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Abstract
In this work, we introduce Urod algebras associated to simply laced Lie algebras as well as the concept of translation
of W-algebras.

Both results are achieved by showing that the quantum Hamiltonian reduction commutes with tensoring with
integrable representations; that is, for V and L an affine vertex algebra and an integrable affine vertex algebra
associated with 𝔤, we have the vertex algebra isomorphism 𝐻0

𝐷𝑆, 𝑓
(𝑉 ⊗ 𝐿) � 𝐻0

𝐷𝑆, 𝑓
(𝑉) ⊗ 𝐿, where in the left-

hand-side the Drinfeld–Sokolov reduction is taken with respect to the diagonal action of 𝔤̂ on 𝑉⊗𝐿.
The proof is based on some new construction of automorphisms of vertex algebras, which may be of independent

interest. As corollaries, we get fusion categories of modules of many exceptional W-algebras, and we can construct
various corner vertex algebras.

A major motivation for this work is that Urod algebras of type A provide a representation theoretic interpretation
of the celebrated Nakajima–Yoshioka blowup equations for the moduli space of framed torsion free sheaves on CP2

of an arbitrary rank.

1. Introduction

In [BFL16] Bershtein, Litvinov and the third named author introduced the Urod algebra, which gives a
representation theoretic interpretation of the celebrated Nakajima–Yoshioka blowup equations [NY05]
for the moduli space of framed torsion free sheaves onCP2 of rank two via the Alday–Gaiotto–Tachikawa
(AGT) correspondence [AGT10]. One of the aims of the present paper is to introduce the higher-rank
Urod algebras, which generalizes the result of [BFL16] to the case of sheaves at arbitrary rank.

In fact, it turned out in recent works (see, e.g., [FG18, CG17]) that Urod algebras appear not only
in the AGT correspondence but also in various theories of vertex algebras in connection with higher-
dimensional quantum field theories. This work provides the first systematic study of Urod algebras
appearing in various contexts.

Another aim of this paper is to introduce the translation for (affine) W-algebras. Namely, we show
that any integrable highest representation L of level ℓ ∈ Z>0 gives rise to an exact functor

𝑇𝐿 : 𝒲𝑘 (𝔤, 𝑓 ) -Mod → 𝒲𝑘+ℓ (𝔤, 𝑓 ) -Mod, 𝑀 ↦→ 𝑀⊗𝐿, (1)

where 𝒲𝑘 (𝔤, 𝑓 ) is the W-algebra associated with 𝔤 and its nilpotent element f at level 𝑘 ∈ C ([FF90a,
KRW03]).
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We establish these results by showing that the quantized Drinfeld–Sokolov reduction commutes with
tensoring with integrable representations.

Let us describe our results in more details.

1.1. Main Theorem

Let 𝔤 be a simple Lie algebra, 𝔤̂ = 𝔤((𝑡)) ⊕C𝐾 be the affine Kac–Moody Lie algebra associated with 𝔤
defined by the commutation relation

[𝑥 𝑓 , 𝑦𝑔] = [𝑥, 𝑦] 𝑓 𝑔 + (𝑥, 𝑦) Res𝑡=0 (𝑔𝑑𝑓 )𝐾,

[𝐾, 𝔤̂] = 0, where ( | ) is the normalized inner product of 𝔤 (it is 1/2ℎ∨ times the Killing form of 𝔤,
where ℎ∨ is the dual Coxeter number of 𝔤). For 𝑘 ∈ C, let 𝑉 𝑘 (𝔤) = 𝑈 (𝔤̂)⊗𝑈 (𝔤 [ [𝑡 ] ] ⊗C𝐾 )C, where C is
regarded as a one-dimensional representation of 𝔤[[𝑡]]⊗C𝐾 on which 𝔤[[𝑡]] acts trivially and K acts via
multiplication by k. 𝑉 𝑘 (𝔤) is naturally a vertex algebra and is called the universal affine vertex algebra
associated with 𝔤 at level k.

Any (graded) quotient V of 𝑉 𝑘 (𝔤) inherits the vertex algebra structure from 𝑉 𝑘 (𝔤). Let L𝑘 (𝔤) be the
unique simple (graded) quotient of 𝑉 𝑘 (𝔤). The vertex algebra L𝑘 (𝔤) is integrable as an 𝔤̂-module if and
only if 𝑘 ∈ Z�0.

For a nilpotent element f of 𝔤, let 𝐻•
𝐷𝑆, 𝑓 (𝑀) be the BRST cohomology of the quantized Drinfeld–

Sokolov reduction associated with (𝔤, 𝑓 ) with coefficients in a 𝔤̂-module M ([FF90a, KRW03]). The
W-algebra associated with (𝔤, 𝑓 ) at level k is by definition the vertex algebra

𝒲𝑘 (𝔤, 𝑓 ) = 𝐻0
𝐷𝑆, 𝑓 (𝑉

𝑘 (𝔤)).

For any smooth 𝔤̂-module M of level k, 𝐻𝑖𝐷𝑆, 𝑓 (𝑀), 𝑖 ∈ Z, is a module over 𝒲𝑘 (𝔤, 𝑓 ). More generally,
for any vertex algebra V equipped with a vertex algebra homomorphism 𝑉 𝑘 (𝔤) → 𝑉 and a V-module
M, 𝐻𝑖𝐷𝑆, 𝑓 (𝑀), 𝑖 ∈ Z, is a module over the vertex algebra 𝐻0

𝐷𝑆, 𝑓 (𝑉).

Theorem 1. Let V be a quotient of the universal affine vertex algebra 𝑉 𝑘 (𝔤) and ℓ ∈ Z�0. We have a
vertex algebra isomorphism

𝐻0
𝐷𝑆, 𝑓 (𝑉 ⊗ Lℓ (𝔤)) � 𝐻0

𝐷𝑆, 𝑓 (𝑉) ⊗ Lℓ (𝔤), (2)

where in the left-hand-side the Drinfeld–Sokolov reduction is taken with respect to the diagonal action of
𝔤̂ on𝑉⊗Lℓ (𝔤). More generally, let V be a vertex algebra equipped with a vertex algebra homomorphism
𝑉 𝑘 (𝔤) → 𝑉 . Then we have an isomorphism

𝐻•
𝐷𝑆, 𝑓 (𝑉 ⊗ Lℓ (𝔤)) � 𝐻•

𝐷𝑆, 𝑓 (𝑉) ⊗ Lℓ (𝔤), (3)

of graded vertex algebras, and for any V-module M, Lℓ (𝔤)-module N, there is an isomorphism

𝐻•
𝐷𝑆, 𝑓 (𝑀⊗𝑁) � 𝐻•

𝐷𝑆, 𝑓 (𝑀)⊗𝑁.

as modules over 𝐻•
𝐷𝑆, 𝑓 (𝑉 ⊗ Lℓ (𝔤)) � 𝐻•

𝐷𝑆, 𝑓 (𝑉) ⊗ Lℓ (𝔤).

In the case that 𝔤 = 𝔰𝔩2 and ℓ = 1, the isomorphism (30) was established in [BFL16]. Our argument
only requires certain properties of integrable representations and especially also works for superalgebras
as well; see Section 5.

We note that the existence of the isomorphism (30) as vector spaces is not difficult to see. However,
it is not a priori clear at all why there should exist an isomorphism of vertex algebras. We also note that
equation (30) is not compatible with the standard conformal gradings of both sides. To remedy this, we
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need to change the conformal vector of Lℓ (𝔤) on the right-hand side to a new conformal vector 𝜔𝑈𝑟𝑜𝑑 ,
which we call the Urod conformal vector (see Section 6).

The proof of Theorem 1 is based on some new construction of automorphisms of vertex algebras,
which may be of independent interest; see Section 2 for the details.

1.2. Translation for W-algebras

By applying Theorem 1 to 𝑉 = 𝑉 𝑘 (𝔤), 𝑘 ∈ C, we obtain the vertex algebra isomorphism

𝐻0
𝐷𝑆, 𝑓 (𝑉

𝑘 (𝔤)⊗Lℓ (𝔤)) �𝒲𝑘 (𝔤, 𝑓 )⊗Lℓ (𝔤).

Consequently, the natural vertex algebra homomorphism 𝑉 𝑘+ℓ (𝔤) → 𝑉 𝑘 (𝔤)⊗Lℓ (𝔤) induces a vertex
algebra homomorphism

𝒲𝑘+ℓ (𝔤, 𝑓 ) → 𝐻0
𝐷𝑆 (𝑉

𝑘 (𝔤)⊗Lℓ (𝔤))
∼−→ 𝒲𝑘 (𝔤, 𝑓 )⊗Lℓ (𝔤).

Therefore, for any 𝒲𝑘 (𝔤, 𝑓 )-module M and any integrable representation L of 𝔤̂ of level ℓ, 𝑀⊗𝐿 is has
the structure of an 𝒲𝑘+ℓ (𝔤, 𝑓 )-module. As a consequence, we obtain the translation by L, that is, the
exact functor (1) as we wished.

Recall that the Zhu algebra of 𝒲𝑘 (𝔤, 𝑓 ) is isomorphic to the finite W-algebra [Pre02] 𝑈 (𝔤, 𝑓 )
associated with (𝔤, 𝑓 ) ([Ara07, DSK06]). Also, the Zhu algebra of Lℓ (𝔤) is isomorphic to the quotient
𝑈ℓ (𝔤) of𝑈 (𝔤) by the two-sided ideal generated by 𝑒ℓ+1

𝜃 ([FZ92]), and so is that of Lℓ (𝔤) with the Urod
conformal structure ([Ara15b]). Therefore, by taking the Zhu algebras, we obtain from equation (1) an
algebra homomorphism

𝑈 (𝔤, 𝑓 ) → 𝑈 (𝔤, 𝑓 )⊗𝑈ℓ (𝔤). (4)

Since any finite-dimensional 𝔤-module is an 𝑈ℓ (𝔤)-module for a sufficiently large ℓ, equation (4) gives
𝑀⊗𝐸 a structure of 𝑈 (𝔤, 𝑓 )-module for any 𝑈 (𝔤, 𝑓 )-module M and a finite-dimensional 𝔤-module E.
We expect that this 𝑈 (𝔤, 𝑓 )-module structure of 𝑀⊗𝐸 does not depend on the choice of a sufficiently
large ℓ, and coincides with the one obtained by Goodwin [Goo11].

1.3. Higher-rank Urod algebras

We denote also by 𝒲𝑘 (𝔤) the W-algebra 𝒲𝑘 (𝔤, 𝑓𝑝𝑟𝑖𝑛) associated with a principal nilpotent element
𝑓𝑝𝑟𝑖𝑛 of 𝔤. Let 𝔤 be simply laced, and suppose that 𝑘+ℎ∨−1 ∉ Q�0, where ℎ∨ is the dual Coxeter number
of 𝔤. By the coset construction [ACL19] of the principal W-algebra 𝒲𝑘 (𝔤), we have a conformal vertex
algebra embedding

𝑉 𝑘 (𝔤)⊗𝒲ℓ (𝔤) ↩→ 𝑉 𝑘−1(𝔤)⊗L1(𝔤), (5)

where ℓ is the number defined by the formula

1
𝑘 + ℎ∨ + 1

ℓ + ℎ∨ = 1. (6)

By taking the Drinfeld–Sokolov reduction with respect to the level k action of 𝔤̂, equation (5) gives rise
to the full vertex algebra embedding

𝒲𝑘 (𝔤, 𝑓 )⊗𝒲ℓ (𝔤) ↩→ 𝐻𝐷𝑆, 𝑓 (𝑉 𝑘−1(𝔤)⊗L1 (𝔤)) �𝒲𝑘−1(𝔤, 𝑓 )⊗U(𝔤), (7)

where the last isomorphism follows from Theorem 1 and U(𝔤) = U(𝔤, 𝑓 ) is the vertex algebra L1(𝔤)
equipped with the Urod conformal vector 𝜔𝑈𝑟𝑜𝑑 . We call the vertex operator algebra U(𝔤) the Urod
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algebra. In the case that 𝔤 = 𝔰𝔩2 and 𝑓 = 𝑓𝑝𝑟𝑖𝑛, U(𝔤) is exactly the Urod algebra introduced
in [BFL16].

Let L be a level one integrable representation of 𝔤̂, which is naturally a module over the Urod algebra
U(𝔤). By equation (43), for any 𝒲𝑘 (𝔤, 𝑓 )-module M, the tensor product 𝑀⊗𝐿 has the structure of a
𝒲𝑘 (𝔤, 𝑓 )⊗𝒲ℓ (𝔤)-module. We are able to describe the decomposition of 𝑀⊗𝐿 as 𝒲𝑘 (𝔤, 𝑓 )⊗𝒲ℓ (𝔤)-
modules for various M and L (Theorems 8.1, 8.2, 8.4, 8.7 and Corollaries 8.4, 8.8).

In particular, Corollary 8.4 states that, when M is a generic Verma module of 𝒲𝑘−1(𝔤), 𝑀⊗𝐿
decomposes into a direct sum of tensor products of Verma modules of 𝒲𝑘 (𝔤) and 𝒲ℓ (𝔤). In the case
that 𝔤 = 𝔰𝔩2 with an appropriate choice of L, this provides the decomposition that was used in [BFL16]
to give a representation theoretic interpretation of the Nakajima–Yoshioka blowup equations for the
moduli space of rank two framed torsion-free sheaves on CP2. In a forthcoming paper, we show how
the decomposition for 𝔤 = 𝔰𝔩𝑛 stated in Corollary 8.4 can be used to give a representation theoretic
interpretation of Nakajima–Yoshioka blowup equations for the moduli space of framed rank n sheaves
on CP2 via the AGT conjecture established by Schiffmann and Vasserot [SV13].

1.4. Higher-rank Urod algebras and VOA[𝑀4]

The Urod algebra is proposed to be important for general smooth 4-manifolds. This appeared in the
recent work [FG18] of Gukov and the third named author. For a compact simply laced Lie group G,
one can conjecturally [FG18] associate a vertex operator algebra VOA[𝑀] = VOA[𝑀,𝐺] to every
smooth 4-manifold M and an category of modules for VOA[𝑀] to every boundary component of M.
The vertex algebra VOA[𝑀] should then act on the cohomology of the moduli space of G-instantons on
M. Moreover, the invariant VOA[𝑀] should have the following property: Glueing 4-manifolds along a
common boundary amounts to extending the tensor product of the two associated vertex algebras along
the categories of modules; see [CKM19] for the theory of these vertex algebra extensions.

When 𝐺 = 𝑆𝑈 (2) we have [FG18] that

VOA[𝑀4#CP2] = U(𝔰𝔩2)⊗ VOA[𝑀4],

where 𝑀4#CP2 is the connected sum of 𝑀4 and CP2. One expects the same type of formula for any
simply laced G with U(𝔰𝔩2) replaced by the corresponding higher-rank Urod algebra.

1.5. Higher-rank Urod algebras and vertex algebras for S-duality

The present work was originally motivated by a conjecture that appeared in the context of vertex algebras
for S-duality [CG17] .

The problem lives inside four-dimensional supersymmetric GL-twisted gauge theories and vertex
algebras appear on the intersection of three-dimensional topological boundary conditions. Such vertex
algebras are typically constructed out of W-algebras and affine vertex algebras associated to the Lie
algebra 𝔤 of the gauge group G, and the coupling constantΨ relates to the level shifted by the dual Coxeter
number ℎ∨. Different boundary conditions can be concanated to yield other boundary conditions and
corresponding vertex algebras are related via vertex algebra extensions. Most of [CG17] is dealing with
simply laced𝔤, and the discussion at the bottom of page 22 of [CG17] is concerned with the concatenation
of boundary conditions called 𝐵1,0, 𝐵−1,1 and 𝐵0,1. The main expectation is that the resulting corner
vertex algebra coincides with the corner vertex algebra between the boundary conditions 𝐵1,0 and 𝐵0,1
dressed by extra decoupled degrees of freedom corresponding to L1 (𝔤). In vertex algebra language, this
expectation is precisely the statement of Theorem 8.1 with 𝜇 = 0 = 𝜈.

There are further conjectures around vertex algebras and S-duality. These are mainly the construction
of junction or corner vertex algebras which are typically large extensions of products of two vertex
algebras associated to 𝔤. Theorem 9.1, which gives a lattice type construction of vertex operator algebras
of CFT type using W-algebras in place of Heisenberg algebras, proves them in a series of cases.
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1.6. Rigidity of vertex tensor categories

One of the most difficult problems of the subject of vertex algebras is the understanding of tensor
categories of modules of a given vertex algebra. The theory of tensor categories of modules of vertex
algebras has been developed in the series of papers [HL94, HL95]. In particular, Yi-Zhi Huang has shown
the existence of vertex tensor categories for lisse vertex algebras without the rationality assumption
[Hua09].

The most challenging technical problem for vertex tensor categories is to prove the rigidity of objects.
This is crucial as rigidity gives the categories substantial structure, and many useful theorems only hold
for rigid tensor categories. While this problem was settled by Huang for rational, lisse vertex algebras
[Hua08], it is wide open for nonrational lisse vertex algebras.

