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The ER(2)-cohomology of BZ/(2q) and
CPn

Nitu Kitchloo, Vitaly Lorman, andW. Stephen Wilson

Abstract. _e ER(2)-cohomology of BZ/(2q
) and CPn are computed along with the Atiyah–Hir-

zebruch spectral sequence for ER(2)∗(CP∞). _is, along with other papers in this series, gives us
the ER(2)-cohomology of all Eilenberg–MacLane spaces.

1 Introduction

We are concerned with only two cohomology theories in this paper. All our work is
at the prime 2. First, we have the Johnson–Wilson theory, E(2)∗(−), introduced in
[JW73, Remark 5.13], with coeõcients E(2)∗ = Z(2)[v1 , v±1

2 ] where the degree of v1 is
−2 and the degree of v2 is −6.

Second, the Real Johnson–Wilson theory, ER(2)∗(−), from [KW07a, _eorem
1.7] and [HK01,_eorem 4.1], is themain theory of interest. _e theory E(2) is com-
plex orientable and it inherits a Z/(2)-action from complex conjugation on MU , the
spectrum for complex cobordism. _e theory ER(2) is the homotopy ûxed points of
the spectrum E(2) under this action and is just the n = 2 analog of ER(1) = KO(2).

_is paper is part of a series developing the generalized cohomology theory,
ER(2)∗(−) (and o�en ER(n)∗(−)), as aworking tool for algebraic topologists. Inter-
est in this comes from two directions. First, there is a close connection between ER(2)
and TMF0(3) (see [HM16, Corollary 4.17]), and second, ER(2) has already proven
useful in applications, particularly to non-immersions of real projective spaces, for
example in [KW08a,_eorem 1.9], [KW08b,_eorem 1.4], and [Ban13,_eorem4.1].
A great deal is known about ER(2) already. In particular, we know the homology

of the Omega spectrum for ER(2) [KW07b, _eorem 1.2 and Section 2], and the
homotopy type of the spaces in the Omega spectrum, [KW13,_eorems 1–4 and 1–6
and related discussion]. For most n, ER(2)∗(RPn) has been computed, [KW08a,
_eorems 13.2 and 13.3 for n even], [KW08b,_eorem 8.2 for n = 16k+1], and [Ban13,
_eorem 3.1 for n = 16k + 9]. We also know ER(n)∗(BO(q)), [KW15,_eorem 1.1].

It is hard to put the results of this paper into proper context, because the context
is constantly expanding. _is paper is part of a much larger project developing the
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computability and applicability of ER(n)∗(−). Computing

ER(n)∗(K(Z/(2q), j)) and ER(n)∗(K(Z, j + 1))

are long term goals. In [KLW16, _eorem 1.3], the ER(n)-cohomology is computed
for

K(Z, 2k + 1), K(Z/(2q), 2k), and K(Z/(2), 2k + 1).
_is paper can be seen as the ûrst attack on the odd K(Z/(2q), 2k + 1) cases, which
are considerably more complicated than the even ones.

In the case of ER(2), we know that

ER(2)∗(K(Z/(2q), j)) = 0 = ER(2)∗(Z, j + 1) for j > 2.

In [KLW16,_eorem 1.3], we compute

ER(2)∗(K(Z/(2q), 2)) and ER(2)∗(Z, 3).
_is paper will be devoted to computing

ER(2)∗(BZ/(2q) = K(Z/(2q), 1)) and ER(2)∗(CPn).
Together with the second author’s computation of

ER(2)∗(CP∞) = ER(2)∗(K(Z, 2)),
this completely solves the problem of computing ER(2)∗(−) for Eilenberg–MacLane
spaces.

Numerous other examples are given in [KLW16]. Somewhere in this mix is a com-
putation of

ER(2)∗(BU(q)) and ER(2)∗(∧nCP∞).
_emain tool we use is the stable coûbration from [KW07a, Display 1.1]:

(1.1) Σ17ER(2) x // ER(2) // E(2) ,

where x ∈ ER(2)−17, 2x = 0, and the secondmap is the homotopy ûxed point inclu-
sion. _is gives rise to a Bockstein spectral sequence (BSS) with E1 = E(2)∗(X) and
collapses a�er E8, because the self map above has the property that x7 = 0. Here x
generalizes the class η ∈ π1(BO) = KO−1 where η3 = 0 = 2η.
Because we use a spectral sequence to compute most of our results, the answers

are o�en stated in terms of associated graded objects. In addition to computing the
BSS for the spaces of interest, we describe the Atiyah–Hirzebruch spectral sequence
(AHSS) for CP∞ and CPn . Because there are maps of all of our spaces to CP∞,
the complete description of ER(2)∗(CP∞) in [Lor16]maps to our results and solves
many of the extensions we leave alone.

_e complete description of our results, with all the various x i-torsion, is some-
what lengthy and will be presented in Section 3. However, there are some results that
can be presented in a clean fashion and could be of themost interest. We state them
here.

_e coeõcient ring ER(2)∗ has two special elements, v̂1 and v̂2, that map to v1v−3
2

of degree 16 and v−82 of degree 48, respectively in E(2)∗. _e element v̂2 is the period-
icity element in ER(2)∗, and so ER(2) is periodic of period 48. _e ring ER(2)∗ has
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a lot of interesting structure (see Appendix A, and [KW07b, Proposition 2.1]), but if
we only look at elements in degrees multiples of 16, it simpliûes dramatically to

ER(2)16∗ = Z(2)[v̂1 , v̂±1
2 ].

Since E(2) is complex orientable, we know that E(2)∗(CP∞) = E(2)∗[[u]] with
the degree of u equal to 2. If we deûne û = v3

2u of degree −16, then
p̂1 Ð→ ûc(û),

where ûc(û) ∈ E(2)−32(CP∞) and p̂1 ∈ ER(2)−32(CP∞), where c comes from com-
plex conjugation and p̂1 is a modiûed ûrst Pontryagin class. Modulo ûltrations, we
use p̂1 = −û2.

_e previously mentioned non-immersion results for real projective spaces ob-
tained from ER(2) came about by looking only at ER(2)8∗(RPn). _ere, higher
powers of a generating class existed than in E(2)∗(−) (see [KW08a, _eorems 1.6]
and ([KW08b, _eorems 1.1] for n even, [KW08b, _eorem 1.3] for n = 16k + 1, and
[Ban13,_eorem 3.2] for n = 16k + 9). Something very similar happens here and can
be extracted as a reasonably presentable theorem. For any complex orientable coho-
mology theory we have a ûrst Pontryagin class, and its k + 1-st power will be zero
in CP2k and CP2k+1. Because ER(2) is not complex orientable, we do not have this
restriction and are o�en able to see higher powers of the ûrst Pontryagin class, which
also exists for this theory.

_eorem 1.2 With ER(2)16∗ = Z(2)[v̂1 , v̂±1
2 ], then ER(2)16∗(CP8k+i) =

ER(2)16∗[p̂1]/(p̂4k+1
1 ) i = 0

ER(2)16∗[p̂1]/(p̂4k+2
1 , 2p̂4k+1

1 ) i = 1
ER(2)16∗[p̂1]/(p̂4k+3

1 , 2p̂4k+2
1 , v̂1 p̂4k+2

1 ) i = 2
ER(2)16∗[p̂1]/(p̂4k+4

1 , 2p̂4k+2
1 , 2p̂4k+3

1 , v̂1 p̂4k+2
1 , v̂1 p̂4k+3

1 ) i = 3
ER(2)16∗[p̂1]/(p̂4k+4

1 , 2p̂4k+3
1 , v̂1 p̂4k+3

1 ) i = 4
ER(2)16∗[p̂1]/(p̂4k+4

1 , 2p̂4k+3
1 ) i = 5

ER(2)16∗[p̂1]/(p̂4k+4
1 ) i = 6

ER(2)16∗[p̂1]/(p̂4k+4
1 ) i = 7

ER(2)16∗(CP∞) = ER(2)16∗[[p̂1]]

_e BSS gives the x i-torsion generators precisely, but we use a spectral sequence
to compute the BSS, so the x i-torsion generators we see are really for the associated
graded object for our auxiliary spectral sequence. _e complete answer for these
spaces gets quite complicated, but to give some insight here, we will describe how
the elements of ER(2)16∗(−) are related to the x i-torsion. We know that we can have
at maximum, x7-torsion, but, in fact, our typical case has only x, x3, and x7-torsion.
In two cases, out of eight, for CPn , we get x5-torsion generators.

