie last t strings respectively.

PROOF: The group G(L(<TT<r,)) has generators zi , z2, •.., z,, ..., z,+t and

defining relations

i if t ^ a, a + 1

Zi<TT = Zi<r~l = { z.+i if i = a

7l\z'z'+i if* = .s + l.
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The defining relations can also be written as

{
ZiT~l if t ^ a, a + 1

Z,+\T~1 if t = 8
z.+iT-1)'1. z,. ( Z , + 1 T " 1 ) if i = a + 1.Now we take

{ Xi if 1 < t < a

yi d l ^ i - a ^ t .

In this notation the defining relations become

Xi<r = Xi for 1 ^ t ^ a — 1

x.<r = y.+ir'1

y.+i = (y.+ir""1) .x. . (y.+jT"1)

yi = y%T~l for a + 2 < t < a + t.

Now from the basic property of braids it follows that

. (x2(r) ... (s;,-i<r). (x.a)

. . X,-iXt

and so x,<r = x,. For similar reasons one has that y,+i = J/J+IT"1 . This gives the
required decomposition into a free product with amalgamation. D

NOTE 4.2. It is not difficult to show that

Further a similar result to that given in the above Lemma holds also for the group

We now consider an infinite version of the Thai Lemma. Suppose that

is an infinite sequence of braids so that <r(r) acts trivially on all those strings which do
not have upper ends

n! + . . . + nr_i + 1 to ni + ... + nr_i + nr
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[13] Cable knots and infinite necklaces of knots 29

with n r ^ 2 for each positive integer r . Now the two infinite braids

(r) and ] ^ t r n i + n , + . . . + n r

is each a sane braid on positive strings in which the pushing down process is possible.

The same is true of their inverses, since the terms in each case commute and thus one

has

( I I anl+na + ...+nr ] = 1 1

Hence the above given proof of the Thai Lemma and the results of Moran [6] (see in

particular Paragraphs 6, 7 and 9) give

THE INFINITE NECKLACE OF LINKS THEOREM 4.3. The group

is isomorphic to the Topologist's free product of the groups Q(L(<T(T))), where r ^ 1,

with the topological amalgamations

*n1+nj + ...+nr = *n1+nJ + ...+nr+l for each T ~£ 1.

In fact the results of Moran [6] gives us that the sought after group is isomorphic to

the Topologist's free group on the countably infinite set of generators x\, X2, . . . , xn, ...

modulo the topological defining relations

f Xi if 1 ^ i <

and

{
x^Xi-iXi if t = ni + . . . + n r _ i + 1

Xi if n j + • • • + n r _ i + l < t < n i + . . . + n r _ i + n r

xi+1 if i = ni + . . . + n r _ j + n r

for r = 2, 3, . . . .

Griffiths [4] contains the definition of the Topologist's free product and some of its

relevant properties can also be found there.
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30 S. Moran [14]

NOTE 4.4. The above given infinite necklace contains each of the hnks L(<r(r)) tied in
and its group contains each group QL(a(r)) as a subgroup. In fact we have

i s

and

IS
/m—1

n - w ) • (r i -n1+...+nr)).
COROLLARY 4 . 5 . Suppose that each L(a(r)) is a knot whose Alexander poly-

nomial is fr(t) with fr{t) being a polynomial in tkr , where kT is a positive integer so

that

kT —> oo as r —> oo.

Tien t i e Aiexander power series of the knot

is the formal power series

n/'(*)•
This is so because we take the definition of the Alexander power series of such a

knot to be

lim Alexander polynomial L[ I TT <r{r) I . I TT <rni+ +nr ) ).

EXAMPLE 4.6. A rich source of knots whose Alexander polynomials satisfy the con-
ditions of the above Corollary is given by cable knots. Further if one has two infinite
necklaces of knots of the type given in the Corollary which have distinct Alexander
power series, then these two infinite necklaces of knots are not equivalent.
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