In fact, it is expected that the tensor categories of modules should exist for much more general vertex
algebras. Strong evidence was given in [CHY18] that showed the category of ordinary modules over an
admissible affine vertex algebra associated with a simply laced Lie algebra has the structure of a vertex
tensor category.

We conjecture that the category of ordinary modules over a quasi-lisse vertex algebra [AK18] has
the structure of a vertex tensor category (Conjecture 1). Note that an admissible affine vertex algebra is
quasi-lisse.

Assuming this conjecture and using an idea of [Cre19], we use the decomposition stated in Theorem
8.1 to prove that certain categories of quasi-lisse W-algebras at admissible level are fusion (Theorem
10.4). Since the conjecture is valid for lisse W-algebras, this gives strong evidence for the rationality
conjecture [KW08, Ara15a] of lisse W-algebras at admissible levels, which has been settled only in
some special cases [Ara15b, AvE].

It seems that the translation functor is a good tool to prove rationality of vertex operator algebras in
suitable cases. We will explain in forthcoming work how to employ the translation functor in order to
get new rational 𝒲-algebras at nonadmissible levels associated to Deligne’s exceptional series [ACK].

2. A construction of automorphisms of vertex algebras

Let V be a vertex algebra. As usual, we set 𝑎 (𝑛) = Res𝑧=0 𝑧
𝑛𝑎(𝑧) for 𝑎 ∈ 𝑉 , where 𝑎(𝑧) is the quantum

field corresponding to a. We have

[𝑎 (𝑚) , 𝑏 (𝑛) ] =
∑
𝑗�0

(
𝑚
𝑗

)
(𝑎 ( 𝑗)𝑏)(𝑚+𝑛− 𝑗) (8)

for 𝑎, 𝑏 ∈ 𝑉 , 𝑚, 𝑛 ∈ Z. In particular, [𝑎 (0) , 𝑏 (𝑛) ] = (𝑎 (0)𝑏)(𝑛) .
Let A be an element of V such that its zero mode 𝐴(0) acts semisimply on V so that 𝑉 =⊕
𝜆∈C𝑉 [𝜆], where 𝑉 [𝜆] = {𝑣 ∈ 𝑉 | 𝐴(0)𝑣 = 𝜆𝑣}. We assume that 𝐴 ∈ 𝑉 [0]. Set 𝑉 [� 𝜆] =⊕

𝜇∈𝜆+R�0

𝑉 [𝜇] ⊃ 𝑉 [> 𝜆] =
⊕
𝜇>𝜆

𝑉 [𝜇].

Suppose that there exists another element 𝐴̂ ∈ 𝑉 [� 0] such that 𝐴̂ ≡ 𝐴(mod 𝑉 [> 0]) and 𝐴̂(0)
acts locally finitely on V. Then, 𝐴̂(0) acts semisimply on V, and for 𝑣 ∈ 𝑉 [𝜆], there exists a unique
eigenvector 𝑣̃ of 𝐴̂(0) eigenvalue 𝜆 such that 𝑣̃ ≡ 𝑣(mod 𝑉 [> 𝜆]). By extending this correspondence
linearly, we obtain a linear map

𝑉 → 𝑉, 𝑣 ↦→ 𝑣̃. (9)

Lemma 2.1. The map (9) is an automorphism of V.

Proof. Clearly, equation (9) is a linear isomorphism. We wish to show that equation (9) is a homomor-
phism of vertex algebras. It is clear that |̃0〉 = |0〉. Let 𝑣 ∈ 𝑉 [𝜆], 𝑤 ∈ 𝑉 [𝜇], 𝑛 ∈ Z. By equation (8),
𝑣̃ (𝑛) 𝑤̃ is an eigenvector of 𝐴̃(0) of eigenvalue 𝜆 + 𝜇 and 𝑣̃ (𝑛) 𝑤̃ ≡ 𝑣 (𝑛)𝑤(mod 𝑉 [> 𝜆 + 𝜇]). Therefore,
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𝑣̃ (𝑛) 𝑤̃ = �𝑣 (𝑛)𝑤. Similarly, 𝑇𝑣̃ is an eigenvector of 𝐴̃(0) of eigenvalue 𝜆 such that 𝑇𝑣̃ ≡ 𝑇𝑣(mod 𝑉 [> 𝜆]).
Hence, 𝑇𝑣̃ = 𝑇𝑣. This completes the proof. �

We also have the following.

Lemma 2.2. The action of 𝐴̂(0) on V coincides with that of 𝐴̃(0) .

Proof. For an eigenvector 𝑣 ∈ 𝑉 [� 𝜆] of 𝐴̂(0) of eigenvalue 𝜆, ( 𝐴̂(0) − 𝐴̃(0) )𝑣 is also an eigenvector of
𝐴̂(0) of eigenvalue 𝜆. On the other hand, ( 𝐴̂(0) − 𝐴̃(0) )𝑣 belongs to𝑉 [> 𝜆]. Since all eigenvalues of 𝐴̂(0)
on 𝑉 [> 𝜆] are greater than 𝜆, the vector ( 𝐴̂(0) − 𝐴̃(0) )𝑣 must be zero. This completes the proof. �

Let M be a V-module on which both 𝐴(0) and 𝐴̂(0) act semisimply. Set 𝑀 [𝜆] = {𝑚 ∈ 𝑀 | 𝐴(0)𝑚 =
𝜆𝑚}, 𝑀 [> 𝜆] =

∑
𝜇>𝜆 𝑀 [𝜇]. We can define a linear isomorphism

𝑀
∼→ 𝑀, 𝑚 ↦→ 𝑚̃ (10)

that sends𝑚 ∈ 𝑀 [𝜆] to a unique eigenvector 𝑚̃ of 𝐴̂(0) of eigenvalue 𝜆 such that 𝑚̃ ≡ 𝑚(mod 𝑀 [> 𝜆]).
The following assertion can be shown in the same manner as Lemma 2.1.

Lemma 2.3. We have 
𝑎 (𝑛)𝑚 = 𝑎̃ (𝑛) 𝑚̃ for 𝑎 ∈ 𝑉 , 𝑚 ∈ 𝑀 , 𝑛 ∈ Z, that is, (10) is an isomorphism of
V-modules.

3. Preliminaries on Drinfeld–Sokolov reduction

Let 𝔤 be a simple Lie algebra over C, and let 𝑉 𝑘 (𝔤) be the universal affine vertex algebra associated
with 𝔤 at level k as in the introduction. A 𝑉 𝑘 (𝔤)-module is the same as a smooth module M of level k
over the affine Kac–Moody algebra 𝔤̂. Here, a 𝔤̂-module M is called smooth if 𝑥(𝑧) =

∑
𝑛∈Z(𝑥𝑡𝑛)𝑧−𝑛−1

is a (quantum) field on M for all 𝑥 ∈ 𝔤, that is, (𝑥𝑡𝑛)𝑚 = 0 for a sufficiently large n for any 𝑚 ∈ 𝑀 .
Let f be a nilpotent element of 𝔤. Let

𝔤 =
⊕
𝑗∈ 1

2Z

𝔤 𝑗 (11)

be a good grading ([KRW03]) of 𝔤 for f, that is, 𝑓 ∈ 𝔤−1, ad 𝑓 : 𝔤 𝑗 → 𝔤 𝑗−1 is injective for 𝑗 � 1/2 and
surjective for 𝑗 � 1/2. Denote by 𝑥0 the semisimple element of 𝔤 that defines the grading, i.e.,

𝔤 𝑗 = {𝑥 ∈ 𝔤 | [𝑥0, 𝑥] = 𝑗𝑥}. (12)

We write deg 𝑥 = 𝑑 if 𝑥 ∈ 𝔤𝑑 .
Let {𝑒, ℎ, 𝑓 } be an 𝔰𝔩2-triple associated with f in 𝔤. Then the grading defined by 𝑥0 = 1/2ℎ is good

and is called a Dynkin grading.
Fix a Cartan subalgebra 𝔥 of 𝔤 that is contained in the Lie subalgebra 𝔤0. Let Δ be the set of roots of

𝔤, 𝔤 = 𝔥 ⊕
⊕

𝛼∈Δ 𝔤𝛼 the root space decomposition. Set Δ 𝑗 = {𝛼 ∈ Δ | 𝔤𝛼 ⊂ 𝔤 𝑗 } so that Δ =
⊔
𝑗∈ 1

2Z
Δ 𝑗 .

Put Δ>0 =
⊔
𝑗>0 Δ 𝑗 . Let 𝐼 = {1, 2, . . . , rk 𝔤}, and let {𝑥𝑎 | 𝑎 ∈ 𝐼 
Δ} be a basis of 𝔤 such that 𝑥𝛼 ∈ 𝔤𝛼,

𝛼 ∈ Δ , and 𝑥𝑖 ∈ 𝔥, 𝑖 ∈ 𝐼. Denote by 𝑐𝑑𝑎𝑏 the corresponding structure constant.
Set 𝔤�1 =

⊕
𝑗�1 𝔤 𝑗 , 𝔤>0 =

⊕
𝑗�1/2 𝔤 𝑗 , and let 𝜒 : 𝔤�1 → C be the character defined by 𝜒(𝑥) = ( 𝑓 |𝑥).

We extend 𝜒 to the character 𝜒̂ of 𝔤�1 [𝑡, 𝑡−1] by setting 𝜒̂(𝑥𝑡𝑛) = 𝛿𝑛,−1𝜒(𝑥). Define

𝐹𝜒 = 𝑈 (𝔤>0 [𝑡, 𝑡−1]) ⊗𝑈 (𝔤>0 [𝑡 ]+𝔤�1 [𝑡 ,𝑡−1 ]) C𝜒̂,

where C𝜒̂ is the one-dimensional representation of 𝔤>0 [𝑡] + 𝔤�1 [𝑡, 𝑡−1] on which 𝔤�1 [𝑡, 𝑡−1] acts by the
character 𝜒̂ and 𝔤>0 [𝑡] acts trivially. Since it is a smooth 𝔤>0 [𝑡, 𝑡−1]-module, the space 𝐹𝜒 is a module
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over the vertex subalgebra 𝑉 (𝔤>0) ⊂ 𝑉 𝑘 (𝔤) generated by 𝑥𝛼 (𝑧) with 𝛼 ∈ Δ>0. For 𝛼 ∈ Δ>0, let Φ𝛼 (𝑧)
denote the image of 𝑥𝛼 (𝑧) in (End 𝐹𝜒) [[𝑧, 𝑧−1]]. Then

Φ𝛼 (𝑧) = 𝜒(𝑥𝛼) for 𝛼 ∈ Δ�1

and

Φ𝛼 (𝑧)Φ𝛽 (𝑤) ∼
𝜒([𝑥𝛼, 𝑥𝛽])
𝑧 − 𝑤 .

There is a unique vertex algebra structure on 𝐹𝜒 such that |0〉 = 1⊗1 is the vacuum vector and

𝑌 ((Φ𝛼)(−1) |0〉, 𝑧) = Φ𝛼 (𝑧)

for 𝛼 ∈ Δ>0. (Note that (Φ𝛼)(−1) |0〉 = 𝜒(𝑥𝛼) |0〉 for 𝛼 ∈ Δ�1.) In other words, 𝐹𝜒 has the structure of
the 𝛽𝛾-system associated with the symplectic vector space 𝔤1/2 with the symplectic form

𝔤1/2 × 𝔤1/2 → C, (𝑥, 𝑦) ↦→ 𝜒([𝑥, 𝑦]). (13)

Next, let
∧∞/2+•(𝔤>0) be the vertex superalgebra generated by odd fields 𝜓𝛼 (𝑧), 𝜓∗

𝛼 (𝑧), 𝛼 ∈ Δ>0,
with the OPEs

𝜓𝛼 (𝑧)𝜓∗
𝛽 (𝑧) ∼

𝛿𝛼,𝛽

𝑧 − 𝑤 , 𝜓𝛼 (𝑧)𝜓𝛽 (𝑧) ∼ 𝜓∗
𝛼 (𝑧)𝜓∗

𝛽 (𝑧) ∼ 0

Let
∧∞/2+•(𝔤>0) =

⊕
𝑛∈Z

∧∞/2+𝑛 (𝔤>0) be the Z-gradation defined by deg |0〉 = 0, deg(𝜓𝛼)(𝑛) = −1,
deg(𝜓∗

𝛼)(𝑛) = 1.
For a smooth 𝔤̂-module M, set

𝐶 (𝑀) := 𝑀⊗𝐹𝜒⊗
∧∞/2+•

(𝔤>0). (14)

Then 𝐶 (𝑀) =
⊕
𝑖∈Z
𝐶𝑖 (𝑀), 𝐶𝑖 (𝑀) = 𝑀⊗𝐹𝜒⊗

∧∞/2+𝑖 (𝔤>0). Note that 𝐶 (𝑉 𝑘 (𝔤)) is naturally a vertex

superalgebra, and 𝐶 (𝑀) is a module over the vertex superalgebra 𝐶 (𝑉 𝑘 (𝔤)) for any smooth 𝔤̂-module
M. Define

𝑄(𝑧) =
∑
𝛼∈Δ>0

𝑥𝛼 (𝑧)𝜓∗
𝛼 (𝑧) +

∑
𝛼∈Δ>0

Φ𝛼 (𝑧)𝜓∗
𝛼 (𝑧) −

1
2

∑
𝛼,𝛽,𝛾∈Δ>0

𝑐
𝛾
𝛼,𝛽𝜓

∗
𝛼 (𝑧)𝜓∗

𝛽 (𝑧)𝜓𝛾 (𝑧),

where we have omitted the tensor product symbol. Then 𝑄(𝑧)𝑄(𝑤) ∼ 0, and we have 𝑄2
(0) = 0 on any

𝐶 (𝑉 𝑘 (𝔤))-module. The cohomology

𝐻•
𝐷𝑆, 𝑓 (𝑀) := 𝐻•(𝐶 (𝑀), 𝑄 (0) )

is called the BRST cohomologyof the Drinfeld–Sokolov reduction associated with f with coefficients
in M ([FF90a, KRW03]; see also [Ara05]). By definition [Feı̆84], 𝐻•

𝐷𝑆, 𝑓 (𝑀) is the semi-infinite
𝔤>0 [𝑡, 𝑡−1]-cohomology 𝐻 ∞

2 +•(𝔤>0 [𝑡, 𝑡−1], 𝑀 ⊗𝐹𝜒) with coefficients in the diagonal 𝔤>0 [𝑡, 𝑡−1]-module
𝑀 ⊗ 𝐹𝜒.

The vertex algebra

𝒲𝑘 (𝔤, 𝑓 ) := 𝐻0
𝐷𝑆, 𝑓 (𝑉

𝑘 (𝔤))

is called the W-algebra associated with (𝔤, 𝑓 ) at level k, which is conformal provided that 𝑘 ≠ −ℎ∨.
The vertex algebra structure of 𝒲𝑘 (𝔤, 𝑓 ) does not depend on the choice of a good grading ([AKM15]);
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however, its conformal structure does. The central charge of 𝒲𝑘 (𝔤, 𝑓 ) is given by

dim𝔤 − 1
2

dim𝔤1/2 − 12| 𝜌
√
𝑘 + ℎ∨

−
√
𝑘 + ℎ∨𝑥0 |2, (15)

where 𝜌 is the half sum of positive roots of 𝔤.
Let 𝒲𝑘 (𝔤, 𝑓 ) be the unique simple graded quotient of 𝒲𝑘 (𝔤, 𝑓 ).
Let KL be the full subcategory of 𝔤̂-modules consisting of objects on which 𝔤 acts semisimply and

𝑡𝔤[𝑡] acts locally nilpotently, and let KL𝑘 be the full subcategory of KL consisting of modules of level k.
Let Q be the root lattice of 𝔤, 𝑄̌ the coroot lattice, P the weight lattice, 𝑃̌ the coweight lattice, 𝑃+ the

set of dominant integral weights and 𝑃̌+ the set of dominant integral coweights of 𝔤. For 𝜆 ∈ 𝑃+, set

V𝑘𝜆 := 𝑈 (𝔤̂) ⊗𝑈 (𝔤 [𝑡 ] ⊕C𝐾 ) 𝐸𝜆 ∈ KL𝑘 ,

where 𝐸𝜆 is the irreducible finite-dimensional 𝔤-module of highest weight 𝜆 lifted to a 𝔤[𝑡]-module by
letting 𝔤[𝑡]𝑡 act trivially and K by multiplication with the scalar k. Note that𝑉 𝑘 (𝔤) = V𝑘0 as a 𝔤̂-module.
We denote by L𝑘𝜆 the unique simple graded quotient of V𝑘𝜆. More generally, for any weight 𝜆 of 𝔤, we
denote by L𝑘𝜆 the irreducible highest weight representation of 𝔤̂ with highest weight 𝜆 and level k.

Theorem 3.1 ([FG10, Ara15a]). We have 𝐻𝑖𝐷𝑆, 𝑓 (𝑀) = 0 for 𝑖 ≠ 0 and 𝑀 ∈ KL𝑘 . In particular, the
functor

KL𝑘 → 𝒲𝑘 (𝔤, 𝑓 ) -Mod, 𝑀 ↦→ 𝐻0
𝐷𝑆, 𝑓 (𝑀)

is exact.