Remark 1.3 _e exotic higher powers of the ûrst Pontryagin class all go to zero in
E(2)∗(CPn). As such, they are divisible by x and thus torsion elements because of
the long exact sequence coming from (1.1) that gives the exact couple. In particular,
for the i = 2 and 4 cases, the elements p̂4k+2

1 and p̂4k+3
1 are x4 times an x7-torsion
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generator. For the i = 3 case, p̂4k+2
1 is x4 times an x7-torsion generator and p̂4k+3

1 is
x6 times an x7-torsion generator. For i = 1 and 5, the torsion classes, p̂4k+1

1 and p̂4k+3
1 ,

are x2 times x5-torsion generators. On these classes, v̂ j
1 is non-zero. _ey are all x2

times x3-torsion generators.

_eorem 1.4 In the associated graded object used to compute the reduced
ER16∗(CP∞), we have the following x i torsion generators:

x 1 (2, v̂1)ER(2)16∗[p̂1]{p̂1},
x3 Z/(2)[v̂±1

2 , p̂1]{p̂2
1},

x7 Z/(2)[v̂±1
2 ]{p̂1}.

We recall û = uv3
2 and use F̂, the modiûed formal group law deûned in the next

section. _e well-known result for BP∗(−), [Lan70], implies

E(2)∗(BZ/(2q)) = E(2)∗[[û]]/[2q]F̂(û).
However, in the case of q = 1, we also get, [KW08a,_eorem 3.2]:

ER(2)∗(BZ/(2)) = ER(2)∗[[û]]/[2]F̂(û).
_emap BZ/(2q)→ BZ/(2) takes û to the [2q−1](û) sequence in E(2)-cohomology
and û to z (deûnition of z) in ER(2)-cohomology.
For a ring S, the notation S{a, b} stands for the free S-module on generators a

and b.

_eorem 1.5
(i) _ere is a ûltration on ER(2)16∗(BZ/(2q)) such that the associated graded object

is
ER(2)16∗[[p̂1]]/(2q p̂1)⊕ ER(2)16∗[[p̂1]]/(2){2q−1û},

where z is represented by 2q−1û.
(ii) _e elements z and p̂1 generate ER(2)16∗(BZ/(2q)), which can be written in

terms of z p̂i
1 and p̂i

1 .
(iii) _emap ER(2)8∗(BZ/(2q))→ E(2)8∗(BZ/(2q)) is an injection.
(iv) _e extension problems for 2z, z2, and 2q p̂1, can be solved in E(2)16∗(BZ/(2q))

using the series for [2q](û), [2q−1](û), and c(û).

_e setup for the following all comes from thework of the second author in [Lor16].
We have a norm map:

E(2)∗(BZ/(2q)) N∗ // ER(2)∗(BZ/(2q)) .

Deûnition 1.6 We take a restricted norm, and let im(N res
∗

) be the image of the
composition:

Z(2)[v̂1 , v±2
2 ][[ûc(û)]]{û, v2û, zû, v2zû}Ð→

E(2)∗(BZ/(2q)) N∗ // ER(2)∗(BZ/(2q))

where z = [2q−1](û).
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Under the reduction ER(2)∗(BZ/(2q))→ E(2)∗(BZ/(2q)),

N∗(y)Ð→ y + c(y).

Continuing from [Lor16, Lemma 10.1], the image of û is a power series in p̂1, N∗(û) =
ξ(p̂1). In the statement of the next theorem we use the elements α i ∈ ER(2)−12i

for 0 ≤ i < 4, which are introduced in the next section. To simplify notation, let
α{0,1,2,3}z or α{0−3}z denote {α0z = 2z, α1z, α2z, α3z} and so forth. Similar to the
second author’s result for ER(n)∗(CP∞), [Lor16,_eorem 1.1],we have the following
theorem.

_eorem 1.7 _ere is a short exact sequence ofmodules over ER(2)∗

0Ð→ im(N res
∗

)Ð→ ER(2)∗(BZ/(2q))Ð→ ER(2)∗[[p̂1 , z]]
(J) Ð→ 0,

where (J) is the ideal generated by power series representing ξ(p̂1), z2, α{0−3}z, and
2q−1α{0−3} p̂1, all computable by algorithms described in the proof of_eorem 1.5.

Note that the last map is not a ring map.
_epaper isorganized as follows. We do somenecessarypreliminaries in Section 2,

state our BSS results in Section 3. Next, in Section 4, we do our BSS computations for
CP∞, and in Section 5, our BSS computations for BZ/(2q). A�er that we describe
the AHSS forCP∞ in Section 6, followed by our computation of the BSS forCPn and
the proof of _eorem 1.2 in Section 7. We ûnish with _eorem 1.7 in Section 8. We
include an Appendix A, giving a table for ER(2)∗ in its Z/(48)-graded form.

2 Preliminaries

_ere aremanyways to describe ER(2)∗, butwewill stickmainlywith the description
given in [KW15, Remark 3.4]. See also Appendix A.
Although not always convenient,we traditionally call v̂1 ∈ ER(2)∗, α. It has degree

16 and maps to v1v−3
2 ∈ E(2)∗. We also have elements α i , 0 < i < 4, with degree

−12i. We o�en extend this notation to α0 = 2. _ese elements map to 2v2i
2 ∈ E(2)∗.

For the last non-torsion algebra generator, we have w of degree -8, which maps to
v̂1v4

2 = v1v2 ∈ E(2)∗.
Torsion is generated by the element x ∈ ER(2)−17. It has 2x = 0 and x7 = 0. Keep

in mind that ER(2)∗ is 48 periodicwith periodicity element v̂2 (mapping to v−82 ). We
use, for eõcient notation, x3−6 = {x3 , x4 , x5 , x6}.

Fact 2.1 ER(2)∗ is

Z(2)[v̂1 , v̂±1
2 ]{1,w , α1 , α2 , α3} with 2w = αα2 = v̂1α2

Z/(2)[v̂1 , v̂±1
2 ]{x 1−2 , x 1−2w} Z/(2)[v̂±1

2 ]{x3−6}.

What makes ER(2)∗(−) computable is the result from [KW07a] that tells us that
the ûbre of the ûxed point inclusion, ER(2) Ð→ E(2), is just Σ17ER(2) and that the
map of Σ17ER(2) to ER(2) is just x with x7 = 0, i.e., we have the stable coûbration
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sequence

(2.2) Σ17ER(2) x // ER(2)

��
E(2).

∂

]]

From this, we have an exact couple and a convergent BSS that begins with
E(2)∗(X) and where there can only be diòerentials d1 through d7.

We have used two versions of this spectral sequence in the past. In [KW15,_eo-
rem 2.1]we used the truncated version that converges to ER(2)∗(X), but in [KW08a,
_eorem 4.2] and [KW08b] we used the untruncated version that converges to zero.
Both versions contain the same information, but the designated writer for this pa-
per prefers the one converging to zero because it gets cleaner as each diòerential is
computed. _e drawback, of course, is that one must go back to the diòerentials to
reconstruct ER(2)∗(X).

We give a brief summary of the BSS for computing ER(2)∗(X) from E(2)∗(X).

_eorem 2.3 ([KW08a][_eorem 4.2])
(i) _e exact couple (2.2) gives a spectral sequence, Er , of ER(2)∗ modules, starting

with
E1 ≃ E(2)∗(X) and ending with E8 = 0.

(ii) d1(y) = v−3
2 (1−c)(y),where c(v i) = −v i , and c comes from complex conjugation.

(iii) _e degree of dr is 17r + 1.
(iv) _e targets of the dr represent the x r-torsion generators of ER(2)∗(X).

Deûnition 2.4 Let K i be the kernel of x i on ER(2)∗(X) and let M i be the image
of K i in ER(2)∗(X)/(xER(2)∗(X)) ⊂ E(2)∗(X). We call Mr/Mr−1 ≃ image dr the
x r-torsion generators.

