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1. The subject-matter of this paper is in some sense known; but we will try to organise,
explain and reprove it, and to give examples.

In essence, a space or spectrum X is "atomic" if a map / : X-*X may be proved to be
an equivalence by a simple, computable test applied in one dimension; this goes back to
[4] (published as [5]) and first appeared in print in [12]. That it is useful to prove X
atomic and then apply the fact has been amply shown, beginning with [3].

This notion is related to two others. Unique factorisation results for spaces and
spectra have been considered in [6,9,14]. Here one needs the notion of an "irreducible"
or "indecomposable" object X, and a slightly stronger notion of "prime".

We first show that the case of "spaces" and the case of "spectra" can be considered
together, by concentrating on the fact that the hom-set [X,X] is (under suitable
assumptions) a profinite monoid. In this case we show that the "weaker" condition
implies the "stronger", as follows.

(a) If X is indecomposable then its hom-set [_X, AT] is "good", and
(b) if [X,AT] is "good" then X is both "atomic" and "prime".

We give some illustrative examples, including some which arise "in nature" as stable
summands of classifying spaces BG. We conclude with the proofs.

Related results have been obtained by M. C. Crabb and J. R. Hubbuck; we are
grateful to them for letters, and also to F. R. Cohen and F. P. Peterson.

2. First we unify the two cases to be considered.

Proposition 2.1. The hom-set [X,X] is a profinite monoid with zero in both the
following cases.

(2.2) X is a p-complete CW-complex of finite type and [_X,X~\ means homotopy classes
of pointed maps.

(2.3) X is a p-complete spectrum of finite type and [X,X~\ means maps in the homotopy
category of spectra.

We will comment in Section 3.

*The Society is saddened by the sudden death on 7 January 1989 of Professor J. F. Adams, F.R.S.
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Proposition 2.4. Suppose M is a profinite monoid with zero. Then either

(a) M contains a non-trivial idempotent, or
(b) M is "good" in that the sense that each feM is either invertible or topologically

nilpotent.

In (a), an idempotent is "non-trivial" if it is neither 0 nor 1.
In (b), " / is topologically nilpotent" means that as n->oo, so /"-»() in the profinite

topology on M.
The proof of (2.4), which is elementary, will be given in Section 3.
When £X, X~\ contains a non-trivial idempotent, X is "reducible" or "decomposable".

For spaces this means that X has a non-trivial retract; that is, there is a diagram

in which Y is not contractible and i, r are not equivalences. For spectra we can go on to
infer a non-trivial decomposition as a wedge-sum, X^Yv Z.

If X is "irreducible" or "indecomposable" then the possibility of a non-trivial
idempotent is excluded, and we conclude that [_X,X~\ is "good".

Thus (2.1) plus (2.4) is an analogue, for homotopy-theorists, of a well-known algebraic
result: under suitable finiteness conditions, if an /^-module X is indecomposable, then
every map / : X-*X is either invertible or nilpotent. We were surprised to find that such
a result survives in a context with no addition.

We will sketch the argument that if [X,X~\ is good, then A' is atomic. In the
applications, a simple computable test will dismiss the possibility that / is topologically
nilpotent. For example, suppose we choose any dimension n where Hn(X;Fp)^0. If/ is
an equivalence, then /„: Hn(X;Fp)-*Hn{X; Fp) must be iso. But conversely, if
/*: Hn(X; Fp)-*Hn(X; Fp) is iso, then it cannot be nilpotent, so / cannot be topologically
nilpotent, and / must be an equivalence (assuming [X, A] is good). We conclude that X
is atomic.

Of course, many functors other than Hn( —; Fp) would serve as well.
We will sketch the argument that if [X, X~\ is good, then X is "prime".
If / and g are both topologically nilpotent, then the equation

cannot hold even after passing to a finite quotient Ma of M and embedding Ma in a
ring R (where we can add). In fact, in the finite quotient Mx we would have / m = 0,
gn = 0;mR,f would commute with 1 —f=g; so we would have (f+g)m+"~i=0.