Note that for 𝑀 ∈ KL𝑘 , 𝑁 ∈ KLℓ , we have 𝑀⊗𝑁 ∈ KL𝑘+ℓ . Therefore, 𝐻𝑖𝐷𝑆, 𝑓 (𝑀⊗𝑁) = 0 for 𝑖 ≠ 0.
In particular, 𝐻𝑖𝐷𝑆, 𝑓 (𝑀⊗𝐿) = 0 for 𝑖 ≠ 0 if 𝑀 ∈ KL and L is an integrable representation of 𝔤̂.

4. Proof of Theorem 1

Let 𝑘 ∈ C, ℓ ∈ Z�0, and set

𝐶 := 𝐶 (𝑉 𝑘 (𝔤)⊗Lℓ (𝔤)) = 𝑉 𝑘 (𝔤)⊗Lℓ (𝔤)⊗𝐹𝜒⊗
∧∞/2+•

(𝔤>0).

For 𝑡 ∈ C, define the element 𝑄𝑡 ∈ 𝐶 by

𝑄𝑡 (𝑧) =
∑
𝛼∈Δ>0

(𝜋1 (𝑥𝛼) (𝑧) + 𝑡2𝛼(𝑥0)𝜋2 (𝑥𝛼) (𝑧))𝜓∗
𝛼 (𝑧) (16)

+
∑
𝛼∈Δ>0

Φ𝛼 (𝑧)𝜓∗
𝛼 (𝑧) −

1
2

∑
𝛼,𝛽,𝛾∈Δ>0

𝑐
𝛾
𝛼,𝛽𝜓

∗
𝛼 (𝑧)𝜓∗

𝛽 (𝑧)𝜓𝛾 (𝑧),

where 𝜋1 (𝑥𝑎) (𝑧) (resp. 𝜋2 (𝑥𝑎) (𝑧)) denotes the action of 𝑥𝑎 (𝑧), 𝑎 ∈ 𝐼 
 Δ , on 𝑉 𝑘 (𝔤) (resp. on Lℓ (𝔤)).
Then 𝑄𝑡 (𝑧)𝑄𝑡 (𝑤) ∼ 0, and therefore, (𝑄𝑡 )2

(0) = 0. It follows that (𝐶, (𝑄𝑡 )(0) ) is a differential graded
vertex algebra, and the corresponding cohomology 𝐻•(𝐶, (𝑄𝑡 )(0) ) is naturally a vertex algebra. Clearly,

𝐻𝑖 (𝐶, (𝑄𝑡=0)(0) ) � 𝐻𝑖𝐷𝑆, 𝑓 (𝑉
𝑘 (𝔤))⊗Lℓ (𝔤) = 𝛿𝑖,0𝒲𝑘 (𝔤, 𝑓 )⊗Lℓ (𝔤), (17)

𝐻𝑖 (𝐶, (𝑄𝑡=1)(0) ) � 𝐻𝑖𝐷𝑆, 𝑓 (𝑉
𝑘 (𝔤)⊗Lℓ (𝔤)) = 𝛿𝑖,0𝐻0

𝐷𝑆, 𝑓 (𝑉
𝑘 (𝔤)⊗Lℓ (𝔤)); (18)

see Theorem 3.1.
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By [Ara05, 3.7], the differential (𝑄𝑡 )(0) decomposes as

(𝑄𝑡 )(0) = 𝑑𝑠𝑡𝑡 + 𝑑𝜒, (𝑑𝑠𝑡𝑡 )2 = (𝑑𝜒)2 = {𝑑𝑠𝑡𝑡 , 𝑑𝜒} = 0, (19)

where

𝑑𝑠𝑡𝑡 =
∑
𝛼∈Δ>0

∑
𝑛∈Z

(𝜋1 (𝑥𝛼)(𝑛) + 𝑡2𝛼(𝑥0)𝜋2 (𝑥𝛼)(𝑛) )𝜓∗
𝛼, (−𝑛)

+
∑
𝛼∈Δ1/2

∑
𝑛<0

Φ𝛼, (𝑛)𝜓
∗
𝛼, (−𝑛) (20)

− 1
2

∑
𝛼,𝛽,𝛾∈Δ>0

𝑐
𝛾
𝛼,𝛽

∑
𝑚,𝑛∈Z

𝜓∗
𝛼, (𝑚)𝜓

∗
𝛽, (𝑛)𝜓𝛾, (−𝑚−𝑛) ,

𝑑𝜒 =
∑
𝛼∈Δ1/2

∑
𝑛�0

Φ𝛼, (𝑛)𝜓
∗
𝛼, (−𝑛) +

∑
𝛼∈Δ1

𝜒(𝑥𝛼)𝜓∗
𝛼, (0) , (21)

and {𝑥, 𝑦} = 𝑥𝑦 + 𝑦𝑥.
Define the Hamiltonian H on C by

𝐻 = 𝐻𝑉
𝑘 (𝔤)

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 + (𝜔Lℓ (𝔤) )(1) + (𝜔𝐹𝜒 )(1) + (𝜔∧∞/2+• (𝔤>0) )(1) − 𝜋1 (𝑥0)(0) − 𝜋2 (𝑥0)(0) ,

where 𝐻𝑉
𝑘 (𝔤)

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 is the standard Hamiltonian of 𝑉 𝑘 (𝔤) that gives 𝜋1 (𝑥), 𝑥 ∈ 𝔤, conformal weight one
and 𝜔Lℓ (𝔤) is the Sugawara conformal vector of Lℓ (𝔤),

𝜔𝐹𝜒 (𝑧) =
1
2

∑
𝛼∈Δ1/2

: 𝜕𝑧Φ𝛼 (𝑧)Φ𝛼 (𝑧) :,

𝜔∧∞/2+• (𝔤>0) (𝑧) =
∑
𝑗>0

∑
𝛼∈Δ 𝑗

𝑗 : 𝜓∗
𝛼 (𝑧)𝜕𝜓𝛼 (𝑧) : +

∑
𝑗>0

∑
𝛼∈Δ 𝑗

(1 − 𝑗) : (𝜕𝜓∗
𝛼 (𝑧))𝜓𝛼 (𝑧) : .

Here, {Φ𝛼} is a dual basis to {Φ𝛼}, that is, Φ𝛼 (𝑧)Φ𝛽 (𝑤) ∼ 𝛿𝛼𝛽/(𝑧−𝑤). Then [𝐻, 𝑑𝑠𝑡𝑡 ] = 0 = [𝐻, 𝑑𝜒𝑡 ],
and thus, H defines a Hamiltonian on the vertex algebra 𝐻•(𝐶, (𝑄𝑡 )(0) ).

Following [FBZ04, KRW03], define

𝐽𝑎 (𝑧) = 𝜋1 (𝑥𝑎) (𝑧) +
∑

𝛽,𝛾∈Δ+

𝑐
𝛾
𝑎,𝛽 : 𝜓𝛾 (𝑧)𝜓∗

𝛽 (𝑧) :

for 𝑎 ∈ 𝐼 
 Δ . We also denote by 𝐽𝑥 the linear combination of 𝐽𝑎, 𝑎 ∈ 𝐼 
 Δ�0, corresponding to
𝑥 ∈ 𝔤�0 :=

⊕
𝑗�0 𝔤 𝑗 . Let 𝐶�0 be the vertex subalgebra of C generated by 𝐽𝑥 (𝑧) (𝑥 ∈ 𝔤�0), 𝜋2 (𝑥) (𝑧)

(𝑥 ∈ 𝔤), 𝜓∗
𝛼 (𝑧) (𝛼 ∈ Δ>0) and Φ𝛼 (𝑧) (𝛼 ∈ Δ1/2), and let 𝐶>0 be the vertex subalgebra of C generated

by 𝜓𝛼 (𝑧) and

((𝑄𝑡 )(0)𝜓𝛼) (𝑧) = 𝐽𝛼 (𝑧) + 𝑡𝛼(ℎ)𝜋2 (𝑥𝛼) (𝑧) +Φ𝛼 (𝑧)

(𝛼 ∈ Δ>0).
As in [FBZ04, KRW03], we find that both 𝐶�0 and 𝐶>0 are subcomplexes of (𝐶, (𝑄𝑡 )(0) ) and that

𝐶 � 𝐶�0⊗𝐶>0 as complexes. Moreover, we have

𝐻𝑖 (𝐶>0, (𝑄𝑡 )(0) ) =
{
C for 𝑖 = 0
0 for 𝑖 ≠ 0,

https://doi.org/10.1017/fms.2022.15 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.15


10 Tomoyuki Arakawa et al.

and therefore,

𝐻•(𝐶, (𝑄𝑡 )(0) ) � 𝐻•(𝐶�0, (𝑄𝑡 )(0) ) (22)

as vertex algebras. Since the cohomological gradation takes only nonnegative values on 𝐶�0, it follows
that 𝐻0(𝐶, (𝑄𝑡 )(0) ) = 𝐻0(𝐶�0, (𝑄𝑡 )(0) ) is a vertex subalgebra of 𝐶�0.

Note that the vertex algebra 𝐶�0 does not depend on the parameter 𝑡 ∈ C. Also, 𝐶�0 is preserved by
the action of both 𝑑𝑠𝑡𝑡 and 𝑑𝜒.

Let 𝐶�0,Δ = 𝐶�0 ∩ 𝐶Δ so that 𝐶�0 =
⊕

Δ 𝐶�0,Δ .

Lemma 4.1. For each Δ , 𝐶�0,Δ is a finite-dimensional subcomplex of 𝐶�0.

Proof. The generators 𝐽𝑥 (𝑧) (𝑥 ∈ 𝔤�0), 𝜓∗
𝛼 (𝑧) (𝛼 ∈ Δ>0) and Φ𝛼 (𝑧) (𝛼 ∈ Δ1/2) have positive conformal

weights with respect to the Hamiltonian H. Therefore, it is sufficient to show that the vertex subalgebra
Lℓ (𝔤) that is generated by 𝜋2 (𝑥) (𝑧), 𝑥 ∈ 𝔤, has finite-dimensional weight spacesLℓ (𝔤)Δ := Lℓ (𝔤)∩𝐶�0,Δ
and the conformal weights of 𝐿ℓ (𝔤) is bounded from the above. On the other hand, the action of H on
Lℓ (𝔤) is the same as the twisted action of (𝜔Lℓ (𝔤) )(1) corresponding to Li’s delta operator associated
with −𝑥0. Since Lℓ (𝔤) is rational and lisse, the conformal weights of this twisted representation are
bounded from above and the weight spaces are finite-dimensional. This completes the proof. �

Since both 𝑑𝑠𝑡𝑡 and 𝑑𝜒 preserve 𝐶�0,Δ , we can consider the spectral sequence 𝐸𝑟 ⇒ 𝐻•(𝐶�0) such
that 𝑑0 = 𝑑𝜒 and 𝑑1 = 𝑑𝑠𝑡𝑡 , which is converging since each 𝐶�0,Δ is finite dimensional. As in [FBZ04,
KW04, KW05], we find that

𝐸•,𝑞
1 = 𝐻𝑞 (𝐶�0, 𝑑

𝜒) = 𝛿𝑞,0𝑉 𝑘
♮ (𝔤 𝑓 )⊗Lℓ (𝔤), (23)

where 𝑉 𝑘♮ (𝔤 𝑓 ) is the vertex subalgebra of 𝐶�0 generated by 𝐽𝑥 (𝑧), 𝑥 ∈ 𝔤 𝑓 . Thus, the spectral sequence
collapses at 𝐸1 = 𝐸∞, and we get the vertex algebra isomorphism

gr𝐻𝑞 (𝐶𝑡 ,�0) � 𝛿𝑞,0𝑉 𝑘
♮ (𝔤 𝑓 )⊗Lℓ (𝔤). (24)

Here, gr𝐻𝑞 (𝐶𝑡 ,�0) is the associated graded vertex algebra with respect to the filtration that defines the
spectral sequence. By equation (24), for each 𝑣 ∈ 𝑉 𝑘♮ (𝔤 𝑓 )⊗Lℓ (𝔤), there exists a cocycle

𝑣̂ = 𝑣0 + 𝑣1 + 𝑣2 + . . . (a finite sum)

such that

𝑣0 = 𝑣, 𝑑𝑠𝑡𝑣𝑖 = −𝑑𝜒𝑣𝑖+1.

Set

𝐴 := 𝜋2 (𝑥0) ∈ Lℓ (𝔤), (25)

where we recall that 𝑥0 is defined by equation (12). Then 𝐶�0 =
⊕

𝜆∈ 1
2Z
𝐶�0 [𝜆], 𝐶�0 [𝜆] = {𝑐 ∈ 𝐶�0 |

𝐴(0)𝑐 = 𝜆𝑐}, and 𝐴 ∈ 𝐶�0 [0]. Consider the corresponding cocycle 𝐴̂ that has cohomolological degree
zero. Since 𝑑𝑠𝑡𝑡 𝐴 ⊂ 𝐶�0 [> 0] and 𝑑𝜒𝐶�0 [𝜆] ⊂ 𝐶�0 [𝜆], we may assume that 𝐴̂ ≡ 𝐴(mod 𝐶�0 [> 0]).
Moreover, we may assume that 𝐴̂ is homogenous with respect to the Hamiltonian H so that 𝐴̂ preserves
each finite-dimensional subcomplex 𝐶�0,Δ . In particular, 𝐴̂ is locally finite on 𝐶�0. Therefore, we can
apply the construction of Section 2 to obtain the automorphism

𝜑𝑡 : 𝐶�0
∼→ 𝐶�0, 𝑐 ↦→ 𝑐 (26)

of vertex algebras.
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Note that 𝐴̃ ≡ 𝐴(mod 𝐶 [> 0]) and the operator 𝐴(0) acts semisimply on the whole complex C so
that 𝐶 =

⊕
𝜆∈ 1

2Z
𝐶 [𝜆], 𝐶 [𝜆] = {𝑐 ∈ 𝐶 | 𝐴(0)𝑐 = 𝜆𝑐}. Since 𝜑𝑡 is an automorphism of the vertex

algebra, 𝐴̃ ∈ 𝜑𝑡 (Lℓ (𝔤)) generates a Heisenberg vertex subalgebra. In particular, 𝐴̃(0) acts semisimply
on C. Therefore, by replacing 𝐴̂ by 𝐴̃ (see Lemma 2.2), we can extend the automorphism (26) to the
automorphism

𝐶
∼→ 𝐶 𝑐 ↦→ 𝑐, (27)

which is also denoted by 𝜑𝑡 .

Proposition 4.2. We have 𝜑𝑡 (𝑄𝑡=0)(0) = (𝑄𝑡 )(0) on C. In particular, 𝜑𝑡 defines an isomorphism

(𝐶, (𝑄𝑡=0)(0) ) � (𝐶, (𝑄𝑡 )(0) )

of differential graded vertex algebras.

Proof. We first show that 𝜑𝑡 (𝑄𝑡=0)(0) = (𝑄𝑡 )(0) on 𝐶�0. Since 𝜑𝑡 (𝑄𝑡=0)(0) 𝐴̃ = 𝜑𝑡 (𝑄𝑡=0)(0)𝜑𝑡 (𝐴) =
𝜑𝑡 ((𝑄𝑡=0)(0)𝐴) = 0, we have [𝜑𝑡 (𝑄𝑡=0)(0) , 𝐴̃(0) ] = 0. Also, [(𝑄𝑡 )(0) , 𝐴̃(0) ] = [(𝑄𝑡 )(0) , 𝐴̂(0) ] = 0 on
𝐶�0 by Lemma 2.2. Let 𝑐 ∈ 𝐶�0 [� 𝜆] be an eigenvector of 𝐴̃(0) of eigenvalue 𝜆. Then the vector
(𝜑𝑡 (𝑄𝑡=0)(0) − (𝑄𝑡 )(0) )𝑐 is also an eigenvector of 𝐴̃(0) of eigenvalue 𝜆. On the other hand, note that
𝜑𝑡 (𝑄𝑡=0) ≡ 𝑄𝑡=0 ≡ 𝑄𝑡=1 (mod 𝐶�0 [� 𝜆]). Hence, (𝜑𝑡 (𝑄𝑡=0)(0) − (𝑄𝑡 )(0) )𝑐 ∈ 𝐶�0 [> 𝜆]. Since all the
eigenvalues of 𝐴̃(0) on 𝐶�0 [> 𝜆] are greater than 𝜆, we get that (𝜑𝑡 (𝑄𝑡=0)(0) − (𝑄𝑡 )(0) )𝑐 = 0. Hence,
𝜑𝑡 (𝑄𝑡=0)(0) = (𝑄𝑡 )(0) on 𝐶�0.

Next, since (𝑄𝑡 )(0) 𝐴̃ = 0, we have [(𝑄𝑡 )(0) , 𝐴̃(0) ] = 0 on the whole space C. Therefore, we can
repeat the same argument for an eigenvector 𝑐 ∈ 𝐶 [� 𝜆] of 𝐴̃(0) of eigenvalue 𝜆 to obtain that
(𝜑𝑡 (𝑄𝑡=0)(0) − (𝑄𝑡 )(0) )𝑐 = 0 for all 𝑐 ∈ 𝐶.