Remark 2.5 All of our BSS’s in this paper have only even degree elements, so we
always have d2 = d4 = d6 = 0.

For our purposes, it is important to know how this works for the cohomology of
a point. _e diòerential d1 commutes with v̂1 and v2

2 . All that matters here is that
d1(v2) = 2v−2

2 .
_e E2 term becomes Z/(2)[v̂1 , v±2

2 ]. We have that d3 commutes with v̂1 and v4
2 ,

and d3(v2
2) = v̂1v−4

2 .
_is leaves us with only Z/(2)[v±4

2 ]. We have that d7 commutes with v82 = v̂−1
2 and

d7(v4
2) = v̂2v−82 = v̂2

2 = v−16
2 , so E8 = 0.

In terms of describing our ER(2)∗ using this approach, we see that the x-torsion
is generated by Z(2)[v̂1 , v±2

2 ]{2}, the x3-torsion by Z/(2)[v̂1 , v±4
2 ]{v̂1}, and the x7-

torsion by Z/(2)[v̂±1
2 ]. _e previous description of ER(2)∗ is easy to relate to this

now. _e x-torsion is given by Z(2)[v̂1 , v̂±1
2 ] on the α i , 0 ≤ i < 4. _e x3-torsion is
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generated over Z/(2)[v̂1 , v̂±1
2 ] on v̂1 = α and w. Finally, the x7-torsion is given by

Z/(2)[v̂±1
2 ].

Combining the x, x3, and x7-torsion, we ûnd that

ER(2)16∗ = Z(2)[v̂1 , v̂±1
2 ].

_e theory E(2)∗(−) is a complex orientable theory, and so E(2)∗(CP∞) =
E(2)∗[[u]], where u is of degree 2. For reasons that will become apparent later, we
want to “hat” this like we did E(2)∗. _is follows [KW15, pp. 235–236] and [KW08a,
Section 5]. _e only adjustment needed here is to deûne û = uv3

2 , of degree −16. For
the purposes of our BSS, we write E(2)∗(CP∞) = E(2)∗[[û]]. Since v2 is a unit, this
is not a problem.

Remark 2.6 _e standard formal group law for E(2) is

F(x , y) =∑ a i , jx i y j a i , j ∈ E(2)−2(i+ j−1)

with the degrees of x and y equal to two. _e element F(x , y) also has degree two.
For a ∈ E(2)2i , deûne â = av3i

2 . Also, let x̂ = v3
2x, ŷ = v3

2 y, and û = uv3
2 . Special cases

are v̂1 = v1v−3
2 and v̂2 = v2v−9

2 = v−82 . Now, deûne

F̂(x̂ , ŷ) =∑ â i , j x̂ i ŷ j =∑ a i , jv
−3(i+ j−1)
2 x iv3i

2 y jv3 j
2

= v3
2∑ a i , jx i y j = v3

2F(x , y).

We will need the complex conjugate of û, c(û). It has the deûning property that
F̂(û, c(û)) = 0.

_e formal group law begins with

F̂(x̂ , ŷ) = x̂ + ŷ + v̂1 x̂ ŷ,

so c(û) begins −û + v̂1û2. When we work mod 2, the formal group law begins

F̂(x̂ , ŷ) = x̂ + ŷ + v̂1 x̂ ŷ + v̂2
1 (x̂2 ŷ + x̂ ŷ2) + v̂2 x̂2 ŷ2

and the corresponding computation mod 2 begins

c(û) = û + v̂1û2 + v̂2
1 û

3 + v̂2û4

While we are working with the formal group law, we need another fact. Recall that
[2](x̂) = F̂(x̂ , x̂) and [2q](x̂) = [2]([2q−1(x̂)]). When we set 0 = [2q](x̂), we need
to know that

0 = 2q x̂ + 2q−1v̂1 x̂2 mod (x̂3).
_is follows from a simple induction on q.

We collect the basics we need in the following lemma.

Lemma 2.7
c(û) = −û + v̂1û2 mod (û3);
c(û) = û + v̂1û2 + v̂2

1 û
3 + v̂2û4 mod (2, û5).

If we set 0 = [2q](û), then

0 = [2q](û) = 2qû + 2q−1v̂1û2 mod (û3).
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_ere is a modiûed Pontryagin class, p̂1 ∈ ER(2)−32(CP∞), which maps to ûc(û) ∈
E(2)−32(CP∞).
Filtering by powers of û, p̂1 = ûc(û) = −û2 in the associated graded object.

Proof _e only things le� to prove are the statements about p̂1. We refer the reader
to [Lor16, Section 5]. _e sign in the last statement follows immediately from the
previous statements.

3 Statement of Results for the BSS

We state all the results for the BSS for ER(2)∗(−) for CP∞, BZ/(2q), and CPn . In
each case there is a ûltration on ER(2)∗(X) such that we can identify the representa-
tives of the x i-torsion generators of ER(2)∗(X) in the associated graded object. _is
comes about because we use a spectral sequence to compute the diòerentials in the
BSS. Keep in mind that the element p̂1 is represented by −û2 in the associated graded
object. Also keep in mind that we are working with the entire cohomology here, not
just the degrees 16∗ discussed in the introduction.

_eorem 3.1 _ere is a ûltration on the reduced ER(2)∗(CP∞) such that we can
identify the representatives of the x i-torsion generators for ER(2)∗(CP∞) in the asso-
ciated graded object as follows:

_e x 1-torsion generators are

Z(2)[v̂1 , v±2
2 , û2]{2v2û, 2û2} and Z/(2)[v̂1 , v±2

2 , û2]{v̂1û2}.

_e x3-torsion generators are Z/(2)[v±4
2 , û2]{û4}.

_e x7-torsion generators are Z/(2)[v̂±1
2 ]{û2}.

Remark 3.2 _e readerwill note that there is anobvious extension in the x 1-torsion,
i.e., 2 times the elements on the right are in themodule on the le�. Honest x r-torsion
generators reduce to elements that are the image of dr . Since we have ûltered our
spectral sequence, none of our x r-torsion generators are honest, because we only see
these images in the ûrst ûltration they show up. In the case of the x 1-torsion, we need
two diòerentials in our ûltration in order to compute d1. _e way we describe the
result corresponds to the images of those two diòerentials.

_eorem 3.3 _ere is a ûltration on the reduced ER(2)∗(BZ/(2q)) such that we
can identify the representatives of the x i-torsion generators for ER(2)∗(BZ/(2q)) in
the associated graded object as follows:

_e x 1-torsion generators are

Z/(2q−1)[v̂1 , v±2
2 , û2]{2v2û, 2û2} and Z/(2)[v̂1 , v±2

2 , û2]{v̂1û2 , 2q−1v̂1û3}.

_e x3-torsion generators are

Z/(2)[v̂1 , v±4
2 ]{2q−1v̂1û} and Z/(2)[v±4

2 , û2]{û4 , 2q−1û5}.

_e x7-torsion generators are Z/(2)[v̂±1
2 ]{2q−1û, û2 , 2q−1û3}.

Note that the x7-torsion generators are just z, p̂1, and z p̂1.
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_e case for ER(2)∗(CPn) is signiûcantly more complicated to state. We break it
up into a series of theorems.

_eorem 3.4 _ere is a ûltration on the reduced ER(2)∗(CP2 j) such that we can
identify the representatives of the x and x3-torsion generators for ER(2)∗(CP2 j) in the
associated graded object as follows:

_e x 1-torsion generators are

Z(2)[v̂1 , v±2
2 , û2]/(û2 j){2v2û, 2û2} and Z/(2)[v̂1 , v±2

2 , û2]/(û2 j){v̂1û2}.

_e x3-torsion generators are Z/(2)[v±4
2 , û2]/(û2 j−2){û4}.