We now assume that "X divides YZ". For spectra this means that we assume given a
retraction
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We take f,g to be the composites

AT-»Z->A\

We then have f+g = 1 in [X, AT]; assuming \_X,X~\ is good, we deduce that either / or g
is an equivalence, and AT is a retract either of Y or of Z. That is, "if X divides YZ, then
X divides either Y or Z".

For spaces, Y v Z should become YxZ. We cannot argue in quite the same way
because we cannot add in [X,AT]; but we can obtain the equation f+g= 1 after passing
to a suitable ring K = EndJi(AT), where h is a suitable functor 7tr(—)®FP or QHr(-;Fp)
with MA') #0.

We turn to the examples.

Example 2.5 There is a p-local spectrum X of finite type which is indecomposable
(but becomes decomposable on completion) and for which [A*, X] is not good.

This justifies the assumption of p-completeness above. The construction will be given
in Section 4.

In the case of spectra, [X,X] is a profinite ring R. When R is good it is local: the
topologically-nilpotent elements make up the unique maximal ideal rad(R). (Given the
indications above, the proof may be left to the reader; the result is due to [9].)

Remark 2.6. In this case the quotient K/rad (R) is a finite field.

The proof is easy, but this too is postponed to Section 4.
This raises the question, which finite fields occur as R/rad(R). Here we present two

examples; one involves infinite spectra which "arise in nature", and the other involves
finite spectra constructed by hand.

Example 2.7. Each finite field arises as J?/rad(R) for a suitable X which is an
indecomposable stable summand of a classifying space BG. Indeed, if the field is of
characteristic p, then G can be a p-group.

For simplicity we now take p = 2.

Example 2.8. Each finite field of characteristic 2 arises as R/rad (R) for a suitable X
which is a finite spectrum

The constructions will be given in Section 4.

3. We begin by commenting on (2.1).
The cases of spaces, (2.2), is presumably known; but we sketch a proof avoiding

certain difficulties.
First we set up some finite quotients of the monoid N = [X,X]. Let Xa be a space
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whose homotopy groups n,(Xx) are finite p-groups, and zero except for a finite number
of r. Then [X, XJ is a finite set and M = [X, A"] acts on it from the right; let Mx be the
image of M in the monoid End([X, XJ). Then Mx is a finite monoid; and the map
M->MX is continuous because the map m\-*ijn: [X,X~]-*[X,XJ is continuous for each
of the finitely many ix in [^f,ATJ.

Secondly we note that the map M-*Y\*MX is mono. In fact, according to Sullivan
[13] we can arrange an isomorphism

{mi-* tarn}

IX, XI

Thus ijri = ixm" for all /„ implies m' = m".
Thirdly we order the Mx by considering diagrams

M

(without requiring any relation between the spaces X", Xfi). We show that the map.

M->lim M.

is an epi by a standard compactness argument.
This completes the sketch proof that [X, Z] is a profinite monoid.
The case of spectra, (2.3), is due to [9, Proposition 4, p. 155}.
We turn to the proof of (2.4).
Suppose given feM. Let Mx be a finite quotient of M. We show first that some

power / " of/ (with n^ 1) becomes idempotent in Mx.
In fact, if infinitely many powers / " lie in the same finite set Mv then two of them

must be equal, say f=f+b for some a^ l . f t^ l . Applying / and iterating we get
fc=fc+bd for c^a. Taking bd^a we get fbi=f2bd is idempotent in Ma.

Next let F be { / " |H^1} , the set of powers of/, and let F be the closure of F in M.
We show that F contains an idempotent (possibly 0 or 1). In fact, for each finite
quotient Ma of M, let £a be the set of elements in F which map to idempotents in Mr

Then Ex is closed and non-empty (for by the last paragraph it contains some power of
/ ) . Indeed, the sets Ea have the finite intersection property, for any finite intersection
Exr\ Epn ... nEs contains another Et (consider the pull-back of Ma,Mp,...,Ms). M is
compact, so there is an element common to all the Ea, i.e. an idempotent in F.