The last assertion follows since 𝜑𝑡 preserves the cohomological gradation as 𝐴̂ has cohomological
degree zero. �

By Proposition 4.2, 𝜑 := 𝜑𝑡=1 defines an isomorphism

(𝐶, (𝑄𝑡=0)(0) ) � (𝐶, (𝑄𝑡=1)(0) ) (28)

of differential graded vertex algebras. We have shown the following assertion.

Theorem 4.3. The automorphism 𝜑 induces an isomorphism 𝐻•(𝐶, (𝑄𝑡=0)(0) ) � 𝐻•(𝐶, (𝑄𝑡=1)(0) ). In
particular,

𝒲𝑘 (𝔤, 𝑓 )⊗Lℓ (𝔤) � 𝐻0
𝐷𝑆, 𝑓 (𝑉

𝑘 (𝔤)⊗Lℓ (𝔤))

as vertex algebras.

Proof of Theorem 1 . Let V be a vertex algebra equipped with a vertex algebra homomorphism𝑉 𝑘 (𝔤) →
𝑉 . Since Lℓ (𝔤) is rational, both 𝐴(0) and 𝐴̃(0) acts semisimply on 𝐶 (𝑉⊗Lℓ (𝔤)). Hence, we can apply
Lemma 2.1 to extend 𝜑 to the isomorphism 𝐶 (𝑉⊗Lℓ (𝔤), (𝑄𝑡=0)(0) ) � 𝐶 (𝑉⊗Lℓ (𝔤), (𝑄𝑡=𝑡 )(0) ) of differ-
ential graded vertex algebras, which gives the the isomorphism 𝐻•

𝐷𝑆, 𝑓 (𝑉⊗Lℓ (𝔤)) � 𝐻
•
𝐷𝑆, 𝑓 (𝑉)⊗Lℓ (𝔤)

of vertex algebras. Similarly, if M is a V-module and N is an Lℓ (𝔤)-module, it follows from Lemma 2.3
that we have an isomorphism 𝐻•

𝐷𝑆, 𝑓 (𝑀⊗𝑁) � 𝐻•
𝐷𝑆, 𝑓 (𝑀)⊗𝑁 as modules over 𝐻•

𝐷𝑆, 𝑓 (𝑉⊗Lℓ (𝔤)) �
𝐻•
𝐷𝑆, 𝑓 (𝑉)⊗Lℓ (𝔤). �

Example 4.4. Let 𝔤 = 𝔰𝔩2 = spanC{𝑒, ℎ, 𝑓 } and ℓ = 1, and consider the Drinfeld–Sokolov reduction
associated with f. Then 𝐶 = 𝑉 𝑘 (𝔤)⊗L1 (𝔤)⊗

∧∞/2+•(𝔤>0), and
∧∞/2+•(𝔤>0) is generated by odd fields

𝜓(𝑧) = 𝜓𝛼 (𝑧), 𝜓∗(𝑧) = 𝜓∗
𝛼 (𝑧). We have

𝑄𝑡 (𝑧) = (𝑒1 (𝑧) + 𝑡2𝑒2(𝑧))𝜓∗(𝑧) + 𝜓∗(𝑧),
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where we have set 𝑥𝑖 = 𝜋𝑖 (𝑥) for 𝑥 ∈ 𝔤, 𝑖 = 1, 2. The vertex subalgebra𝐶�0 is generated by 𝐽 𝑓1 (𝑧) = 𝑓1(𝑧),
𝐽ℎ1 (𝑧) = ℎ1(𝑧) + 2 :𝜓(𝑧)𝜓∗(𝑧) :, 𝑒2(𝑧), ℎ2 (𝑧), 𝑓2(𝑧) and 𝜓∗(𝑧). We have 𝐴 = ℎ2/2, and

𝐴̂(𝑧) = ℎ2 (𝑧) + 𝑡2𝐽ℎ1 (𝑧)𝑒2(𝑧).

We find that the isomorphism

𝜑𝑡 : 𝑉 𝑘 (𝔤)⊗L1 (𝔤)⊗
∧∞/2+•

(𝔤>0)
∼→ 𝑉 𝑘 (𝔤)⊗L1 (𝔤)⊗

∧∞/2+•
(𝔤>0)

is given by

𝑒1(𝑧) ↦→ 𝑒1(𝑧) (1 − 𝑡2𝑒2(𝑧)),
ℎ1 (𝑧) ↦→ ℎ1 (𝑧) − 𝑡2𝑘𝜕𝑧𝑒2(𝑧),
𝑓1(𝑧) ↦→ 𝑓1(𝑧) (1 + 𝑡2𝑒2(𝑧)),
𝑒2(𝑧) ↦→ 𝑒2(𝑧),
ℎ2 (𝑧) ↦→ ℎ2 (𝑧) + 𝑡2𝐽ℎ1 (𝑧)𝑒2(𝑧),

𝑓2(𝑧) ↦→ 𝑓2(𝑧) −
𝑡2

2
𝐽ℎ1 (𝑧)ℎ2(𝑧) + 𝜕𝑧𝐽ℎ1 (𝑧) − 𝑡

4

4
:𝑒2(𝑧)𝐽ℎ1 (𝑧)2 :,

𝜓(𝑧) ↦→ 𝜓(𝑧) (1 − 𝑡2𝑒2(𝑧)),
𝜓∗(𝑧) ↦→ 𝜓∗(𝑧) (1 + 𝑡2𝑒2(𝑧)).

Note that we have (1 − 𝑡2𝑒2(𝑧)) (1 + 𝑡2𝑒2(𝑧)) = 1 on L1 (𝔤).

5. Remarks on superalgebras

We restricted our attention to vertex algebras, and here we remark that the results also hold for vertex
superalgebras, i.e.,

Remark 5.1. All results of section 2 also hold if we allow V to be a vertex superalgebra such that A and
𝐴̂ are even elements of V.

Remark 5.2. In the proofs of section 4, we only used the following properties of Lℓ (𝔤):

1. finite dimensionality and boundedness from above of conformal weight spaces of Lℓ (𝔤) with respect
to the twisted action of (𝜔Lℓ (𝔤) )(1) corresponding to Li’s delta operator associated with −𝑥0 (see the
proof of Lemma 4.1);

2. semisimple action of 𝐴0, where 𝐴 := 𝜋2 (𝑥0) ∈ Lℓ (𝔤), on Lℓ (𝔤)-modules.

Thus, the results are also true by replacing Lℓ (𝔤) by any vertex algebra that carries an action of 𝑉ℓ (𝔤)
and satisfies these two properties. We can also allow 𝔤 to be a Lie superalgebra and f an even nilpotent
element such that Lℓ (𝔤) satisfies the above two properties.

First, if we take 𝔤 = 𝔬𝔰𝔭1 |2𝑛 and a positive integer ℓ, then Lℓ (𝔤) is rational [CL21, Thm. 7.1]. Hence,
Theorem 1 holds for 𝔤 = 𝔬𝔰𝔭1 |2𝑛.

Unfortunately, except for the 𝔤 = 𝔬𝔰𝔭1 |2𝑛 cases, there are only few integrable representations of 𝔤̂
[KW94, Theorem 8.1]. For this reason, the notion of principal integrable representations and subprin-
cipal integrable representations of 𝔤̂ was introduced in [KW01], which are integrable modules with
respect to a certain affine vertex subalgebra, call it Lℓ (𝔞), with 𝔞 ⊂ 𝔤0̄, where 𝔤0̄ is the even part of 𝔤.

Theorem 5.3. Let 𝔤 be a basic classical Lie superalgebra with 𝔤0̄ = 𝔞 ⊕ 𝔞′, 𝔞 semisimple, 𝔞′ reductive.
Suppose that Lℓ (𝔤) is integrable as a representation of 𝔞̂ ⊂ 𝔤̂, and f is a nilpotent element in 𝔞. For a
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quotient V of 𝑉 𝑘 (𝔤), we have a vertex algebra isomorphism

𝐻0
𝐷𝑆, 𝑓 (𝑉 ⊗ Lℓ (𝔤)) � 𝐻0

𝐷𝑆, 𝑓 (𝑉) ⊗ Lℓ (𝔤), (29)

where in the left-hand side the Drinfeld–Sokolov reduction is taken with respect to the diagonal action of
𝔤̂ on𝑉⊗Lℓ (𝔤). More generally, let V be a vertex algebra equipped with a vertex algebra homomorphism
𝑉 𝑘 (𝔤) → 𝑉 . Then we have an isomorphism

𝐻•
𝐷𝑆, 𝑓 (𝑉 ⊗ Lℓ (𝔤)) � 𝐻•

𝐷𝑆, 𝑓 (𝑉) ⊗ Lℓ (𝔤) (30)

of graded vertex algebras, and for any V-module M, Lℓ (𝔤)-module N, there is an isomorphism

𝐻•
𝐷𝑆, 𝑓 (𝑀⊗𝑁) � 𝐻•

𝐷𝑆, 𝑓 (𝑀)⊗𝑁,

as modules over 𝐻•
𝐷𝑆, 𝑓 (𝑉 ⊗ Lℓ (𝔤)) � 𝐻•

𝐷𝑆, 𝑓 (𝑉) ⊗ Lℓ (𝔤).

Proof. Since 𝑓 ∈ 𝔞, there is an 𝔰𝔩2-triple {𝑒, ℎ, 𝑓 } in 𝔞, and we can assume that 𝑥 = 1
2 ℎ.

Let 𝑉ℓ (𝔤0̄) be the vertex subalgebra of Lℓ (𝔤) generated by 𝑦 ∈ 𝔤0̄. We have 𝑉ℓ (𝔤0̄) � 𝑉ℓ (𝔞)⊗𝑉ℓ (𝔞′),
where𝑉ℓ (𝔞) and𝑉ℓ (𝔞′) are vertex subalgebras of𝑉ℓ (𝔤0̄) generated by 𝑦 ∈ 𝔞 and 𝑦 ∈ 𝔞′, respectively. By
the assumption, 𝑉ℓ (𝔞) is integrable, and hence is rational. It follows that any Lℓ (𝔤)-module is a direct
sum of integrable 𝔞̂-modules. Thus, the condition (2) is satisfied.

To see that the condition (1) is satisfied, let us consider the twisted Lℓ (𝔤) -module 𝜎∗
−𝑥0Lℓ (𝔤)

corresponding to Li’s delta operator associated with −𝑥0. Since it is irreducible, it is sufficient to show
that 𝜎∗

−𝑥0Lℓ (𝔤) is a highest weight representation of Lℓ (𝔤). Clearly, any root vector corresponding
to an odd root acts locally nilpotently on 𝜎∗

−𝑥0Lℓ (𝔤). Hence, it suffices to show that any root vector
corresponding to a even positive root acts locally nilpotently on 𝜎∗

−𝑥0Lℓ (𝔤). This is clear for a root
corresponding to 𝔞′ as elements of 𝔞′ are orthogonal to 𝑥 ∈ 𝔞. On the other hand, since 𝑉ℓ (𝔞) is
integrable, 𝜎∗

−𝑥0Lℓ (𝔤) is integrable over 𝑉ℓ (𝔞). Hence, any root vector corresponding to a even positive
root acts locally nilpotently on 𝜎∗

−𝑥0Lℓ (𝔤). This completes the proof. �

6. Urod conformal vector

In this section, we assume that k is not critical, and discuss how the conformal structure match under
the isomorphism

𝜑 : 𝒲𝑘 (𝔤, 𝑓 )⊗Lℓ (𝔤) � 𝐻0
𝐷𝑆, 𝑓 (𝑉

𝑘 (𝔤)⊗Lℓ (𝔤))

of vertex algebras.
On the right-hand side, the conformal vector of 𝐻0

𝐷𝑆, 𝑓 (𝑉
𝑘 (𝔤)⊗Lℓ (𝔤)) is given by

𝜔𝑡𝑜𝑡𝑎𝑙 = 𝜔𝑉 𝑘 (𝔤) + 𝜔Lℓ (𝔤) + 𝜔𝐹𝜒 + 𝜔∧∞/2+• (𝔤>0) + 𝑇𝜋1 (𝑥0) + 𝑇𝜋2 (𝑥0),

where 𝜔𝑉 𝑘 (𝔤) is the Sugawara conformal vector of 𝑉 𝑘 (𝔤). It has the central charge

𝑘 dim𝔤
𝑘 + ℎ∨ + ℓ dim𝔤

ℓ + ℎ∨ − (𝑘 + ℓ) dim𝔤
𝑘 + ℓ + ℎ∨ (31)

+ dim𝔤0 −
1
2

dim𝔤1/2 − 12| 𝜌
√
𝑘 + ℓ + ℎ∨

−
√
𝑘 + ℓ + ℎ∨𝑥0 |2.

Clearly, 𝜑−1(𝜔𝑡𝑜𝑡𝑎𝑙) is a conformal vector of 𝒲𝑘 (𝔤, 𝑓 )⊗Lℓ (𝔤). Set

𝜔𝑈𝑟𝑜𝑑 = 𝜑−1(𝜔𝑡𝑜𝑡𝑎𝑙) − 𝜔𝒲𝑘 (𝔤, 𝑓 ) , (32)
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where𝜔𝒲𝑘 (𝔤, 𝑓 ) is the conformal vector of 𝒲𝑘 (𝔤, 𝑓 ). Since it commutes with𝜔𝒲𝑘 (𝔤, 𝑓 ) ,𝜔𝑈𝑟𝑜𝑑 defines
a conformal vector of Lℓ (𝔤) ([LL04, 3.11]), which is called the Urod conformal vector of Lℓ (𝔤). It
depends on the choice of 𝑥0 and k and has the central charge

𝑘 dim𝔤
𝑘 + ℎ∨ + ℓ dim𝔤

ℓ + ℎ∨ − (𝑘 + ℓ) dim𝔤
𝑘 + ℓ + ℎ∨ (33)

+12
(
| 𝜌
√
𝑘 + ℎ∨

−
√
𝑘 + ℎ∨𝑥0 |2 − | 𝜌

√
𝑘 + ℓ + ℎ∨

−
√
𝑘 + ℓ + ℎ∨𝑥0 |2

)
.

In the case that 𝔤 is simply laced and 𝑓 = 𝑓𝑝𝑟𝑖𝑛, the central charge (33) becomes

−ℓ(ℓℎ + ℎ
2 − 1) dim𝔤
ℓ + ℎ , (34)

where h is the Coxeter number, and we have used the strange formula |𝜌 |2/2ℎ∨ = dim𝔤/24, and so it
does not depend on the parameter k.

By definition, the conformal vertex algebra 𝒲𝑘 (𝔤, 𝑓 )⊗Lℓ (𝔤) with the conformal vector 𝜔𝒲𝑘 (𝔤, 𝑓 ) +
𝜔𝑈𝑟𝑜𝑑 is isomorphic to 𝐻0

𝐷𝑆, 𝑓 (𝑉
𝑘 (𝔤)⊗Lℓ (𝔤)) as conformal vertex algebras.

Lemma 6.1. The Hamiltonian of Lℓ (𝔤) defined by 𝜔𝑈𝑟𝑜𝑑 coincides with

𝐻𝑈𝑟𝑜𝑑 := (𝜔Lℓ (𝔤) )(1) − (𝑥0)(0) .

Proof. For a homogenous element 𝑥 ∈ 𝔤, 𝜋2 (𝑥) ∈ 𝐶 has the conformal weight 1 − deg 𝑥. Hence, 𝑥 has
the the conformal weight 1 − deg 𝑥 as well. �

Example 6.2 (Continued from Example 4.4). The Urod conformal vector of L1(𝔤) is given by

𝜔𝑈𝑟𝑜𝑑 = 𝜔L1 (𝔤) + 𝑇ℎ/2 − (𝑘 + 1)𝑇2𝑒/2,

which agrees with [BFL16].

7. Compatibility with twists

In this section, we show that the various twisted Drinfeld–Sokolov reduction functors commute with
tensoring integrable representations as well.