_eorem 3.5 _ere is a ûltration on the reduced ER(2)∗(CP2 j+1) such that we can
identify the representatives of the x and x3-torsion generators for ER(2)∗(CP2 j+1) in
the associated graded object as follows:

_e x 1-torsion generators are

Z(2)[v̂1 , v±2
2 , û2]/(û2 j+1){2v2û}, Z(2)[v̂1 , v±2

2 , û2]/(û2 j){2û2}, and

Z/(2)[v̂1 , v±2
2 , û2]/(û2 j){v̂1û2}.

_e x3-torsion generators are

Z/(2)[v±4
2 , û2]/(û2 j−2){û4} and Z/(2)[v̂1 , v±4

2 ]{v̂1v
2 j+1
2 û2 j+1}.

_eorem 3.6 _ere is a ûltration on ER(2)∗(CP8k+i) such that we can iden-
tify the representatives of the x5-torsion and x7-torsion generators for the reduced
ER(2)∗(CP8k+i) in the associated graded object as follows:
For all i there are x7-torsion generators Z/(2)[v̂±1

2 ]{û2}.
_e x5-torsion generators are

for i = 1: Z/(2)[v±4
2 ]{v52 û8k+1},

for i = 5: Z/(2)[v±4
2 ]{v2û8k+5}.

_e rest of the x7-torsion generators are

for i = 0: Z/(2)[v̂±1
2 ]{v6

2 û
8k},

for i = 2: Z/(2)[v̂±1
2 ]{v2

2 û
8k+2},

for i = 3: Z/(2)[v̂±1
2 ]{v2

2 û
8k+2 , v7

2 û
8k+3},

for i = 4: Z/(2)[v̂±1
2 ]{v2

2 û
8k+4},

for i = 6: Z/(2)[v̂±1
2 ]{v6

2 û
8k+6},

for i = 7: Z/(2)[v̂±1
2 ]{v6

2 û
8k+6 , v3

2 û
8k+7}.

4 ER(2)∗(CP∞)
In this section we give a quick and dirty computation of ER(2)∗(CP∞). _is is done
with complete detail and real ûnesse in [Lor16] for all ER(n), but what we do here is
enough for our purposes.
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We ûlter again and use an auxiliary spectral sequence to compute the BSS forCP∞.
As a result, even our BSS computation results are given in terms of an associated
graded object. We will abuse the notation and continue to call these terms Er .

_eorem 4.1 Filtering E(2)∗(CP∞) = E(2)∗[[û]] by powers of û we give Er as an
associated graded object of the actual Er of the BSS for the reduced ER(2)∗(CP∞):

E1 = E(2)∗[û]{û}, E2 = E3 = Z/(2)[v±2
2 , û2]{û2},

E4 = E5 = E6 = E7 = Z/(2)[v±4
2 ]{û2}, E8 = 0.

Proof We are ûrst going to compute a spectral sequence for computing d1. _is
spectral sequence will collapse a�er the ûrst two diòerentials, which we will call d1,1
and d1,2. Our spectral sequence for computing d1 comes from ûltering by powers of û.
From the computation of d1 for ER(2)∗,we know that d1 commuteswith v2

2 and v̂1.
Filtering by the powers of û, we have c(û) = −û (from Lemma 2.7) in the associated
graded object, so

d1,1(û) = v−3
2 (1 − c)û = v−3

2 (û − (−1)û) = 2v−3
2 û.

d1,1(û2) = v−3
2 (1 − c)û2 = v−3

2 (û2 − (−1)2û2) = 0.

d1,1(v2û) = v−3
2 (1 − c)v2û = v−3

2 (v2û − (−1)2v2û) = 0.

d1,1(v2û2) = v−3
2 (1 − c)v2û2 = v−3

2 (v2û2 − (−1)3v2û2) = 2v−2
2 û2 .

We can now read oò the ûrst term of the x-torsion in _eorem 3.1. A�er taking
the homology with respect to d1,1, all we have le� are

Z/(2)[v̂1 , v±2
2 , û2]{v2û} and Z/(2)[v̂1 , v±2

2 , û2]{û2}.
_ere is onemore computation to do to ûnish oò d1. _e second diòerential, d1,2,

in the spectral sequence to compute d1 requires the use of not just û j but û j+1. We are
now working mod 2 so we have c(û) = û + v̂1û2 (from Lemma 2.7). Recall again that
d1 commutes with v̂1 and v2

2 . We have our second diòerential:

d1,2(v2û) = v−3
2 (1 + c)v2û = v−3

2 (v2û + c(v2û))
= v−3

2 (v2û + v2(û + v̂1û2)) = v−2
2 (v̂1û2),

d1,2(û2) = v−3
2 (1 + c)û2 = v−3

2 (û2 + c(û2))
= v−3

2 (û2 + (û + v̂1û2)2) = v−3
2 (2û2 + 2v̂1û3) = 0.

_is gives us our ûnal term of x-torsion in _eorem 3.1. All that remains a�er
taking the homology with respect to d1,2 is our stated E2 term.

With the degree of v2 equal to −6 and the degree of û equal to −16, we see that this
is all in degrees multiples of 4, but the diòerential d1 has degree 18, which equals 2
mod 4, so there can be no more to the diòerential d1, so this is an associated graded
version of E2.

_e diòerential d2 is odd degree, so it is zero, andwe have computed E3. Although
we have only computed an associated graded version of E3, we know that 2x = 0, and
all x-torsion was detected by d1. Consequently, the real E3 is a Z/(2)-vector space.
Any extensions only involve v̂1.
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We have that v̂1 acts trivially on our associated graded version of E3, but it is not
actually zero on E3. We need to solve this extension problem. Because we know that
p̂1 ∈ ER(2)∗(CP∞) maps to ûc(û) ∈ E(2)∗(CP∞), v̂1 p̂1 /= 0, and so must have a
representative in our E2 = E3.

Working mod 2 andmod û5, recall from Lemma 2.7 that we have

c(û) = û + v̂1û2 + v̂2
1 û

3 + v̂2û4 .

Now take

d1(v3
2 û) = v−3

2 (v3
2 û + v3

2(û + v̂1û2 + v̂2
1 û

3 + v̂2û4)) = v̂1û2 + v̂2
1 û

3 + v̂2û4 .

_is has to be zero in E2 (mod 2 and û5). Now, in the ûrst term, substitute

û = c(û) + v̂1û2 + v̂2
1 û

3

for one of the û to get

d1(v3
2 û) = v̂1û2 + v̂2

1 û
3 + v̂2û4

= v̂1û(c(û) + v̂1û2 + v̂2
1 û

3) + v̂2
1 û

3 + v̂2û4

= v̂1ûc(û) + v̂2û4 + v̂3
1 û

4 .

_e last termhere doesnot exist in our E2 somust be represented in a higher ûltration.
Our representative for v̂1 p̂1 is thus v̂2û4. Since p̂1 is represented by û2, we have

(4.2) 0 = v̂1û2 + v̂2û4 .

We are ready to compute d3 on Z/(2)[v±2
2 , û2]{û2}. We know that ûc(û) = p̂1 is a

permanent cycle from Lemma 2.7, but this is,mod û5, just û2 + v̂1û3 + v̂2
1 û

4 . _e last
two termswould have to be represented in higher ûltrations, so they are zeromod û5.
So,modulo û5, we have that d3(û2) = 0.
Compute

d3(v2
2 û

2) = d3(v2
2)û2 = v̂1v−4

2 û2 = v−4
2 v̂2û4 = v−12

2 û4 .

_is gives the x3-torsion of _eorem 3.1. Since d3 commutes with v4
2 and û2, the

homology gives E4 as stated.
Elements of E4 are spaced out by the degree of v4

2 , or, −24. _e diòerentials d4,
d5, and d6 have degrees 69, 86, and 103, and these are all non-zero mod 24, so these
diòerentials are all trivial.

We know that ûc(û) is a permanent cycle, so our diòerential must be on the v4
2 as

in the coeõcients. We get

d7(v4
2 û

2) = v̂2v−82 û2 = v−16
2 û2 = v̂2

2 û
2 .

_is gives our x7-torsion for _eorem 3.1 and E8 = 0.

_is also completes our description of ER(2)16∗(CP∞) in _eorems 1.2 and 1.4.
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5 ER(2)∗(BZ/(2q))
As mentioned in the introduction,

E(2)∗(BZ/(2q)) = E(2)∗[[û]]/[2q]F̂(û),
ER(2)∗(BZ/(2)) = ER(2)∗[[û]]/[2]F̂(û).