It is possible that the idempotent in F is 1; in this case we will show that / is
invertible. In fact, assume 1 eF; then in each finite quotient Ma of M we have 1 = / " for
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some n^ 1, so / has an inverse 1 = / " " ' in Ma. This inverse is unique, and these inverse
elements give an element of lim_ Mx, providing an inverse for / in M.

It is possible that the idempotent in F is 0; in this case we will show that / is
topologically nilpotent. In fact, assume 0 e F, and let Mx be a finite quotient of M. Then
some / " maps to 0 in M^ hence f maps to 0 in Mx for r^n = n(a). Thus /r->0 in the
profinite topology.

This completes the proof of (2.4).

4. We begin with (2.5).
Our spectrum X will have H0(X) = Zip)®Z(p), so that End(H0(X)) is a ring of 2 x 2

matrices. We will construct X so that the image of

is a ring

(A2-A+Py

The proposed minimum polynomial x2 —x + p has no real roots (because b2—4ac<0),
and a fortiori no roots in Z(p). It does have p-adic roots ao.aj congruent to 0, lmodp
(e.g. by Hensel's Lemma). A convenient matrix with this minimum polynomial is

A =

this has (l,ao)T, ( l ,«i)T as eigenvectors with eigenvalues ao>ai-
Next we need a sequence of elements gien$l-i{S°),i = l,2,..., such that g( has order

p' in 7t*(S°) and still has order p1 in 7r*(S°)*//j, where /; is the ideal generated by the g}

with y#i . These conditions can easily be satisfied by suitable elements in the image of
the J-homomorphism.

We now take

where we work localised at p but omit the notation for it, and where the attaching map
for e"' has components (gi,ctigi)- (Here a, means a0 or at according as i is even or odd.)
This has the following effect. A self-map / of S° v S°, given by a matrix B, extends over
e"', with degree d{ on e"', if and only if ( l . a j 7 is an eigenvector for Bmodp', with
eigenvalue d{ mod p'; it extends over X if and only if this condition holds for all i, that is,
if and only if ( l , a o ) r and ( l ,a i )T are p-adic eigenvectors for B. By construction A
satisfies this condition, so A comes from a map X-*X. Conversely, suppose B satisfies
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it; then B is a p-adic linear combination of / and A; here the coefficients of /, A are the
entries B U ,B 1 2 in B, so they lie in Z(p). This proves that the image of

is

(A2-A+Py

We show that X is indecomposable (over Z(p)). In fact,

(A2~A+p)

is in integral domain; so for any idempotent es[X,X~\, either e or 1—e maps to 0 in
EndH0(X), and the other maps to 1; the one which maps to 1 maps each cell e"' with
degree congruent to 1 mod p', and must be an equivalence.

We show that [X,X] is not good. In fact, the map which realises A is neither an
equivalence nor topologically nilpotent, for on H0(X;Fp) it induces an idempotent of
rank 1.

Proof of (2.6). Consider the quotient map q from R to a finite quotient ring Ra#0.
Under q invertible elements map to invertible elements, and topologically nilpotent
elements map to nilpotent ones; thus q~1(tad(RJ) = raLd(R) and

So R/rad R is finite; being a finite division algebra, it must be a finite field.
We turn to (2.7). Here we need some hold on the ring of stable maps {BG+,BG+}.

Lemma 4.1. Let G be a finite p-group. Then the group ring Fp[Out(G)] is a quotient
of the ring {BG+,BG + }.

The obvious map is in the direction

Z[Out(G)]-+{flG+)BG+};

but we definitely need a quotient of {BG+,BG + }.