For 𝜇̌ ∈ 𝑃̌, we define a character 𝜒̂𝜇̌ of 𝔤�1 [𝑡, 𝑡−1] by the formula

𝜒̂𝜇̌ (𝑥𝛼 𝑓 (𝑡)) = 𝜒(𝑥𝛼) · Res𝑡=0 𝑓 (𝑡)𝑡 〈𝜇̌,𝛼〉𝑑𝑡, 𝑓 (𝑡) ∈ C[𝑡, 𝑡−1] . (35)

Define

𝐹𝜒,𝜇̌ = 𝑈 (𝔤>0 [𝑡, 𝑡−1]) ⊗𝑈 (𝔤>0 [𝑡 ]+𝔤�1 [𝑡 ,𝑡−1 ]) C𝜒̂𝜇̌ ,

where C𝜒̂𝜇̌ is the one-dimensional representation of 𝔤>0 [𝑡] + 𝔤�1 [𝑡, 𝑡−1] on which 𝔤�1 [𝑡, 𝑡−1] acts by
the character 𝜒̂𝜇̌ and 𝔤>0 [𝑡] acts trivially. Then 𝐹𝜒,𝜇̌ is naturally a 𝑉 (𝔤>0)-module, and we denote by
Φ𝜇̌
𝛼 (𝑧) the image of 𝑥𝛼 (𝑧) in (End 𝐹𝜒,𝜇̌)) [𝑧, 𝑧−1]. We have

Φ𝜇̌
𝛼 (𝑧) = 𝑧 〈𝜇̌,𝛼〉𝜒(𝑥𝛼) for 𝛼 ∈ Δ>0,

Φ𝜇̌
𝛼 (𝑧)Φ

𝜇̌
𝛽 (𝑤) ∼

𝑤 〈𝜇̌,𝛼+𝛽〉𝜒([𝑥𝛼, 𝑥𝛽])
𝑧 − 𝑤.
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For a smooth 𝔤̂-module M of level k, we define

𝐻•
𝐷𝑆, 𝑓 , 𝜇̌ (𝑀) = 𝐻∞/2+•(𝔤>0 [𝑡, 𝑡−1], 𝑀⊗𝐹𝜒,𝜇̌), (36)

where 𝔤>0 [𝑡, 𝑡−1] acts diagonally on 𝑀⊗𝐹𝜒,𝜇̌. By definition, 𝐻•
𝐷𝑆, 𝑓 , 𝜇̌ (𝑀) is the cohomology of the

complex (𝐶𝜇̌ (𝑀), (𝑄 𝜇̌)(0) ), where 𝐶𝜇̌ (𝑀) = 𝑀⊗𝐹𝜒,𝜇̌⊗
∧∞/2+•(𝔤>0) and (𝑄 𝜇̌)(0) is the zero mode of

the field

𝑄 𝜇̌ (𝑧) =
∑
𝛼∈Δ>0

𝑥𝛼 (𝑧)𝜓∗
𝛼 (𝑧) +

∑
𝛼∈Δ>0

Φ𝜇̌
𝛼 (𝑧)𝜓∗

𝛼 (𝑧) −
1
2

∑
𝛼,𝛽,𝛾∈Δ>0

𝑐
𝛾
𝛼,𝛽𝜓

∗
𝛼 (𝑧)𝜓∗

𝛽 (𝑧)𝜓𝛾 (𝑧),

on 𝐶𝜇̌ (𝑀).
We define the structure of a 𝒲𝑘 (𝔤, 𝑓 )-module on 𝐻𝑖𝐷𝑆, 𝑓 , 𝜇̌ (𝑀), 𝑖 ∈ Z, as follows. Let Δ (𝐽 {𝜇̌}, 𝑧) be

Li’s delta operator corresponding to the field

𝐽 {𝜇̌} (𝑧) := 𝜇̌(𝑧) +
∑
𝛼∈Δ>0

〈𝛼, 𝜇̌〉 :𝜓𝛼 (𝑧)𝜓∗
𝛼 (𝑧) : −1

2

∑
𝛼∈Δ1/2

〈𝛼, 𝜇̌〉 :Φ𝛼 (𝑧)Φ𝛼 (𝑧) : (37)

in 𝐶 (𝑉 𝑘 (𝔤)), where Φ𝛼 (𝑧) is a linear sum of Φ𝛽 (𝑧) corresponding to the vector 𝑥𝛼 dual to 𝑥𝛼 with
respect to the symplectic form (13), that is, ( 𝑓 | [𝑥𝛼, 𝑥𝛽]) = 𝛿𝛼,𝛽 . We have

𝐽 {𝜇̌} (𝑧)𝑥𝛼 (𝑤) ∼
〈𝛼, 𝜇̌〉
𝑧 − 𝑤 𝑥𝛼 (𝑤), 𝐽 {𝜇̌} (𝑧)Φ𝛼 (𝑤) ∼

〈𝛼, 𝜇̌〉
𝑧 − 𝑤 Φ𝛼 (𝑤),

𝐽 {𝜇̌} (𝑧)𝜓𝛼 (𝑤) ∼
〈𝛼, 𝜇̌〉
𝑧 − 𝑤 𝜓𝛼 (𝑤), 𝐽 {𝜇̌} (𝑤)𝜓∗

𝛼 (𝑧) ∼ − 〈𝛼, 𝜇̌〉
𝑧 − 𝑤 𝜓

∗
𝛼 (𝑤);

see [KRW03]. For any smooth 𝔤̂-module M, we can twist the action of 𝐶 (𝑉 𝑘 (𝔤)) on 𝐶 (𝑀) by the
correspondence

𝜎𝜇̌ : 𝑌 (𝐴, 𝑧) ↦→ 𝑌𝐶 (𝑀 ) (Δ (𝐽 {𝜇̌}, 𝑧)𝐴, 𝑧). (38)

for any 𝐴 ∈ 𝐶 (𝑉 𝜅 (𝔤)). Since we have

𝜎𝜇̌ (𝑥𝛼 (𝑧)) = 𝑧−〈𝛼,𝜇̌〉𝑥𝛼 (𝑧), 𝜎𝜇̌ (Φ𝛼 (𝑧)) = 𝑧−〈𝛼,𝜇̌〉Φ𝛼 (𝑧),
𝜎𝜇̌ (𝜓𝛼 (𝑧)) = 𝑧−〈𝛼,𝜇̌〉𝜓𝛼 (𝑧), 𝜎𝜇̌ (𝜓∗

𝛼 (𝑧)) = 𝑧 〈𝛼,𝜇̌〉𝜓∗
𝛼 (𝑧),

it follows that the resulting complex (𝐶 (𝑀), 𝜎𝜇̌ (𝑄 (0) )) is naturally identified with (𝐶𝜇̌ (𝑀), (𝑄 𝜇̌)(0) ).
Therefore, (𝐶𝜇̌ (𝑀), (𝑄 𝜇̌)(0) ) has the structure of a differential graded module over the differential
vertex algebra (𝐶 (𝑉 𝑘 (𝔤)), 𝑄 (0) )), and hence, each cohomology 𝐻𝑖𝐷𝑆, 𝑓 , 𝜇̌ (𝑀), 𝑖 ∈ Z, is a module over
𝒲𝑘 (𝔤, 𝑓 ) = 𝐻0

𝐷𝑆, 𝑓 (𝑀).
The functor 𝐻0

𝐷𝑆, 𝑓 , 𝜇̌ (?) was introduced in [AF19] in the case that f is a principal nilpotent element.
Let V be vertex algebra equipped with a vertex algebra homomorphism 𝑉 𝑘 (𝔤) → 𝑉 , and let M be

a V-module. Then the same construction as above gives 𝐻𝑖𝐷𝑆, 𝑓 , 𝜇̌ (𝑀) a structure of a module over the
vertex algebra 𝐻0

𝐷𝑆, 𝑓 (𝑉).

Theorem 7.1. Let V be a quotient of the universal affine vertex algebra 𝑉 𝑘 (𝔤), ℓ ∈ Z�0, and let 𝜇̌ ∈ 𝑃̌.
For any V-module M, Lℓ (𝔤)-module N and 𝑖 ∈ Z, there is an isomorphism

𝐻𝑖𝐷𝑆, 𝑓 , 𝜇̌ (𝑀⊗𝑁) � 𝐻𝑖𝐷𝑆, 𝑓 , 𝜇̌ (𝑀)⊗𝜎∗
𝜇̌𝑁

https://doi.org/10.1017/fms.2022.15 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.15


16 Tomoyuki Arakawa et al.

as modules over 𝐻0
𝐷𝑆, 𝑓 (𝑉 ⊗ Lℓ (𝔤)) � 𝐻0

𝐷𝑆, 𝑓 (𝑉) ⊗ Lℓ (𝔤), where 𝜎∗
𝜇̌𝑁 is the twist of N on which

𝐴 ∈ Lℓ (𝔤) acts as 𝜎𝜇̌ (𝐴(𝑧)).

Proof. Since Lℓ (𝔤) is rational, both 𝐴(0) and 𝐴̃(0) acts semisimply on 𝐶𝜇 (𝑀⊗𝑁) with respect to the
twisted action of 𝐶 (𝑉 𝑘 (𝔤)⊗Lℓ (𝔤)) described above, where A is defined in equation (25). Therefore, the
assertion follows immediately from Lemma 2.3. �

More generally, let

𝑤 = (𝑦, 𝜇̌)

be an element of the extented affine Weyl group 𝑊̃ = 𝑊 � 𝑃∨, where W is the Weyl group of 𝔤, and let
𝑦̃ be a Tits lifting of y to and automorphism of 𝔤 so that 𝑦̃(𝑥𝛼) = 𝑐𝛼𝑥𝑦 (𝛼) for some 𝑐𝛼 ∈ C∗. Then

𝜎𝑤 : 𝑥𝛼𝑡𝑛 ↦→ 𝑦̃(𝑥𝛼)𝑡𝑛−〈𝛼,𝜇̌〉

defines a Tits lifting of w to an automorphism of 𝔤̂. Set

𝐹𝜒,𝑤 = 𝑈 (𝑤̃(𝔤>0 [𝑡, 𝑡−1])) ⊗𝑈 (𝑤̃ (𝔤>0 [𝑡 ]+𝔤�1 [𝑡 ,𝑡−1 ])) C𝜒̂𝜇̌ ,

where C𝜒̂𝜇̌ is the one-dimensional representation of 𝑤̃(𝔤>0 [𝑡] + 𝔤�1 [𝑡, 𝑡−1]) on which 𝑤̃(𝔤�1 [𝑡, 𝑡−1])
acts by the character 𝜒̂𝑤 : 𝑥𝛼𝑡𝑛 ↦→ (𝑥𝛼𝑡𝑛 |𝑤̃( 𝑓 𝑡−1)) and 𝑤̃(𝔤>0 [𝑡]) acts trivially. Then

𝐻𝑖𝐷𝑆, 𝑓 ,𝑤 (𝑀) = 𝐻∞/2+𝑖 (𝑦(𝔤>0) [𝑡, 𝑡−1], 𝑀⊗𝐹𝜒,𝑤 ) (39)

is equipped with a 𝒲𝑘 (𝔤, 𝑓 )-module structure.
The proof of the following assertion is the same as that of Theorem 7.1.

Theorem 7.2. Let V be a quotient of the universal affine vertex algebra 𝑉 𝑘 (𝔤), ℓ ∈ Z�0, and let 𝑤 ∈ 𝑊̃ .
For any V-module M, Lℓ (𝔤)-module N, and 𝑖 ∈ Z, there is an isomorphism

𝐻𝑖𝐷𝑆, 𝑓 ,𝑤 (𝑀⊗𝑁) � 𝐻𝑖𝐷𝑆, 𝑓 ,𝑤 (𝑀)⊗𝜎∗
𝑤𝑁

as modules over 𝐻0
𝐷𝑆, 𝑓 (𝑉 ⊗ Lℓ (𝔤)) � 𝐻0

𝐷𝑆, 𝑓 (𝑉) ⊗ Lℓ (𝔤).

In the above, 𝜎∗
𝑤𝑁 is the twist of N on which 𝐴 ∈ Lℓ (𝔤) acts as 𝜎𝑤 (𝐴(𝑧)), which is again an

integrable representation of 𝔤̂ of level ℓ.
Suppose that the grading (11) is even, that is, 𝔤 𝑗 = 0 unless 𝑗 ∈ Z. Then 𝑥0 ∈ 𝑃∨. For a smooth

𝔤̂-module M of level k, “−”-Drinfeld–Sokolov reduction 𝐻•
𝐷𝑆, 𝑓 ,−(𝑀) ([FKW92, Ara11]) is nothing but

the twisted reduction for 𝑤 = (𝑤0,−𝑥0), where 𝑤0 is the longest element of W:

𝐻•
𝐷𝑆, 𝑓 ,−(𝑀) = 𝐻•

𝐷𝑆, 𝑓 , (𝑤0 ,−𝑥0) (𝑀) (40)

Corollary 7.3. Let V be a quotient of the universal affine vertex algebra 𝑉 𝑘 (𝔤), ℓ ∈ Z�0. Suppose that
the grading (11) is even. For any V-module M, Lℓ (𝔤)-module N and 𝑖 ∈ Z, there is an isomorphism

𝐻𝑖𝐷𝑆, 𝑓 ,−(𝑀⊗𝑁) � 𝐻𝑖𝐷𝑆, 𝑓 ,−(𝑀)⊗𝜎∗
(𝑤0 ,−𝑥0)𝑁

as modules over 𝐻0
𝐷𝑆, 𝑓 (𝑉 ⊗ Lℓ (𝔤)) � 𝐻0

𝐷𝑆, 𝑓 (𝑉) ⊗ Lℓ (𝔤).

8. Higher-rank Urod algebras

In the case that f is a principal nilpotent element 𝑓𝑝𝑟𝑖𝑛, we denote by 𝒲𝑘 (𝔤) the principal W-algebra
𝒲𝑘 (𝔤, 𝑓𝑝𝑟𝑖𝑛) and by 𝒲𝑘 (𝔤) the unique simple quotient of 𝒲𝑘 (𝔤). We have the Feigin–Frenkel duality
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([FF91, AFO18]; see also [ACL19]) which states that

𝒲𝑘 (𝔤) �𝒲 𝑘̌ (𝐿𝔤), (41)

where 𝐿𝔤 is the Langlands dual Lie algebra and 𝑘̌ is defined by the formula 𝑟∨(𝑘 + ℎ∨)( 𝑘̌ + 𝐿ℎ∨) = 1.
Here, 𝑟∨ is the lacety of 𝔤, and 𝐿ℎ∨ is the dual Coxeter number of 𝐿𝔤.

Suppose that 𝔤 is simply laced and 𝑘 + ℎ∨ − 1 ∉ Q�0. By [ACL19], we have

𝒲ℓ (𝔤) � (𝑉 𝑘−1(𝔤)⊗L1 (𝔤))𝔤 [𝑡 ] ;

that is, 𝒲ℓ (𝔤) is isomorphic to the commutant of 𝑉 𝑘 (𝔤) in 𝑉 𝑘−1(𝔤)⊗L1(𝔤), where 𝑉 𝑘 (𝔤) is considered
as a vertex subalgebra of 𝑉 𝑘−1(𝔤)⊗L1(𝔤) by the diagonal embedding and ℓ is defined by equation (6).
In other words, we have a conformal vertex algebra embedding

𝑉 𝑘 (𝔤)⊗𝒲ℓ (𝔤) ↩→ 𝑉 𝑘−1(𝔤)⊗L1 (𝔤). (42)

By Main Theorem 1, (42) induces the conformal vertex algebra homomorphism

𝒲𝑘 (𝔤, 𝑓 )⊗𝒲ℓ (𝔤) → 𝐻0
𝐷𝑆, 𝑓 (𝑉

𝑘−1(𝔤)⊗L1 (𝔤))
𝜑−1
∼→ 𝒲𝑘−1(𝔤, 𝑓 )⊗U(𝔤, 𝑓 ), (43)

which is again embedding by Theorem 3.1. Here, U(𝔤, 𝑓 ) is the vertex algebra L1 (𝔤) equipped with the
Urod conformal vector 𝜔𝑈𝑟𝑜𝑑 , which we call the Urod algebra associated with (𝔤, 𝑓 ). We set

U(𝔤) = U(𝔤, 𝑓𝑝𝑟𝑖𝑛).

8.1. Generic decompositions

In this subsection, we assume that k is irrational.
For (𝜆, 𝜇̌) ∈ 𝑃+ × 𝑃̌+, define

𝑇 𝑘𝜆,𝜇̌ = 𝐻0
𝐷𝑆, 𝑓𝑝𝑟𝑖𝑛 , 𝜇̌

(V𝑘𝜆) ∈ 𝒲𝑘 (𝔤) -Mod .

It was shown in [AF19] that the 𝒲𝑘 (𝔤)-modules 𝑇 𝑘𝜆,𝜇̌ are simple, and the isomorphism

𝑇 𝑘𝜆,𝜇̌ � 𝑇
𝑘̌
𝜇̌,𝜆 (44)

holds under the Feigin–Frenkel duality (41).
Let ℓ be nonnegative integer. Then {Lℓ𝜆 | 𝜆 ∈ 𝑃ℓ+} gives the complete set of isomorphism classes of

simple Lℓ (𝔤)-modules, where

𝑃ℓ+ = {𝜆 ∈ 𝑃+ | 〈𝜆, 𝜃∨〉 � ℓ} ⊂ 𝑃+

is the set of integrable dominant weight of 𝔤 of level ℓ. In particular, {L1
𝜆 | 𝜆 ∈ 𝑃1

+} gives the complete
set of isomorphism classes of simple U(𝔤, 𝑓 )-modules.

Let

V𝑘𝜇, 𝑓 = 𝐻0
𝐷𝑆, 𝑓 (V

𝑘
𝜇) ∈ 𝒲𝑘 (𝔤, 𝑓 ) -Mod . (45)

Theorem 8.1. Let 𝔤 be simply laced, and let f be any nilpotent element of 𝔤. For 𝜆, 𝜇 ∈ 𝑃+ and 𝜈 ∈ 𝑃1
+,

we have

V𝑘−1
𝜇, 𝑓 ⊗L

1
𝜈 �

⊕
𝜆∈𝑃+

𝜆−𝜇−𝜈∈𝑄

V𝑘𝜆, 𝑓 ⊗𝑇
ℓ
𝜆,𝜇

as 𝒲𝑘 (𝔤, 𝑓 )⊗𝒲ℓ (𝔤)-modules (see equation (43)).
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In the case 𝑓 = 𝑓𝑝𝑟𝑖𝑛, we have the following more general statement.