As we saw above, û ∈ E(2)−16(CP∞) is not a permanent cycle in the BSS for CP∞,
but this result for RP∞ = BZ/(2) shows that û ∈ E(2)∗(BZ/(2)) and all its powers
must be permanent cycles in the BSS for BZ/(2). _e BSS for this is described in
[KW08a,_eorem 8.1] but redone here.

_eorem 5.1 Filtering E(2)∗(BZ/(2q)) = E(2)∗[[û]]/([2q](û)) by powers of û
we give Er as an associated graded object of the actual Er of the reduced BSS for
ER(2)∗(BZ/(2q)):

E1 = Z/(2q)[v̂1 , v±1
2 , û]{û},

E2 = E3 = Z/(2)[v̂1 , v±2
2 ]{2q−1û} Z/(2)[v±2

2 , û2]{û2 , 2q−1û3},
E4 = E5 = E6 = E7 = Z/(2)[v±4

2 ]{2q−1û, û2 , 2q−1û3},
E8 = 0.

Proof Since [2q](û) = 2qû mod û2, if we start our BSS for ER(2)∗(BZ/(2q)) not
with E(2)∗(BZ/(2q)), but by ûltering this by powers of û,we get an associated graded
version of E1 as above.

Wehave a surjectivemap E(2)∗(CP∞)→ E(2)∗(BZ/(2q)). In both caseswe start
by ûltering by powers of û, so this gives amap of associated graded rings. We use this
ûltration to compute d1, and our ûrst diòerential is inherited from CP∞ giving the
ûrst part of the x-torsion of _eorem 3.3. Taking the homology with respect to this
d1,1 diòerential gives a very diòerent answer from that for CP∞. We get

Z/(2)[v̂1 , v±2
2 , û2]{v2û, 2q−1û, û2 , 2q−1v2û2}

We now need to compute the second diòerential in our spectral sequence for d1, i.e.,
we need to take into consideration û j and û j+1. We need the solution to the extension
problem on our generators given by the 2q-series modulo û3 (from Lemma 2.7):

2(2q−1û) = 2q−1v̂1û2 and 2(2q−1û2) = 2q−1v̂1û3 .

We compute our d1,2 on the generators with the continued understanding that the
diòerential commutes with v̂1, v2

2 , and û2:

d1,2(v2û) = v−3
2 (1 + c)v2û = v−3

2 (v2û + v2(û + v̂1û2)) = v−2
2 v̂1û2 ,

d1,2(2q−1û) = v−3
2 (1 + c)2q−1û = 2q−1v−3

2 (û + (û + v̂1û2))
= v−3

2 (2qû + 2q−1v̂1û2) = v−3
2 (2q−1v̂1û2 + 2q−1v̂1û2) = 0,

d1,2(û2) = 0,

d1,2(2q−1v2û2) = 2q−1û2d1(v2) = 2qv−2
2 û2 = 2q−1v̂1v−2

2 û3 .
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_is gives us the last of the x-torsion elements in_eorem 3.3. _e homology a�er
this d1,2 is the E2 stated in the theorem. _e degrees of all the elements we have le�
are divisible by 4, and our d1 is of degree 2 mod 4, so we have ûnished with our d1.

_emap BZ/(2q)→ BZ/(2) induces themap

E(2)∗(BZ/(2)) Ð→ E(2)∗(BZ/(2q))

taking û to [2q−1](û) ∈ E(2)∗(BZ/(2q)). Consequently, this must be a permanent
cycle. In our associated graded E3, this means that 2q−1û has no diòerential. We have
û2k has no diòerential, and sowe get that 2q−1û2k+1 has no diòerential. Consequently,
the diòerential d3 in our ûltration is given by

d3(2q−1v2
2 û

2k+1) = 2q−1v̂1v−4
2 û2k+1 and d3(v2

2 û
2k) = v̂1v−4

2 û2k .

In the ûrst case, if k = 0, then v̂1 is there. If k > 0 or we look at the second case, we
use the relation inherited from CP∞ (from (4.2)): v̂1û2 = v̂2û4 . _is gives

2q−1v̂1v−4
2 û2k+3 = 2q−1v−4

2 v̂2û2k+5 and v̂1v−4
2 û2k = v−4

2 v̂2û2k+2 .

We can now read oò the x3-torsion in the associated graded object from this for
_eorem 3.3. A�er our d3, we are le� with E4 as stated in the theorem. All elements
are in degrees divisible by 8, and the diòerentials d4, d5, and d6 have degrees 5, 6, and
7,mod 8, so are all zero.

Our 3 generators are known to be cycles in this ûltration, so the diòerential d7 is
determined by what happens on the coeõcients,

d7(v4
2) = v̂2v−82 = v−16

2 = v̂2
2 .

Our x7-torsion is as in _eorem 3.3 and E8 = 0.

Observe that if q = 1, we have x7-torsion generators û1−3 and as q goes oò to inûn-
ity, we are just le� with our û2 from CP∞.

Proof of_eorem 1.5 We have already proved (i) and (ii). Recall that ER(2)8∗ is
just ER(2)∗ without x or α1 and α3, as in Fact 2.1. _ese coeõcients inject into the
coeõcients E(2)8∗. To show that ER(2)8∗(BZ/(2q)) → E(2)8∗(BZ/(2q)) injects,
all we need to do is read oò the answer from _eorem 3.3. All elements in the kernel
must have an x. _e x 1-torsion never has an x non-zero. All of the generators of x3

and x7-torsion are in degree zero mod (8) and the degree of x mod (8) is −1. _e
injection follows.
By the injection we know that z2 must lie in the description given by _eorem

1.5(ii). In principle, we know all about E(2)∗(BZ/(2q)). We know that z goes to
[2q−1](û) and p̂1 goes to ûc(û). We also know that 0 = [2q](û). _e formal group
law gives the series for c(û) by 0 = F̂(û, c(û)).

We need an algorithm that allows us to compute 2z, z2, and 2q p̂1 in terms of z p̂i
1

and p̂i
1 . We need to be more speciûc. We want to write our elements in terms of a

series using sums of elements az p̂i
1 and b p̂

i
1 with a, b ∈ Z(2)[v̂1 , v̂2] and where 2 does

not divide a and 2q does not divide b. From the injection, we know this is possible
and our algorithm works for all three cases. We use the same names, z and p̂1, for the
images in E(2)∗(BZ/(2q)).
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Let

z = [2q−1](û) = f (û) =∑
i≥0
f i û i+1 with f0 = 2q−1 ,

[2q](û) = g(û) =∑
i≥0

g i û i+1 with g0 = 2q ,

c(û) = h(û) =∑
i≥0

h i û i+1 with h0 = −1.

We have
f i , g i , h i ∈ Z(2)[v̂1 , v̂2] ⊂ E(2)∗

and

2q−1û = z −∑
i>0
f i û i+1 , 2qû = −∑

i>0
g i û i+1 , −û = c(û) −∑

i>0
h i û i+1 ,

û2 = −û(−û) = −û( c(û) −∑
i>0

h i û i+1) = −p̂1 +∑
i>0

h i û i+2 .

_e important facts here are that,mod higher powers of û, z = 2q−1û, 0 = 2qû, and
p̂1 = −û2.

We can now present our algorithm for computing 2z, z2, and 2q p̂1 using induction.
To start, the only coeõcient of û we can have from our elements of interest is 2q−1û
from z and the injection,whichwe can replacewith the formula above to get zmodulo
higher powers of û.

Let us assume that we have succeeded for powers of û below û j . If we have a term
here, aû j with 2q dividing a, then we rewrite as

aû j = (a/2q)û j−1(−∑
i>0

g i û i+1) = 0 mod û j+1 .

If 2q does not divide a, we have two cases. If j is even, say j = 2k, then

aû2k = a(−p̂1 +∑
i>0

h i û i+2)
k
= a(−p̂1)k mod û j+1 .