Sketch proof. The ring {BG+,BG+} is known [11, p. 397, Corollary 2.3; 10, p. 128,
Corollary 15] as a consequence of the Segal conjecture. In particular, we have
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Fp®{BG+,BG+}^Fp®A{G,G)

where A(G, G) is a ring that plays the same role here that the Burnside ring A(G) does
in studying {BG+,S0} [1,10]. (In [11] the present A(G,G) is written F(G,G).) As a
Z-module, A(G, G) is free, with a base of elements which may be written 9j*. Here i
runs over the inclusions of subgroups i: H-*G, and i* corresponds to the transfer map
Tr.BG + ->BH+; 9 runs over homomorphisms 9:H->G, and 9^ corresponds to the
induced map B9+: BH + ->BG + [1, Section 9; 7, p. 433]. If 9 is epi, then we must have
H = G and i = l, and 9 must be iso. Let / be the Z-submodule of A(G,G) generated by
the remaining elements 9J.*, in which 9 is not epi. We claim / is an ideal.

Consider a product 9ifi*4>iti*, and assume first that 9 is not epi. The product i*4>+j*
can be reduced to a sum of terms X«(<A«)*fc*» s 0 w e obtain a sum of terms (0</O f̂c* in
which 9i//a is not epi.

Assume secondly that cj> is not epi. By the last paragraph it is sufficient to consider
the case in which 9 is iso and i= l ; but then we get {9<f>)^j*, in which 9<p is not epi.
Thus / is an ideal.

We now see that the quotient ring A(G, G)/I is Z[Out(G)]. (Two automorphisms 6 of
G give the same basis element in A(G, G) if and only if they differ by conjugation in G).
Thus

)sFp[Out(G)],

and this proves the lemma.

Lemma 4.2. The finite field F^ where q=p", may be obtained as a quotient of the ring
{BG+,BG + } for a suitable p-group G.

Proof. By a theorem of Bryant and Kovacs [2,8, p. 403, Theorem 13.5] there is a
p-group G whose abelianisation G/[G, G] is the additive group (Z/p)" of Fq and whose
automorphism group AutG acts on GI[_G,G] as the multiplicative group F* of Fq.
Clearly this action factors through Out(G), so we get epimorphisms

Using (4.1), we get a map of rings from {BG+,BG+} onto Fq.
(2.7) now follows. If we take a complete decomposition of 1 into orthogonal

idempotents in {BG+,BG+}, then just one of the idempotents maps to 1 in F?; if X is
the corresponding summand of BG+, then {X,X} maps onto F, and K/rad(J?) = F,, as
in the proof of (2.6).

We turn to (2.8). In order to realise the finite field F2,, we begin with W=\J\ S°. (We
work completed, but for simplicity we omit the notation for it.) We next form

X = WvfCS*W

where the attaching map / has to be described. For any weno(W), f is to carry S8w to
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here v,e are the two generators for nl(S°) = Z2@Z2, and <p has to be described. Since
the result depends only on <f>(w) mod 2, we may interpret <j> as an endomorphism of

V=no( W)® F2 = H0(W; F2) = H0(X; F2).

We take cf>: K-> V to be some linear map whose minimum polynomial is an irreducible
polynomial P of degree q over F2.

An endomorphism of H^(X; F2) is now given by a linear map k: V-* V in degree 0
and a linear map /z: F->K in degree 9. Such a pair {k,n) is induced by a map g: X->X if
and only if it commutes with the boundary map, that is

Aw v + k(f>WE = ixw v + cp/xw e.

Equivalently, k = fi and k<p = <pk, that is, k commutes with (p.
Multiplication by <f> gives V the structure of a module over F2[</>]/PsF2«; this

structure is of course a 1-dimensional vector space over F2q. The possible maps k are
the endomorphisms of this structure, i.e. multiplication by the elements of F2,. This
shows that the image of

is F2Q.
It is now clear that X is indecomposable; and R/xad (R) s F2q, as in the proof of (2.6).
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