Theorem 8.2. Let 𝔤 is simply laced. For 𝜆, 𝜇, 𝜇′ ∈ 𝑃+ and 𝜈 ∈ 𝑃1
+, we have

𝑇 𝑘−1
𝜇,𝜇′⊗L1

𝜈 =
⊕
𝜆∈𝑃+

𝜆−𝜇−𝜇′−𝜈∈𝑄

𝑇 𝑘𝜆,𝜇′⊗𝑇
ℓ
𝜆,𝜇 (46)

as 𝒲𝑘 (𝔤)⊗𝒲ℓ (𝔤)-modules.

Note that Theorem 8.2 is compatible with equation (44) since ˇ(𝑘 − 1) = ℓ − 1.

Proof of Theorem 8.1 and Theorem 8.2. Let 𝜆, 𝜇 ∈ 𝑃+ and 𝜈 ∈ 𝑃1
+. By [ACL19, Main Theorem 3], we

have

V𝑘−1
𝜇 ⊗L1

𝜈 =
⊕
𝜆∈𝑃+

𝜆−𝜇−𝜈∈𝑄

V𝑘𝜆⊗𝑇
ℓ
𝜆,𝜇 (47)

as 𝑉 𝑘+1(𝔤)⊗𝒲ℓ (𝔤)-modules. Applying Main Theorem 1 to V𝑘−1
𝜇 ⊗L1

𝜈 , we obtain Theorem 8.1. Next,
under the identification 𝑃/𝑄 � 𝑃1

+, we have 𝜎∗
𝜇′L

1
𝜈+𝜇′+𝑄 � L

1
𝜈+𝑄. Hence, we obtain Theorem 8.2 by

applying Theorem 7.1. �

Let 𝜋𝑘 be the Heisenberg vertex subalgebra of 𝑉 𝑘 (𝔤) generated by ℎ(𝑧), ℎ ∈ 𝔥, and let 𝜋𝑘𝜆 be
the irreducible highest weight representation of 𝜋𝑘 with highest weight 𝜆. There is a vertex algebra
embedding

𝒲𝑘 (𝔤) ↩→ 𝜋𝑘+ℎ
∨

called the Miura map ([FF90b]; see also [Ara17]), and hence, each 𝜋𝑘+ℎ∨𝜆 is a 𝒲𝑘 (𝔤)-module.

Theorem 8.3. Let 𝔤 is simply laced, 𝜇 ∈ 𝔥∗ be generic, 𝜈 ∈ 𝑃1
+. We have the isomorphism

𝜋𝑘−1+ℎ∨
𝜇 ⊗L1

𝜈 �
⊕
𝜆∈𝔥∗

𝜆−𝜇−𝜈∈𝑄

𝜋𝑘+ℎ
∨

𝜆 ⊗𝜋ℓ+ℎ∨𝜆−(ℓ+ℎ∨)𝜇

as 𝒲𝑘 (𝔤)⊗𝒲ℓ (𝔤)-modules.

For a generic 𝜆 ∈ 𝔥∗, the 𝒲𝑘 (𝔤)-module 𝜋𝑘+ℎ∨𝜆 is irreducible and isomorphic to a Verma module
M𝑘 (𝜒𝜆) with highest weight ([FF90a, Fre92, Ara07]). Here, 𝜒𝜆 : Zhu(𝒲𝑘 (𝔤)) → C is described
in [ACL19, (27)], where Zhu(𝒲𝑘 (𝔤)) is the Zhu algebra of 𝒲𝑘 (𝔤). Hence, the following assertion
immediately follows from Theorem 8.3.

Corollary 8.4. Let 𝔤 is simply laced, 𝜇 ∈ 𝔥∗ be generic, 𝜈 ∈ 𝑃1
+. We have the isomorphism

M𝑘−1(𝜒𝜇)⊗L1
𝜈 �

⊕
𝜆∈𝔥∗

𝜆−𝜇−𝜈∈𝑄

M𝑘 (𝜒𝜆)⊗Mℓ (𝜒𝜆−(ℓ+ℎ∨)𝜇)

as 𝒲𝑘 (𝔤)⊗𝒲ℓ (𝔤)-modules.

Let W𝑘
𝜆 be the Wakimoto module [FF90b] of 𝔤̂ at level k with highest weight 𝜆 ∈ 𝔥∗. For 𝜆 = 0,

W𝑘 := W𝑘
0 is a vertex algebra, and we have an embedding 𝑉 𝑘 (𝔤) ↩→ W𝑘 of vertex algebras ([FF90b,

Fre05]). We have 𝐻𝑖𝐷𝑆, 𝑓𝑝𝑟𝑖𝑛 (W
𝑘
𝜆) � 𝛿𝑖,0𝜋

𝑘+ℎ∨
𝜆 , and the Miura map is by definition [FF90b] the map

𝒲𝑘 (𝔤) → 𝐻0
𝐷𝑆, 𝑓𝑝𝑟𝑖𝑛

(W𝑘 ) � 𝜋𝑘+ℎ∨ induced by the embedding 𝑉 𝑘 (𝔤) ↩→W𝑘 .
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Proof of Theorem 8.3. Since 𝜈 is generic,W𝑘−1
𝜇 ⊗L1

𝜈 is a direct sum of irreducible Verma modules as a
diagonal 𝔤̂-module or, equivalently, a direct sum of irreducible Wakimoto modulesW𝑘

𝜆. So we can write
W𝑘−1
𝜇 ⊗L1

𝜈 =
⊕

𝜆∈𝔥∗W
𝑘
𝜆⊗𝑚

𝜆
𝜇,𝜈 , where 𝑚𝜆𝜇,𝜈 be the multiplicity ofW𝑘

𝜆 inW𝑘−1
𝜇 ⊗L1

𝜈 . Note that 𝑚𝜆𝜇,𝜈 is
a 𝒲ℓ (𝔤)-module by equation (42). We have

𝑚𝜆𝜇,𝜈 � Hom𝜋𝑘+1+ℎ∨ (𝜋𝑘+1+ℎ∨
𝜆 , 𝐻∞/2+0(𝔫 [𝑡, 𝑡−1],W𝑘−1

𝜇 ⊗L1
𝜈)

�

{
𝜋ℓ+ℎ

∨

𝜇−(ℓ+ℎ∨)𝜆 if 𝜆 − 𝜇 − 𝜈 ∈ 𝑄,
0 otherwise

as 𝒲ℓ (𝔤)-modules by [ACL19, Proposition 8.3]. The assertion follows by applying Main Theorem 1 to

W𝑘−1
𝜇 ⊗L1

𝜈 =
⊕
𝜆∈𝔥∗

𝜆−𝜇−𝜈∈𝑄

W𝑘
𝜆⊗𝜋𝜇−(ℓ+ℎ∨) . (48)

�

8.2. Decomposition at admissible levels

Let k be an admissible number for 𝔤̂, that is, L𝑘 (𝔤) is admissible ([KW89]) as a 𝔤̂-module. In the case
that 𝔤 is simply laced, this condition is equivalent to

𝑘 + ℎ∨ =
𝑝

𝑞
, 𝑝, 𝑞 ∈ Z�1, (𝑝, 𝑞) = 1, 𝑝 � ℎ∨. (49)

For an admissible number k, a simple module over L𝑘 (𝔤) need not be ordinary, that is, in KL, unless
k is a nonnegative integer. The classification of simple highest weight representations of L𝑘 (𝔤) was
given in [Ara16a]. For our purpose, we need only the ordinary representations of L𝑘 (𝔤). By [Ara16a],
the complete set of isomorphism classes of ordinary simple L𝑘 (𝔤)-modules is given by

{L𝑘𝜆 | 𝜆 ∈ 𝐴𝑑𝑚𝑘Z},

where 𝐴𝑑𝑚𝑘
Z
= {𝜆 ∈ 𝑃+ | L𝑘𝜆 is admissible}. We have

𝐴𝑑𝑚𝑘Z = 𝑃
𝑝−ℎ∨
+ (50)

if 𝔤 is simply laced and k is of the form (49).
Let k be an admissible number and 𝜆 ∈ 𝐴𝑑𝑚𝑘

Z
. By [Ara15a], the associated variety 𝑋L𝑘𝜆 [Ara12]

of L𝑘𝜆 is the closure of some nilpotent orbit O𝑘 which depends only on the denominator q of k. More
explicitly, we have

𝑋L𝑘𝜆
= {𝑥 ∈ 𝔤 | (ad 𝑥)2𝑞 = 0} (51)

in the case that 𝔤 is simply laced. By [Ara15a], we have

𝐻0
𝐷𝑆, 𝑓 (L

𝑘
𝜆) ≠ 0 ⇐⇒ 𝑓 ∈ 𝑋L𝑘𝜆 = O𝑘 . (52)

An admissible number k is called nondegenerate if 𝑋L𝑘𝜆 equals to the nilpotent cone N of 𝔤 for some
𝜆 ∈ 𝐴𝑑𝑚𝑘

Z
or, equivalently, for all 𝐴𝑑𝑚𝑘

Z
. In the case that 𝔤 is simply laced, this happens if and only if

the denominator q of k is equal or greater than ℎ∨. If this is the case, the simple principal W-algebra
𝒲𝑘 (𝔤) = 𝒲𝑘 (𝔤, 𝑓𝑝𝑟𝑖𝑛) is rational and lisse ([Ara15a, Ara15b]), and the complete set of the isomorphism
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classes of 𝒲𝑘 (𝔤)-module is given by

{L𝑘
[𝜆,𝜇̌] | [𝜆, 𝜇̌] ∈ (𝐴𝑑𝑚𝑘Z × 𝐴𝑑𝑚

𝑘̌
Z)/𝑊̃+}, (53)

where

L𝑘
[𝜆,𝜇̌] := 𝐻0

𝐷𝑆, 𝑓𝑝𝑟𝑖𝑛
(L𝑘𝜆−(𝑘+ℎ∨) 𝜇̌), (54)

and 𝑊̃+ is the subgroup of the extended affine Weyl group of 𝔤 consisting of elements of length zero
that acts on the set 𝐴𝑑𝑚𝑘

Z
× 𝐴𝑑𝑚 𝑘̌

Z
diagonally. We have

L𝑘
[𝜆,𝜇̌] � L𝑘̌

[ 𝜇̌,𝜆] (55)

under the Feigin–Frenkel duality.
The following assertion is new for nonzero 𝜇̌.

Theorem 8.5. Let k be a nondegenerate admissible number, and let 𝜆 ∈ 𝐴𝑑𝑚𝑘
Z

, 𝜇̌ ∈ 𝐴𝑑𝑚 𝑘̌
Z

. We have

𝐻𝑖𝐷𝑆, 𝑓𝑝𝑟𝑖𝑛 , 𝜇̌ (L
𝑘
𝜆) �

{
L𝑘

[𝜆,𝜇̌] for 𝑖 = 0,
0 for 𝑖 ≠ 0

as 𝒲𝑘 (𝔤)-modules.

Proof. The case 𝜇̌ = 0 has been proved in [Ara04, Ara07]. In particular,

𝐻0
𝐷𝑆, 𝑓𝑝𝑟𝑖𝑛

(L𝑘 (𝔤)) �𝒲𝑘 (𝔤). (56)

By [AF19, Theorem 2.1], we have 𝐻𝑖𝐷𝑆, 𝑓𝑝𝑟𝑖𝑛 , 𝜇̌ (V
𝑘
𝜆) = 0 for all 𝑖 ≠ 0, 𝜆 ∈ 𝑃+. It follows that

𝐻𝑖≠0
𝐷𝑆, 𝑓𝑝𝑟𝑖𝑛 , 𝜇̌

(𝑀) = 0, 𝑖 ≠ 0, for any object M in KL that admits a Weyl flag. This implies that

𝐻𝑖𝐷𝑆, 𝑓𝑝𝑟𝑖𝑛 , 𝜇̌ (𝑀) = 0 for 𝑖 > 0, 𝑀 ∈ KL; (57)

see the proof of [Ara04, Theorem 8.3].
By [Ara14], the admissible representation L𝑘𝜆 admits a two-sided resolution

. . . 𝐶−1 → 𝐶0 → 𝐶1 → . . . (58)

of the form𝐶𝑖 =
⊕

𝑤∈𝑊 (𝜆+𝑘Λ0 )
ℓ∞/2 (𝑤 )=𝑖

W𝑘
𝑤◦𝜆, where𝑊 (𝜆+ 𝑘Λ0) is the integral Weyl group of 𝜆+ 𝑘Λ0 and ℓ∞/2(𝑤)

is the semi-infinite length of w. By [AF19, Lemma 3.2], we have

𝐻0
𝐷𝑆, 𝑓𝑝𝑟𝑖𝑛 , 𝜇̌

(W𝑘
𝜆) �

{
𝜋𝑘
𝜆−(𝑘+ℎ∨) 𝜇̌ for 𝑖 = 0,

0 for 𝑖 ≠ 0

as 𝒲𝑘 (𝔤)-modules. It follows that 𝐻𝑖𝐷𝑆, 𝑓𝑝𝑟𝑖𝑛 , 𝜇̌ (L
𝑘
𝜆) is the i-th cohomology of the complex obtained by

applying the functor𝐻0
𝐷𝑆, 𝑓𝑝𝑟𝑖𝑛 , 𝜇̌

(?) to the resolution (58). In particular,𝐻𝑖𝐷𝑆, 𝑓𝑝𝑟𝑖𝑛 , 𝜇̌ (L
𝑘
𝜆) is a subquotient

of the 𝒲𝑘 (𝔤)-module

𝐻0
𝐷𝑆, 𝑓𝑝𝑟𝑖𝑛 , 𝜇̌

(𝐶𝑖) �
⊕

𝑤∈𝑊 (𝜆+𝑘Λ0 )
ℓ∞/2 (𝑤 )=𝑖

𝜋𝑘𝑤◦𝜆−(𝑘+ℎ∨) 𝜇̌ .
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On the other hand, since L𝑘𝜆 is a L𝑘 (𝔤)-module, each 𝐻𝑖𝐷𝑆, 𝑓𝑝𝑟𝑖𝑛 , 𝜇̌ (L
𝑘
𝜆) is a module over the simple

W-algebra 𝒲𝑘 (𝔤) = 𝐻0
𝐷𝑆, 𝑓𝑝𝑟𝑖𝑛

(L𝑘 (𝔤)). Since 𝒲𝑘 (𝔤) is rational, 𝐻𝑖𝐷𝑆, 𝑓𝑝𝑟𝑖𝑛 , 𝜇̌ (L
𝑘
𝜆) is a direct sum of

simple modules of the form (53). However, such a module appears in the local composition factor of
𝜋𝑘
𝑤◦𝜆−(𝑘+ℎ∨) 𝜇̌ if and only if 𝑤 ∈ 𝑊 ([Ara07]), where𝑊 ⊂ 𝑊 (𝑘Λ0) is the Weyl group of 𝔤. As

ℓ∞/2(𝑤) � 0 for 𝑤 ∈ 𝑊 and the equality holds if and only if 𝑤 = 1,

𝐻𝑖𝐷𝑆, 𝑓𝑝𝑟𝑖𝑛 , 𝜇̌ (L
𝑘
𝜆) must vanish for 𝑖 < 0. Together with equation (57), we get 𝐻𝑖𝐷𝑆, 𝑓𝑝𝑟𝑖𝑛 , 𝜇̌ (L

𝑘
𝜆) = 0 for

𝑖 ≠ 0. Finally, since L𝑘
[𝜆,𝜇̌] is the unique simple 𝒲𝑘 (𝔤)-module that appears in the local composition

factor of 𝜋𝑘
𝜆−(𝑘+ℎ∨) 𝜇̌ and it appears with multiplicity one ([Ara07]), 𝐻𝑖𝐷𝑆, 𝑓𝑝𝑟𝑖𝑛 , 𝜇̌ (L

𝑘
𝜆) is either zero or

isomorphic to L𝑘
[𝜆,𝜇̌] . The assertion follows since the Euler character of 𝐻•

𝐷𝑆, 𝑓𝑝𝑟𝑖𝑛
(L𝑘 (𝔤)) is equal to

the character of L𝑘
[𝜆,𝜇̌] . �

For an admissible number k and 𝜆 ∈ 𝐴𝑑𝑚𝑘
Z

, define

L𝑘𝜆, 𝑓 = 𝐻0
𝐷𝑆, 𝑓 (L

𝑘
𝜆) ∈ 𝒲𝑘 (𝔤, 𝑓 ) -Mod . (59)

Note that L𝑘𝜆, 𝑓𝑝𝑟𝑖𝑛 = L𝑘
[𝜆,0] � L𝑘̌

[0,𝜆] .
Let 𝔤 be simply laced. Observe that if 𝑘 − 1 is an admissible number, then so is k, and ℓ is a

nondegenerate admissible number. Moreover, we have

𝐴𝑑𝑚𝑘−1
Z = 𝐴𝑑𝑚ℓ̌Z = 𝑃

𝑝−ℎ∨
+ , 𝐴𝑑𝑚𝑘Z = 𝐴𝑑𝑚

ℓ
Z = 𝑃

𝑝+𝑞−ℎ∨
+

if 𝑘 − ℎ∨ + 1 = 𝑝/𝑞 with 𝑝 � ℎ∨, 𝑞 � 1, (𝑝, 𝑞) = 1.