If j is odd, say j = 2k + 1, wemust use injectivity to see that 2q−1 divides a, but not 2q

(as we have already dealt with that). Now we can set

aû2k+1 = (a/2q−1)( z −∑
i>0
f i û i+1)(−p̂1 +∑

i>0
h i û i+2)

k

= (a/2q−1)z(−p̂1)k mod û j+1 .

_is concludes the inductive step.

Remark 5.2 We can do more than this. We can clearly push the elements 2q−1α i p̂1
and α iz into E(2)∗(BZ/(2q)) and do the same thing as above to get relations. For
example, α3z reduces to a series with lead term 2v6

22
q−1û, and so we have 2qû, which

lives in higher ûltrations. We have not given nice names to elements that live in degree
4 mod (8), so they arenot so easy todescribe. From_eorem 3.3,we can read oò that
all x i-torsion generators in degrees 4∗ inject by the reduction to E(2)∗(BZ/(2q)).
However, in the case of elements in degree 4∗, there are 3 elements (setting v̂2 = 1) in
the kernel, namely {x4z, x4 p̂1 , x4z p̂1}. At ûrst glance it appears that we cannot solve
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for these relations completely in E(2)∗(BZ/(2q)) because of the kernel. However,we
know we have injection for degrees 8∗. _e only new relations not in degree 8∗ and
not divisible by x are for 2q−1α{1,3} p̂1 and α{1,3}z. _e degrees of these four elements,
mod (48), are 4, 28, 20, and 44. _e degrees of the 3 elements above that are divisible
by x are 12, 44, and 28, so we could possibly have a problem here. For example, write
the above α3z = y + ax4 p̂1 where no term in the series y is divisible by x. We would
like to show that amust be zero. Since α3 is x 1-torsion, and x4 p̂1 is x3-torsion, if a /= 0,
then y must be an x3-torsion generator. However, a quick look at _eorem 3.3 shows
that there are no x3-torsion generators in degree equal to 4 mod (8). Only one other
element could have a similar problem but it is solved in the sameway. _e bottom line
is that all the relations that involve the α i can be solved in E(2)∗(BZ/(2q)) without
any involvement of elements divisible by x.

6 The Atiyah-Hirzebruch Spectral Sequence for ER(2)∗(CP∞)
_ere are only 3 diòerentials in the AHSS for ER(2)∗(CP∞): d2, d4, and d6. To
simplify our computations here,we grade overZ/(48) by setting v̂2 = v−82 = 1,without
any loss of information.

Our goal is to use our results from the BSS to compute the AHSS and then to
identify all our terms from the BSS in the AHSS. _is immediately gives the AHSS
for ER(2)∗(CPn), and then we can use it to go back and compute the BSS for CPn .
_is is a novel circle of arguments and not necessarily themost eõcient approach to
ER(2)∗(CPn), but the AHSS result is of some interest in its own right. In particular,
it is from the AHSS that we get the results on the extra powers of p̂1 for _eorem 1.2.

In general, when we talk about the AHSS, we will use α for v̂1 and u instead of
û = v3

2u, but stick with v̂1 and û with the BSS.
_e degree of u is 2, and it is the natural choice for the AHSS, since

H∗(CP∞;Z(2)) = Z(2)[u] and H∗(CP∞;Z/(2)) = Z/(2)[u].
We describe the AHSS in a sequence of theorems, keeping in mind that we have

set v̂2 = 1. To help keep track of degrees, itmight be helpful to the reader to remember
the table for ER(2)∗ in the Appendix A.

_eorem 6.1 _e E2 term of the (reduced) AHSS for ER(2)∗(CP∞) is

Z(2)[α, u]{u,wu, α1u, α2u, α3u} with 2wu = αα2u,

Z/(2)[α, u]{x 1−2u, x 1−2wu} Z/(2)[u]{x3−6u}.

_e diòerential, d2, is determined by themultiplicative structure and d2(u) = xαu2 .
E3 = E4 is

Z(2)[α, u2]{α iu}, Z/(2)[α, u2]{x2αu, x2wu}, 0 ≤ i < 4,

Z(2)[α, u2]{u2 ,wu2 , α1u2 , α2u2 , α3u2} with 2wu2 = αα2u2 ,

Z/(2)[u2]{x 1−6u2 , x 1−2wu2 , x2−6u}.

_e reader is spared the complete description of E5 = E6. We can do this because
we know ER(2)∗(CP∞) already. We just identify ER(2)∗(CP∞) in the AHSS, and
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we can ignore those elements, because they cannot be either source or target for dif-
ferentials. We will not identify all elements just yet though.

_eorem 6.2 In E4 of the AHSS for ER(2)∗(CP∞) we identify the x 1-torsion gen-
erators from the BSS on the le� with the AHSS elements on the right:

Z(2)[v̂1 , v±2
2 , û2]{2v2û, 2û2} = Z(2)[α, u2]{α iu, α iu2} 0 ≤ i < 4,

Z/(2)[v̂1 , v±4
2 , û4]{v̂1v2

2 û
2 , v̂1û4} = Z/(2)[α, u2]{αu2 ,wu2},

Z/(2)[v̂1 , v±4
2 , û4]{v̂1û2 , v̂1v2

2 û
4} = Z/(2)[α, u2]{x2αu, x2wu}.

_eorem 6.3 A�er removing the x 1-torsion from E4 for the AHSS for ER(2)∗(CP∞),
what remains are

Z/(2)[u2]{x0−6u2}, Z/(2)[u2]{x 1−2wu2 , x2−6u}.
_e diòerential, d4, is determined by themultiplicative structure and d4(u2) = x3u4.
E5 = E6 is, a�er removing all of the x 1-torsion

Z/(2)[u2]{x 1−2wu2}, Z/(2){x2−6u}, Z/(2)[u4]{x4−6u2},
Z/(2)[u4]{x0−2u4}, Z/(2)[u4]{x4−6u3}, Z/(2)[u4]{x2−4u5}.

We can now describe, and eliminate, the x3-torsion elements from E6 before we
compute d6.

_eorem 6.4 In E6 of the AHSS for ER(2)∗(CP∞)we identify the elements involved
with x3-torsion from the BSS on the le� with the AHSS elements on the right.

Z/(2)[û8]{x0−2û8 , x0−2v4
2 û

4} = Z/(2)[u4]{x0−2u4},
Z/(2)[û8]{x0−2û10 , x0−2v4

2 û
6} = Z/(2)[u4]{x2−4u5},

Z/(2)[û8]{x0−2û4 , x0−2v4
2 û

8} = Z/(2)[u4]{x4−6u2},
Z/(2)[û8]{û6 , v4

2 û
10} = Z/(2)[u4]{x6u3},

Z/(2)[û8]{x 1−2û6 , x 1−2v4
2 û

10} = Z/(2)[u4]{x 1−2wu4}.

_eorem 6.5 A�er removing the x and x3-torsion from E6 for the AHSS for
ER(2)∗(CP∞), what remains are

Z/(2)[u4]{x 1−2wu2}, Z/(2){x2−6u}, Z/(2)[u4]{x4−5u3}
_e diòerential, d6, is determined by the multiplicative structure and d6(x4u3) =

xwu6 .
E7 = E∞ is, a�er removing all of the x 1 and x3 torsion:

Z/(2){x2−6u} Z/(2){x 1−2wu2}.

_eorem 6.6 In E∞ of theAHSS for ER(2)∗(CP∞)we identify the elements involved
with x7-torsion from the BSS on the le� with the AHSS elements on the right:

Z/(2){x0−4û2} = Z/(2){x2−6u} Z/(2){x5−6û2} = Z/(2){x 1−2wu2}.
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_eorem 6.7 Let p̂1 be the element constructed in ER(2)∗(CP∞) that maps to
ûc(û), which in the associated graded object is p̂1 = −û2. _en, in the AHSS, the ele-
ments are represented as follows:

p̂1 = x2u, p̂2
1 = x4u2 , p̂3

1 = x6u3 , p̂4
1 = u8 ,

p̂4k+1
1 = x2u8k+1 , p̂4k+2

1 = x4u8k+2 , p̂4k+3
1 = x6u8k+3 , p̂4k+4

1 = u8k+8 .

_e rest of this section consists of the proofs for all of the theorems stated in this
section. Before we embark on that trip, we oòer a small visual guide at the request of
the referee. Keep in mind thatwe havemade our theory ER(2)∗(−) 48-periodic, and
we only oòer degrees zero throughminus 10 for the coeõcients here. We also truncate
as if this was CP4. Also, many terms have arbitrarily high powers of α on them. If a
term has an x in it, it represents a Z/(2). If not, it represents a Z(2). _e diòerential,
d6, is not in the range of our picture. Neither is p̂1 or p̂2

1 , but p̂
3
1 is represented here as

x6u3, in ûltration 6 as opposed to the expected ûltration 12. Note also that the d4 on
x3u3 goes oò our scale. _atmeans that ifwewere really computingCP4, the element
x3u3 would have to be a permanent cycle. As it stands, all of the elements in the part
of the AHSS pictured below le� a�er d2 and d4 are permanent cycles.

2 4 6 8

0 u d2
**

u2
d4

((

u3
d2

**
u4

−1 xαu d2
**
xαu2 xαu3

d2
**
xαu4

−2 x2α2u x2α2u2 x2α2u3 x2α2u4

−3 x3u x3u2
d4

((

x3u3

d4

&&

x3u4

−4 α2α3u α2α3u2 α2α3u3 α2α3u4

−5

−6 x6u x6u2 x6u3 x6u4

−7

−8 wu d2
**
wu2 wu3

d2
**
wu4

−9 xαwu d2
**
xαwu2 xαwu3

d2
**
xαwu4

−10 x2α2wu x2α2wu2 x2α2wu3 x2α2wu4

Proofs of all the theorems We take a short side trip to think about the BSS forCP2.
It starts with E(2)∗ free on û and û2. _e computation of d1 is identical to that for
CP∞ by naturality, and we have that d1(v2û) is non-zero, but v2û = v2(v3

2u) = v4
2u

and d1 commutes with v2
2 , so d1 is non-zero on u, so u does not exist in E∞ for the

AHSS.
In the AHSS for CP2, the only way u can go away is if d2(u) = xαu2, since this

is the only element in the degree of the image. Technically, we could have d2(u) =
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xα3k+1u2, but this would immediately con�ict with the answer we get from the BSS.
So, d2(u) = xαu2 is what must happen, and by naturality, this happens in the AHSS
for CP∞ as well.
Because 2x = 0, d2(u2) = 0. All we need to do to compute E3 is ûnd the kernel of

d2 on u2k+1 and the cokernel on u2k . We know that xα i = 0,wherewe include α0 = 2.
We also know that x3α = 0. _e computation of E3 is straightforward and as stated.
For degree reasons, there is no d3 (or any dr , r odd), so we have E4 = E3.
Before we compute our d4, we want to identify all of the x-torsion generators and

eliminate them from consideration, that is, make the identiûcations in _eorem 6.2.
We begin with the ûrst term of the x-torsion from _eorem 3.1. Making the substitu-
tion û = v3

2u, and working over Z(2)[v±2
2 ], this turns into Z(2)[v̂1 , v±2

2 , u2]{2u, 2u2}.
Making the identiûcation, 2v2i

2 = α i , we ûnd we have the ûrst line of_eorem 6.2.
Now break up the second term of the x-torsion in _eorem 3.1 into the parts re-

maining on the le�of_eorem 6.2. With theusual substitutions û = v3
2u andw = v̂1v4

2 ,
the second line of _eorem 6.2 becomes obvious, although it must be kept in mind
that the generators do not correspond, but it is the wholemodule that is the same.

_e ûnal line of _eorem 6.2 is somewhat more of a challenge. Here we recall,
looking at the image in E(2)∗, that v2

2 and v
6
2 are

1
2α1 and 1

2α3, respectively. To ûnd
a representative for α 1

2α1u2 and α 1
2α3u2, the only elements available are x2wu and

x2αu, respectively. _is, togetherwith our usual substitution of û = v3
2u, is enough to

give us our last line in the identiûcation.
A�er taking all of the x-torsion from the BSS out of E4 of the AHSS, we get the

stated remaining terms in E4.
Recall that û = v3

2u so u4 = û4v−12
2 , and this is in the image of d3 in the BSS, so it is

both a permanent cycle and x3-torsion. So, x3u4 must be the target of a diòerential.
_e diòerential d2 did not hit it. _e only possible d4 is d4(u2) = x3u4. In principle,
a d6 could hit it, but this would require d6(z2u) = x3u4 for some element z2 with the
degree of z2 equal to 2, and there is no such element. We conclude that wemust have
d4(u2) = x3u4.

Other than u2, we have one other generator (over ER(2)∗) in what remains of E4
that d4 could be non-zero on. It is x2u.

_e element x2u is themost interesting. We know that ûc(û) exists. In the AHSS,
this would be −u2v6

2 = − 1
2α3u2. _is does not exist in the ûltration associated with

u2 in the AHSS, but α3u2 does. In order to divide it by 2, we have to go to the previ-
ous ûltration, where we ûnd x2u, which must represent ûc(û), and so cannot have a
diòerential on it.

Now we are free to compute d4 from d4(u2) = x3u4. We get the obvious

d4(x0−3u4k+2) = x3−6u4k+4 .

In addition,we know thatmultiplication by x2u commuteswith d4, sowe get another
family:

d4(x2−3u4k+3) = x5−6u4k+5 .

_ere is so little le� of E4 without the x-torsion that d4 is easy to compute and gives
the stated result for E5 = E6 without the x-torsion.
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Beforewe continue on to d6,wewant to identify the x3-torsion from the BSS com-
putation. Rewrite the x3-torsion from the BSS of _eorem 3.1 into the terms on the
le� of_eorem 6.4.
A�er that,make the substitution û = v3

2u, keeping in mind our ever present v82 = 1.
With this, we have û2 = v6

2u
2, û4 = v4

2u
4, û6 = v2

2u
6, and û8 = u8. _e terms on the

le� of_eorem 6.4 reduce to, in order,

Z/(2)[u4]{x0−2u4 , x0−2v6
2u

6 , x0−2v4
2u

4 , x0−2v2
2u

6}.
_e one easy case now is the ûrst one, and it gives the ûrst line of_eorem 6.4.
For the second line, we look at v6

2u
6 = 1

2α3u6. _is must be some element z iu i in
our E6, with 0 < i < 6, and our z i must have degree −24 − 2i. _e only possibility is
x2u5. _is takes care of the second line.

Next we need to consider v4
2u

4 = 1
2α2u4. For this element, we want some z iu i ,

with 0 < i < 4, and the degree of z i to be −16 − 2i. _e only possible element here is
x4u2. _is completes the third line.

_e fourth line is for v2
2u

6 = 1
2α1u6. _ismust be some element z iu i ,with 0 < i < 6,

and the degree of z i equal to −2i. _e only element that meets this criteria is x6u3, so
this must be it. Unlike the others, this one does not have x 1−2 times it non-zero in the
AHSS. So, we aremissing the û�h line.

_e unfortunate consequence of this is that we can not remove all the x3-torsion
from E6 before we compute d6, but we have to leave the

Z/(2)[u4]{x 1−2wu4}
in E6. So, a�er taking out all x-torsion andmost of the x3-torsion, all we have le� in
E6 is

Z/(2)[u4]{x 1−2wu2}, Z/(2){x2−6u},
Z/(2)[u4]{x4−5u3}, Z/(2)[u4]{x 1−2wu4}.

Now comes a tricky part. We have identiûed our x7-torsion generator, p̂1 = x2u,
already. _e second termhere can be eliminated as x0−4 p̂1. We are nowmissing 3 bits
of information. We do not know x5−6(x2u), x 1−2(x6u3), and any diòerentials that
wemight have.
Either we have x5(x2u) = xwu2, or there must be a diòerential on xwu2, i.e.,

d2i(xwu2) = zu2+i where the degree of z must be the degree of xw minus 2i− 1 (mod
48). _ere is no such z le� in our E6. Consequently, we have x5(x2u) = xwu2.