Theorem 8.6. Let 𝔤 be simply laced, and let 𝑘 − 1 be admissible. Suppose that 𝑓 ∈ 𝑋L𝑘 (𝔤) = 𝑋L𝑘−1 (𝔤) .
For 𝜇 ∈ 𝐴𝑑𝑚𝑘−1

Z
, 𝜈 ∈ 𝑃1

+, we have

L𝑘−1
𝜇, 𝑓 ⊗ L1

𝜈 �
⊕

𝜆∈𝐴𝑑𝑚𝑘
Z

𝜆−𝜇−𝜈∈𝑄

L𝑘𝜆, 𝑓 ⊗ Lℓ[𝜆,𝜇]

as 𝒲𝑘 (𝔤, 𝑓 )⊗𝒲ℓ (𝔤)-modules.

In the case 𝑓 = 𝑓𝑝𝑟𝑖𝑛, we have the following more general statement.

Theorem 8.7. Let 𝔤 be simply laced, and let 𝑘 − 1 be nondegenerate admissible. For 𝜇 ∈ 𝐴𝑑𝑚𝑘−1
Z

,
𝜇′ ∈ 𝐴𝑑𝑚 ˇ𝑘−1

Z
= 𝐴𝑑𝑚 𝑘̌

Z
, 𝜈 ∈ 𝑃1

+, we have

L𝑘−1
[𝜇,𝜇′ ] ⊗ L

1
𝜈 �

⊕
𝜆∈𝐴𝑑𝑚𝑘

Z
𝜆−𝜇−𝜇′−𝜈∈𝑄

L𝑘
[𝜆,𝜇′ ] ⊗ Lℓ[𝜆,𝜇]

as 𝒲𝑘 (𝔤)⊗𝒲ℓ (𝔤)-modules.

Corollary 8.8. Let 𝔤 be simply laced. Let 𝑘 + ℎ∨ = (2ℎ∨ + 1)/ℎ∨ so that ℓ + ℎ∨ = (2ℎ∨ + 1)/(ℎ∨ + 1).

1. There is an embedding of vertex algebras

𝒲𝑘 (𝔤)⊗𝒲ℓ (𝔤) ↩→ L1 (𝔤),

and 𝒲𝑘 (𝔤) and 𝒲ℓ (𝔤) form a dual pair in L1(𝔤).
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2. For 𝜈 ∈ 𝑃1
+, we have

L1
𝜈 �

⊕
𝜆∈𝐴𝑑𝑚𝑘

Z
∩(𝜈+𝑄)

L𝑘
[𝜆,0] ⊗ Lℓ[𝜆,0]

as 𝒲𝑘 (𝔤)⊗𝒲ℓ (𝔤)-modules.

Proof. The assertion follows from Theorem 8.7 noting that 𝒲𝑘−1(𝔤) = L𝑘−1
[0,0] = C if 𝑘 + ℎ∨ − 1 =

(ℎ∨ + 1)/ℎ∨ or ℎ∨/(ℎ∨ + 1). �

Proof of Theorem 8.6 and Theorem 8.7. By [ACL19, Main Theorem 3], we have

L𝑘−1
𝜇 ⊗ L1

𝜈 �
⊕

𝜆∈𝐴𝑑𝑚𝑘
Z

𝜆−𝜇−𝜈∈𝑄

L𝑘𝜆 ⊗ Lℓ[𝜆,𝜇]

as L𝑘 (𝔤)⊗𝒲ℓ (𝔤)-modules. Hence, the assertion follows from Main Theorem 1 and Theorem 7.1. �

9. Application to the extension problem of vertex algebras

In this section, we apply Theorem 8.2 to prove the existence of the extensions of vertex algebras that are
expected by four-dimensional supersymmetric gauge theories ([CG17, CGL18]).

For 𝜆 ∈ 𝑃+, let 𝜆∗ = −𝑤0 (𝜆) so that 𝐸∗
𝜆 � 𝐸𝜆∗ .

Theorem 9.1. Let 𝔤 be simply laced, and let 𝑘, 𝑘 ′ be irrational complex numbers satisfying

1
𝑘 + ℎ∨ + 1

𝑘 ′ + ℎ∨ = 𝑛

for 𝑛 ∈ Z�1. Then

𝐴𝑛 [𝔤] :=
⊕

𝜆∈𝑃+∩𝑄
𝑇 𝑘𝜆,0⊗𝑇

𝑘′

𝜆∗ ,0

can be equipped with a structure of simple vertex operator algebra of central charge

2 rk 𝔤 + 4ℎ dim𝔤 − 𝑛ℎ dim𝔤

(
1 + 𝜓2

𝑛𝜓 − 1

)
,

where 𝜓 = 𝑘 + ℎ∨ and h is the Coxeter number (which equals to ℎ∨). The vertex operator algebra 𝐴𝑛 [𝔤]
is of CFT type if 𝑛 � 2.

Proof. We shall prove the assertion on induction on n using the fact that

𝑇 𝑘
′

𝜇,𝜇′⊗U(𝔤) �
⊕
𝜆∈𝑃+

𝜆−𝜇−𝜇′∈𝑄

𝑇 𝑘
′+1

𝜆,𝜇′ ⊗𝑇
ℓ
𝜆,𝜇 �

⊕
𝜆∈𝑃+

𝜆−𝜇−𝜇′∈𝑄

𝑇 𝑘
′+1

𝜆,𝜇′ ⊗𝑇
ℓ̌
𝜇,𝜆, (60)

with ℓ̌ satisfying the relation

1
ℓ̌ + ℎ∨

=
1

𝑘 ′ + ℎ∨ + 1

which follows from Theorem 8.2 and equation (44).
Let us show the assertion for 𝑛 = 1. Let I𝑘𝐺 be the chiral universal centralizer on G at level

k ([Ara18]), which was introduced earlier in [FS06] for the 𝔤 = 𝔰𝔩2 case as the modified regular
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representation of the Virasoro algebra. By definition, I𝑘𝐺 is obtained by taking the principal Drinfeld–
Sokolov reduction with respect to two commuting actions of 𝔤̂ on the algebra of the chiral differential
operators [MSV99, BD04] D𝑐ℎ

𝐺,𝑘 on G at level k. The I𝑘𝐺 is a conformal vertex algebra of central charge
2 rk 𝔤 + 48(𝜌 |𝜌∨) = 2 rk 𝔤 + 4ℎ∨ dim𝔤, equipped with a conformal vertex algebra homomorphism
𝒲𝑘 (𝔤)⊗𝒲𝑘∗ (𝔤) → I𝑘𝐺 , where 𝑘∗ the dual level of k defined by the equation

1
𝑘 + ℎ∨ + 1

𝑘∗ + ℎ∨ = 0.

As explained in [Ara18], I𝑘𝐺 is a strict chiral quantization ([Ara18]) of the universal centralizer S ×𝔤∗

(𝐺 × S), where S is the Kostant–Slodowy slice. Since S×𝔤∗ (𝐺 × S) is a smooth symplectic variety, I𝑘𝐺
is simple ([AM]). For an irrational k, we have the decomposition

I𝑘𝐺 �
⊕
𝜆∈𝑃+

𝑇 𝑘𝜆,0⊗𝑇
𝑘∗

𝜆∗ ,0

as 𝒲𝑘 (𝔤)⊗𝒲𝑘∗ (𝔤)-modules, which follows from the decomposition [AG02, Zhu08] of D𝑐ℎ
𝐺,𝑘 as 𝔤̂ × 𝔤̂-

modules. Hence, by equation (60),

I𝑘𝐺⊗U(𝔤) �
⊕
𝜆∈𝑃+

𝑇 𝑘𝜆,0⊗𝑇
𝑘∗

𝜆∗ ,0⊗U(𝔤) �
⊕

𝜆∈𝑃+ , 𝜇∈𝑃+
𝜇−𝜆∗∈𝑄

𝑇 𝑘𝜆,0⊗𝑇
𝑘∗+1
𝜇,0 ⊗𝑇 ℓ̌𝜆∗ ,𝜇,

and ℓ̌ satisfies the relation

1
𝑘 + ℎ∨ + 1

ℓ̌ + ℎ∨
= 1.

It follows that

𝐴1 [𝔤] := Com(𝒲𝑘∗+1(𝔤), I𝑘𝐺⊗U(𝔤)) �
⊕

𝜆∈𝑃+∩𝑄
𝑇 𝑘𝜆,0⊗𝑇

ℓ̌
𝜆∗ ,0.

Moreover, since I𝑘𝐺⊗U(𝔤) is simple 𝐴1 [𝔤] is simple as well by [CGN, Proposition 5.4].
Assuming that the statement is true for 𝑛 ∈ Z�1, we find similarly that

𝐴𝑛+1 [𝔤] := Com(𝒲𝑘′+1(𝔤), 𝐴𝑛 [𝔤]⊗U(𝔤))

has the required decomposition.
For the central charge computation, it is useful to introduce

𝜓 := 𝑘 + ℎ∨ and 𝜙𝑛 :=
𝜓

𝑛𝜓 − 1

so that

1
𝜓

+ 1
𝜙𝑛

= 𝑛.

By equation (34) and the fact that the central charge of 𝒲𝑘+1(𝔤) is

(1 − ℎ(ℎ + 1) (𝑘 + ℎ)2/(𝑘 + ℎ + 1)) rk 𝔤 = rk 𝔤 − dim𝔤ℎ
𝜓2

𝜓 + 1
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(here we used that (ℎ + 1) rk 𝔤 = dim𝔤), we have

𝑐𝐴𝑛+1 [𝔤] = 𝑐𝐴𝑛 [𝔤] −
ℎ2 + ℎ − 1
ℎ + 1

dim𝔤 − rk 𝔤 + ℎ 𝜓2

(𝑛𝜓 − 1) ((𝑛 + 1)𝜓 − 1) ) dim𝔤

= − dim𝔤ℎ + ℎ𝜙𝑛𝜙𝑛+1 dim𝔤,

where 𝑐𝑉 is the central charge of V, and we have put 𝐴0 [𝔤] = I𝑘𝐺 . Note that

𝜙𝑛 − 𝜙𝑛+1 = 𝜙𝑛𝜙𝑛+1 = 𝜓(𝑛𝜙𝑛 − (𝑛 + 1)𝜙𝑛+1),

and so by induction for n, we have

𝑐𝐴𝑛 [𝔤] = 2 rk 𝔤 + 4ℎ dim𝔤 − 𝑛ℎ dim𝔤(1 + 𝜓𝜙𝑛).

The conformal dimension of 𝑇 𝑘𝜆,0⊗𝑇
𝑘′

𝜆∗ ,0 is

𝑛

2
(|𝜆 + 𝜌 |2 − |𝜌 |2) − 2(𝜆 |𝜌) = 𝑛

2
|𝜆 |2 + (𝑛 − 2) (𝜆 |𝜌),

which is an integer for 𝜆 ∈ 𝑄. If 𝑛 � 2, this is clearly nonnegative and is equal to zero if and only if
𝜆 = 0, whence the last assertion. �

Remark 9.2. More generally, it is expected [CG17, CGL18] that if k and 𝑘 ′ are irrational numbers
related by

1
𝑘 + ℎ∨ + 1

𝑘 ′ + ℎ∨ = 𝑛 ∈ Z,

then ⊕
𝜆∈𝑄∩𝑃+

V𝑘𝜆, 𝑓 ⊗ V𝑘′𝜆∗ , 𝑓 ′

can be given the structure of a simple vertex operator algebra for any nilpotent elements f, 𝑓 ′.

10. Fusion categories of modules over quasi-lisse W-algebras

For a vertex operator algebra V, let C𝑜𝑟𝑑𝑉 be the full subcategory of the category of finitely generated
V-modules consisting of modules M on which 𝐿0 acts locally finitely, the 𝐿0-eigenvalues of M are
bounded from below and all the generalized 𝐿0-eigenspaces are finite dimensional. A simple object in
C𝑜𝑟𝑑𝑉 is called an ordinary representation of V.

Recall that a finitely strongly generated vertex algebra V is called quasi-lisse [AK18] if the associate
variety 𝑋𝑉 has finitely many symplectic leaves. By [AK18, Theorem 4.1], if V is quasi-lisse, then C𝑜𝑟𝑑𝑉
has only finitely many simple objects.

Conjecture 1. Let V a finitely strongly generated, self-dual, quasi-lisse vertex operator algebra of CFT
type. Then the category C𝑜𝑟𝑑𝑉 has the structure of a vertex tensor category in the sense of [HL94].

In the case that V is lisse, that is, 𝑋𝑉 is zero dimensional, Conjecture 1 has been proved in [Hua09].
Conjecture 1 is true if one can show that every object in C𝑜𝑟𝑑𝑉 is 𝐶1-cofinite and if grading-restricted
generalized Verma modules for V are of finite length [CY20]. If V is a vertex algebra that has an
affine vertex subalgebra at admissible level, then another possibility of proving Conjecture 1 is the
following. First, show that the affine vertex subalgebra is simple; second, prove that a suitable category
of modules of the coset by the affine subalgebra in V has vertex tensor category structure. Then use the
theory of vertex algebra extensions [CKM17] to deduce vertex tensor category structure on C𝑜𝑟𝑑𝑉 . This
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is a promising direction as, for example, many simple quotients of cosets of W-algebras of type A are
rational and lisse by [CL20, Cor. 6.13], and similar results for W-algebras of type 𝐵,𝐶 and D are work
in progress.

In the case that Conjecture 1 is true, we denote by 𝑀 �𝑉 𝑁 the tensor product of V-modules M and
N in C𝑜𝑟𝑑𝑉 , or simply by 𝑀 � 𝑁 if no confusion should occur.

Now let k be an admissible number for 𝔤̂. As explained in Subsection 8.2,

𝑋L𝑘 (𝔤) = O𝑘

for some nilpotent orbit O𝑘 , and hence, L𝑘 (𝔤) is quasi-lisse. By the conjecture of Adamović and Milas
[AM95] that was proved in [Ara16a], the category 𝐶𝑜𝑟𝑑

L𝑘 (𝔤) is semisimple and {L𝑘𝜆 |𝜆 ∈ 𝐴𝑑𝑚𝑘
Z
} gives a

complete set of isomorphism classes in C𝑜𝑟𝑑
L𝑘 (𝔤) . Note that, in the case k is nonnegative integer, this is a

well-known fact [FZ92], and if this is the case, L𝑘 (𝔤) is rational and lisse, and hence, Conjecture 1 holds
by [HL95]. In the case k is admissible but not an integer, L𝑘 (𝔤) is neither rational nor lisse anymore.
Nevertheless, Conjecture 1 has been proved for 𝑉 = L𝑘 (𝔤) in [CHY18] provided that 𝔤 is simply laced.
Moreover, it was shown in [Cre19] that C𝑜𝑟𝑑

L𝑘 (𝔤) is a fusion category, i.e., any object is rigid, and we have
an isomorphism

𝐾 [𝐶𝑜𝑟𝑑
L𝑝−ℎ∨ (𝔤)

] � 𝐾 [𝐶𝑜𝑟𝑑
L𝑘 (𝔤) ], [L𝑝−ℎ

∨

𝜆 ] ↦→ [L𝑘𝜆] (61)

of Grothendieck rings of our fusion categories, where p is the numerator of 𝑘 + ℎ∨.
Let f be a nilpotent element of 𝔤. By [Ara15a],

𝑋𝐻 0
𝐷𝑆, 𝑓

(L𝑘 (𝔤)) = 𝑋L𝑘 (𝔤) ∩ S 𝑓 ,

where S 𝑓 is the Slodowy slice at f in 𝔤. Therefore, in the case that k is admissible, 𝑋𝐻 0
𝐷𝑆, 𝑓

(L𝑘 (𝔤)) =

O𝑘 ∩ S 𝑓 is a nilpotent Slodowy slice, that is, the intersection of the Slodowy slice with a nilpotent orbit
closure, provided that 𝐻0

𝐷𝑆, 𝑓 (L𝑘 (𝔤)) ≠ 0 or, equivalently, O𝑘 ∩ S 𝑓 ≠ ∅, that is, 𝑓 ∈ O𝑘 . In particular,
𝐻0
𝐷𝑆, 𝑓 (L𝑘 (𝔤)) is quasi-lisse if 𝑓 ∈ O𝑘 and so is the simple W-algebra 𝒲𝑘 (𝔤, 𝑓 ). If 𝑓 ∈ O𝑘 , then
O𝑘 ∩ S 𝑓 is a point by the transversality of the Slodowy slices, and therefore, 𝒲𝑘 (𝔤, 𝑓 ) is lisse.

The good grading (11) is called even of 𝔤 𝑗 = 0 unless 𝑗 ∈ Z. If this is the case, 𝒲𝑘 (𝔤, 𝑓 ) is Z�0-
graded and thus of CFT type.

The following assertion was stated in the case that 𝑓 ∈ O𝑘 in [AvE], but the same proof applies.

Theorem 10.1. Let k be admissible and 𝑓 ∈ O𝑘 . Suppose that f admits a good even grading. Then, for
𝜆 ∈ 𝐴𝑑𝑚𝑘

Z
, L𝑘𝜆, 𝑓 = 𝐻0

𝐷𝑆, 𝑓 (L
𝑘
𝜆) is simple. In particular, 𝐻0

𝐷𝑆, 𝑓 (L𝑘 (𝔤)) = 𝒲𝑘 (𝔤, 𝑓 ).

Lemma 10.2. Let f be an even nilpotent element. Then 𝒲𝑘 (𝔤, 𝑓 ) is self-dual and of CFT type with
respect to the Dynkin grading.

Proof. Since f is an even nilpotent element, the Dynkin grading is even, and so 𝒲𝑘 (𝔤, 𝑓 ) is of CFT
type. The self-duality follows from the formula in [AvE, Proposition 6.1]. �

Remark 10.3. If the grading is not Dynkin, 𝒲𝑘 ( 𝑓 , 𝑔) need not be self-dual; see [AvE, Proposition 6.3].

Theorem 10.4. Let 𝔤 be simply laced, k admissible, and let f be an even nilpotent element inO𝑘 . Suppose
Conjecture 1 is true for 𝒲𝑘+1(𝔤, 𝑓 ) and also that 𝒲𝑘+1(𝔤, 𝑓 ) is self-dual. Then the functor

C𝑜𝑟𝑑
L𝑘 (𝔤) → C𝑜𝑟𝑑𝒲𝑘 (𝔤, 𝑓 ) , 𝑀 ↦→ 𝐻0

𝐷𝑆, 𝑓 (𝑀),

is a unital braided tensor functor. In particular, the modules L𝑘𝜆, 𝑓 , 𝜆 ∈ 𝐴𝑑𝑚𝑘
Z

, are rigid.
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Remark 10.5. Note that by Theorem 8.6, we have that 𝒲𝑘 (𝔤, 𝑓 ) ⊗L1 (𝔤) is an extension of 𝒲𝑘+1(𝔤, 𝑓 ) ⊗
𝒲ℓ (𝔤), where 𝒲ℓ (𝔤) is rational and lisse if k is admissible. Especially every ordinary module of
𝒲𝑘 (𝔤, 𝑓 ) ⊗ L1 (𝔤) is an object in the category of ordinary modules of 𝒲𝑘+1(𝔤, 𝑓 ) ⊗ 𝒲ℓ (𝔤), and so if
the latter has vertex tensor category structure, then so does the former by [CKM17]. In other words, if
Conjecture 1 is true for 𝒲𝑘+1(𝔤, 𝑓 ) and if k is admissible, then Conjecture 1 is also true for 𝒲𝑘 (𝔤, 𝑓 ).

Moreover, [CKM19, Thm. 5.12] applies to our setting if 𝒲𝑘 (𝔤, 𝑓 ) is Z-graded. Thus, if the category
of ordinary modules of 𝒲𝑘+1(𝔤, 𝑓 ) ⊗𝒲ℓ (𝔤) is a fusion category, then so is the one of 𝒲𝑘 (𝔤, 𝑓 ) ⊗L1 (𝔤).
If 𝒲𝑘 (𝔤, 𝑓 ) is Z-graded by conformal weight, it thus also follows that 𝒲𝑘 (𝔤, 𝑓 ) is rational provided that
𝒲𝑘+1(𝔤, 𝑓 ) is rational and lisse.

Note that if 𝑓 ∈ O𝑘 , then Conjecture 1 holds since 𝒲𝑘 (𝔤, 𝑓 ) is lisse.
In the case that 𝑓 = 𝑓𝑝𝑟𝑖𝑛, 𝑓 ∈ O𝑘 if and only if O𝑘 = N, the nilpotent cone of 𝔤. An admissible

number k such that O𝑘 = N is called nondegenerate. If this is the case, 𝒲𝑘 (𝔤) is rational, and the
complete fusion rule 𝒲𝑘 (𝔤, 𝑓 ) has been determined previously in [FKW92, AvE19, Cre19].

In the case that O𝑘 is a subregular nilpotent orbit and 𝑓 ∈ O𝑘 , then 𝒲𝑘 (𝔤, 𝑓 ) is rational [AvE], and
the fusion rules of 𝒲𝑘 (𝔤, 𝑓 ) has been determined in [AvE].

The following assertion, which follows immediately from Theorem 10.4, is new except for type A
([AvE]) and the above cases since the conjectural rationality [KW08, Ara15a] of 𝒲𝑘 (𝔤, 𝑓 ) with 𝑓 ∈ O𝑘
is open otherwise.

Corollary 10.6. Let 𝔤 be simply laced and k admissible, and suppose that O𝑘 is an even nilpotent orbit,
𝑓 ∈ O𝑘 . Then L𝑘𝜆, 𝑓 is rigid for all 𝜆 ∈ 𝐴𝑑𝑚𝑘

Z
.

Remark 10.7. Let C𝐾𝐿𝒲𝑘 (𝔤, 𝑓 ) denote the fusion category consisting of objects 𝐻0
𝐷𝑆, 𝑓 (𝑀), 𝑀 ∈ C𝑜𝑟𝑑

L𝑘 (𝔤) .
By Theorem 10.4,

C𝑜𝑟𝑑
L𝑘 (𝔤) → C𝐾𝐿𝒲𝑘 (𝔤, 𝑓 ) , 𝑀 ↦→ 𝐻0

𝐷𝑆, 𝑓 (𝑀)

is a quotient functor between fusion categories. It gives an equivalence if and only if the modules L𝑘𝜆, 𝑓 ,
𝜆 ∈ 𝐴𝑑𝑚𝑘

Z
are distinct.

The rest of this section is devoted to the proof of Theorem 10.4.
Suppose Conjecture 1 holds for V, and let C be a monoidal full subcategory of C𝑜𝑟𝑑𝑉 . Recall that

𝑀, 𝑁 ∈ C are said to centralize each other [Mü03] if the monodromy of M and N is trivial, i.e., is equal
to the identity on 𝑀 �𝑉 𝑁 , where the monodromy is the double braiding

𝑀 �𝑉 𝑁
𝑏𝑀,𝑁−−−−→ 𝑁 �𝑉 𝑀

𝑏𝑁,𝑀−−−−→ 𝑀 �𝑉 𝑁.

Suppose that V is a vertex operator subalgebra of another quasi-lisse vertex operator algebra W and that
W as a V-module is an object of C𝑜𝑟𝑑𝑉 . We assume that Conjecture 1 holds for W as well. Let D be a
monoidal full subcategory of C such that W and any object in D centralize each other. Then

F(𝑀) := 𝑊 �𝑉 𝑀

can be equipped with a structure of a module for the vertex operator algebra W, giving rise to the
induction functor [CKM17]

D → 𝐶𝑜𝑟𝑑𝑊 , 𝑀 ↦→ F(𝑀).

Theorem 10.8 ([Cre19]). Let 𝔤 be simply laced, and let𝜆 ∈ 𝐴𝑑𝑚𝑘
Z
, 𝜇 ∈ 𝐴𝑑𝑚 𝑘̌

Z
. We have L𝑘

[𝜆,0]�L𝑘
[0,𝜇] �

L𝑘
[𝜆,𝜇] . Moreover, L𝑘

[𝜆,0] and L𝑘̌
[0,𝜇] centralize each other if 𝜆 ∈ 𝐴𝑑𝑚𝑘

Z
∩𝑄.
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Let f be admissible, and let f be an even nilpotent element in O𝑘 . Then 𝑓 ∈ O𝑘+1 as well since O𝑘
depends only on the denominator of k. Let ℓ be the number defined by

1
𝑘 + ℎ∨ + 1

+ 1
ℓ + ℎ∨ = 1,

that is,

ℓ + ℎ∨ =
𝑘 + ℎ∨ + 1
𝑘 + ℎ∨ .

Then ℓ is a nondegenerate admissible number. Note that

𝐴𝑑𝑚ℓZ = 𝐴𝑑𝑚
𝑘+1
Z = 𝑃𝑝+𝑞−ℎ

∨

+ , 𝐴𝑑𝑚ℓ̌Z = 𝐴𝑑𝑚
𝑘
Z = 𝑃

𝑝−ℎ∨
+ , (62)

where we have put 𝑘 + ℎ∨ = 𝑝/𝑞.
Consider the 𝒲ℓ (𝔤)-modules

Lℓ[0,𝜇] � Lℓ̌[𝜇,0] = 𝐻
0
𝐷𝑆, 𝑓𝑝𝑟𝑖𝑛

(Lℓ̌𝜇), 𝜇 ∈ 𝐴𝑑𝑚ℓZ.

Since the stabilizer of 0 ∈ 𝐴𝑑𝑚ℓ
Z

of the 𝑊̃+-action is trivial, the simple 𝒲ℓ (𝔤)-modules Lℓ[0,𝜇] , 𝜇 ∈
𝐴𝑑𝑚ℓ

Z
, are distinct. Therefore, by Theorem 10.4 (that is proved for 𝑓 = 𝑓𝑝𝑟𝑖𝑛 in [Cre19]), the modules

Lℓ[0,𝜇] , 𝜇 ∈ 𝐴𝑑𝑚ℓ
Z

form a fusion full subcategory of C𝑜𝑟𝑑
𝒲ℓ (𝔤) that is equivalent to a category that can be

called a simple current twist of C𝑜𝑟𝑑
Lℓ̌ (𝔤)

� C𝑜𝑟𝑑
L𝑘 (𝔤) (see [Cre19, Thm.7.1] for the details). This simple current

twist of C𝑜𝑟𝑑
L𝑘 (𝔤) is the fusion subcategory of C𝑜𝑟𝑑

L𝑘 (𝔤) � C
𝑜𝑟𝑑
L1 (𝔤) whose simple objects are the L𝑘𝜇, 𝑓 ⊗L

1
−𝜇+𝑄.

Call this category C𝑜𝑟𝑑,𝑡𝑤
L𝑘 (𝔤) .

Now set

𝑊 := 𝒲𝑘 (𝔤, 𝑓 )⊗L1(𝔤) = L𝑘0, 𝑓 ⊗L
1
𝜈 , 𝑉 := 𝒲𝑘+1(𝔤, 𝑓 )⊗𝒲ℓ (𝔤) = L𝑘+1

0, 𝑓 ⊗L[0,0] .

By Theorem 8.6,

𝑊 �
⊕

𝜆∈𝐴𝑑𝑚𝑘+1
Z

∩𝑄

L𝑘+1
𝜆, 𝑓 ⊗ Lℓ[𝜆,0] . (63)

Hence, V is a vertex subalgebra of W. Moreover, each direct summand of W is an ordinary V-module
and the sum is finite, and so W is an object of C𝑜𝑟𝑑𝑉 .

Clearly, the V-modules

L𝑘+1
0, 𝑓 ⊗Lℓ[0,𝜇] = 𝒲𝑘+1(𝔤, 𝑓 )⊗Lℓ[0,𝜇] , 𝜇 ∈ 𝐴𝑑𝑚ℓ̌Z

form a monoidal full subcategory of C𝑜𝑟𝑑𝑉 that is equivalent to C𝑜𝑟𝑑
L𝑘 (𝔤) . We denote by D this fusion

category.
By Theorem 10.8 and equation (63), we find that W centralizes any object of D. Hence, we have the

induction functor

F : D → C𝑜𝑟𝑑𝑊 , 𝑀 ↦→ 𝑊 �𝑉 𝑀.

Theorem 10.9. The induction functor F : D → C𝑜𝑟𝑑𝑊 is a fully faithful tensor functor that sends
L𝑘+1

0, 𝑓 ⊗Lℓ[0,𝜇] to L𝑘𝜇, 𝑓 ⊗L
1
−𝜇+𝑄, where −𝜇 +𝑄 denotes the class in 𝑃/𝑄 � 𝑃1

+.
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Proof. Thanks to [Cre19, Theorem 3.5], it is sufficient to show that F(L𝑘+1
0, 𝑓 ⊗Lℓ[0,𝜇] ) is a simple W-

module that is isomorphic to L𝑘𝜇, 𝑓 ⊗L
1
−𝜇+𝑄 for all 𝜇 ∈ 𝐴𝑑𝑚ℓ̌

Z
. As V-modules we have

F(L𝑘+1
0, 𝑓 ⊗Lℓ[0,𝜇] ) =

⊕
𝜆∈𝐴𝑑𝑚𝑘+1

Z
∩𝑄

(L𝑘+1
𝜆, 𝑓 ⊗ Lℓ[𝜆,0] ) �𝑉 (L𝑘+1

0, 𝑓 ⊗Lℓ[0,𝜇] )

�
⊕

𝜆∈𝐴𝑑𝑚𝑘+1
Z

∩𝑄

L𝑘+1
𝜆, 𝑓 ⊗Lℓ[𝜆,𝜇] � L

𝑘
𝜇, 𝑓 ⊗L

1
−𝜇+𝑄

by Theorem 8.6 and Theorem 10.8. We claim this is indeed an isomorphism of W-modules. To see
this, it is sufficient to show that there is a nontrivial W-module homomorphism F(L𝑘+1

0, 𝑓 ⊗Lℓ[0,𝜇] ) →
L𝑘𝜇, 𝑓 ⊗L

1
−𝜇+𝑄 since L𝑘𝜇, 𝑓 ⊗L

1
−𝜇+𝑄 is simple. By the Frobenius reciprocity [KO02, CKM17], we have

Hom𝑊 -Mod(F(L𝑘+1
0, 𝑓 ⊗Lℓ[0,𝜇] ),L

𝑘
𝜇, 𝑓 ⊗L

1
−𝜇+𝑄)

� Hom𝑉 -Mod (L𝑘+1
0, 𝑓 ⊗Lℓ[0,𝜇] ,L

𝑘
𝜇, 𝑓 ⊗L

1
−𝜇+𝑄)

�
⊕

𝜆∈𝐴𝑑𝑚𝑘+1
Z

∩𝑄

Hom𝑉 -Mod (L𝑘+1
0, 𝑓 ⊗Lℓ[0,𝜇] ,L

𝑘+1
𝜆, 𝑓 ⊗Lℓ[𝜆,𝜇] ).

It follows that there is a nontrivial homomorphism corresponding to the identity map L𝑘+1
0, 𝑓 ⊗Lℓ[0,𝜇] →

L𝑘+1
0, 𝑓 ⊗Lℓ[0,𝜇] . �

Proof of Theorem 10.4. By Theorem 10.9, the correspondence

L𝑘𝜇⊗L1
−𝜇+𝑄 ↦→ Lℓ[0,𝜇] ↦→ L

𝑘+1
0, 𝑓 ⊗Lℓ[0,𝜇] ↦→ L

𝑘
𝜇, 𝑓 ⊗L

1
−𝜇+𝑄, 𝜇 ∈ 𝐴𝑑𝑚𝑘Z = 𝐴𝑑𝑚

ℓ̌
Z

gives a tensor functor

C𝑜𝑟𝑑,𝑡𝑤
L𝑘 (𝔤) → 𝐶𝑜𝑟𝑑𝒲𝑘 (𝔤, 𝑓 ) ⊗L1 (𝔤) = 𝐶𝒲𝑘 (𝔤, 𝑓 ) � C𝑜𝑟𝑑L1 (𝔤) ,

where the last � denotes the Deligne product. This functor is fully faithful if and only if all the L𝑘𝜇, 𝑓 are
nonisomorphic. Since C𝑜𝑟𝑑

L1 (𝔤) is semisimple and its simple objects are all invertible, i.e., simple currents,
this corresponds extends to a surjective tensor functor

C𝑜𝑟𝑑
L𝑘 (𝔤) � C

𝑜𝑟𝑑
L1 (𝔤) → 𝐶𝒲𝑘 (𝔤, 𝑓 ) � C𝑜𝑟𝑑L1 (𝔤) ,

which restricts to a surjective tensor functor

C𝑜𝑟𝑑
L𝑘 (𝔤) → 𝐶𝒲𝑘 (𝔤, 𝑓 ) , L𝑘𝜇 → L𝑘𝜇, 𝑓 = 𝐻0

𝐷𝑆, 𝑓 (L
𝑘
𝜇)

that again is fully faithful if and only if all the L𝑘𝜇, 𝑓 are nonisomorphic. �

Let us conclude with a remark on the general case.

Remark 10.10. It is a well-known result of Kazhdan–Lusztig that ordinary modules of affine vertex
algebras at generic level have vertex tensor category [KL1, KL2, KL3, KL4], and it is reasonable to
expect that a similar result might hold for 𝒲-algebras as well. However, this is only proven for the
Virasoro algebra [CJORY20] and the 𝑁 = 1 super Virasoro algebra [CMY20].

At generic levels one has to deal with infinite order extensions of vertex algebras, and so one needs
to consider completions of vertex tensor categories. The theory of vertex algebra extension also works
for such completions [CMY20]. This means that if one can prove the existence of vertex tensor category
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structure on categories of ordinary modules of 𝒲-algebras at generic levels, then one can also derive
results for generic levels that are similar to the statements of this section.
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