Next, either x(x6u3) = xwu4, or there must be a diòerential on the last term. A
similar argument to the above shows there is no such element. With these extension
problems solved, all that is le� of E6 is

Z/(2)[u4]{x 1−2wu6}, Z/(2)[u4]{x4−5u3}.
_e only way they can go away is to have d6(x4u3) = xwu6.

_eorem 6.7 is now just amatter of inspection.
_is completes the proof of all the theorems in this section.

Remark 6.8 We don’t need this, but it is an interesting observation, sowe comment
on it. We just showed that in the AHSS, the solutions to some extension problems are
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now clear. We have

2(x2u) = α3u2 , 2(x2u)2 = 2x4u2 = α2u4 ,

2(x2u)3 = 2x6u3 = α1u6 .

Although the powers of p̂1, represented by x2u, are not in the expected ûltrations, 2
times them are.

7 ER(2)∗(CPn)
We can ûrstnote thatwe have already computed theAHSS for ER(2)∗(CPn), because
the E2 term from the AHSS for CP∞ surjects. _at means that the only diòerences
are given by the diòerential d2 on the un ûltration, d4 on the un ,n−1 ûltrations, and d6
on the un ,n−1,n−2 ûltrations. Because there are sometimes no targets, elements survive
that are not in the image from ER(2)∗(CP∞). Wewill use these facts to compute the
BSS for ER(2)∗(CPn). As usual for our evenly graded BSS’s, we have d2,4,6 = 0.

To be able to combine calculations we need a notational convention: a{b ,c}d{e , f }

means abd e and acd f . We have stated the description of ER(2)∗(CPn) in Section 3
and_eorem 1.2. Here we describe the BSS and prove everything. Our computations
are complicated due to having 8 distinct cases.

_eorem 7.1 Filtering E(2)∗(CP2 j) = E(2)∗[û]/(û2 j+1) by powers of û, we give Er
as an associated graded object of the actual Er of the BSS for the reduced ER(2)∗(CP2 j):

E1 = E(2)∗[û]/(û2 j){û},
E2 = E3 = Z/(2)[v±2

2 , û2]/(û2 j){û2},
E4 = E5 = E6 = E7 = Z/(2)[v±4

2 ]{û2 , v2
2 û

2 j}.

_eorem 7.2 Filtering E(2)∗(CP2 j+1) = E(2)∗[û]/(û2 j+2) by powers of û, we
give Er as an associated graded object of the actual Er of the BSS for the reduced
ER(2)∗(CP2 j+1).

E1 = E(2)∗[û]/(û2 j+1){û}
E2 = E3 = Z/(2)[v±2

2 , û2]/(û2 j){û2} Z/(2)[v̂1 , v±2
2 ]{v2û2 j+1}

E4 = E5 = Z/(2)[v±4
2 ]{û2 , v2

2 û
2 j , v2 j+1

2 û2 j+1}
E5 = E6 = E7 for j = 4k + 1 and 4k + 3

E6 = E7 = Z/(2)[v±4
2 ]{û2} for j = 4k and 4k + 2.

_e rest of this section is dedicated to the computations proving the various theo-
rems about ER(2)∗(CPn). Up to E5, the computations pretty much follow from our
workwithCP∞. A�er that, technically there are 8 cases. We present a reference guide
(at the request of the referee) for d5 and d7 in these 8 cases. We will ignore the û2 and
v4
2 û

2 terms because the d7 there comes from CP∞. We can get all 8 cases from just 3
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diagrams:

v2
2 û

4k d5 // v2û4k+1

CP4k+1 ∶
v6
2 û

4k d5 // v52 û
4k+1 ,

v2
2 û

8k+2 v3
2 û

8k+3

d7
��CP8k+3 ∶

v6
2 û

8k+2

d7

OO

v7
2 û

8k+3 ,

v2
2 û

8k+6

d7
��

v3
2 û

8k+7

CP8k+7 ∶
v6
2 û

8k+2 v7
2 û

8k+7 .

d7

OO

_is displays the results for the odd spaces, but we can restrict 8k + 3 and 8k + 7 to
8k + 2 and 8k +6, respectively to get the appropriate d7 for those spaces. _en 8k and
8k + 6 are the same and 8k + 2 and 8k + 4 are the same. _is should provide a guide
for when the proofs get confusing.

Proofs For even spaces, our BSS E1 is E(2)∗(CP2 j) = E(2)∗[û]/(û2 j+1). Since
E(2)∗(CP∞) surjects to this, we inherit our computation of d1,1, d1,2, and conse-
quently, the entirety of d1. _e x-torsion and E2 are as stated.

We also inherit d3 fromCP∞ and can read oò the x3-torsion and E4 directly. Note
that at this stage, the only diòerence between CP2 j and CP∞ is the lack of a d3 on
v2
2 û

2 j .
For degree reasons, we can only have d7, not d5, so E4 = E7. On the ûrst term, d7

is inherited from CP∞, but on the last term, there are several cases.
We consider themap:

CP8k+2i Ð→ S16k+4i .

In E(2)∗(−), the generator for the sphere, s16k+4i maps to u8k+2i . _e generator for
the sphere must be a permanent cycle, so must u8k+2i ∈ E(2)∗(CP8k+2i). We have
û = v3

2u, so we know that the following is a permanent cycle:

u8k+2i = (v−3
2 û)8k+2i = v−24k−6i

2 û8k+2i = v−6i
2 û8k+2i = v2i

2 û8k+2i .

Unfortunately, this only exists in E7 for i = {1, 3}. So we have

d7(v4
2(v2i

2 û8k+2i)) = v2i
2 û8k+2i i = {1, 3}.

_is gives the x7-torsion as stated for 8k + 2 and 8k + 6.
We now have to deal with 8k and 8k + 4 where we cannot use the sphere and

naturality. We will try to do both at the same time even though they have diòerent
outcomes. We have two elements in each case: v{2,6}2 û8k and v{2,6}2 û8k+4.
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In each case, onemust be the source and one the target. If an element is a target, it
has to exist in the AHSS, and would be represented by one of

v{2,6}2 û8k = v{2,6}2 u8k and v{2,6}2 û8k+4 = v{6,2}2 u8k+4 .

It is important to note how in the 8k + 4 case, the powers of v2 got switched around
in the transition from û to u.

_e elementwe are searching for (the target) cannot be in the image fromCP∞ be-
cause there is no x7-torsion element there that could come and hit it. _ese elements
cannot be represented in the ûltration occupied by u8k+{0,4} because

v2
2u

8k+{0,4} = 1
2
α1u8k+{0,4} and v6

2u
8k+{0,4} = 1

2
α3u8k+{0,4}

do not exist there. Because they cannot be in the image from CP∞, they must be a
source for anAHSSdiòerential inCP∞ butnot inCPn . So the classwe search formust
be in the ûltration of u8k+{−1,3}. (_ere is no d6 on the ûltration for u8k+{−2,2}, and
so everything in that ûltration is in the image fromCP∞ and notwhatwe are looking
for.) _e v2

2 case would have to be z1u8k+{−1,3} with degree of z1 equal to −10 = 38,
and the v6

2 casewould have to be z2u8k+{−1,3} with degree of z2 equal to −34 = 14. _e
v2
2 candidate would have to be z1 = x2wα3i+2, but we have already shown that this is
a permanent cycle representing an element. On the other hand, a good choice for z2
is x2. Since we know that for CP∞ there is an AHSS d4 on x2u8k+{−1,3}, this must be
our choice. We could track down the x7-torsion elements in the AHSS, but this is not
necessary. We have, in the BSS,

d7(v2
2 û

8k) = v6
2 û

8k d7(v6
2 û

8k+4) = v2
2 û

8k+4 ,

and our x7 torsion is generated as stated.
For odd n, our BSS E1 is E(2)∗(CP2 j+1) = E(2)∗[û]/(û2 j+2). Since E(2)∗(CP∞)

surjects to this,we inherit our computation of d1,1, d1,2, and, consequently, the entirety
of d1. We can read oò the x-torsion and E2 as stated.

We also inherit d3 on the ûrst part of the stated E3 and can read oò the x3-torsion
it gives as well as its contribution to E4. _e last part of E3 is diòerent. In order to
determine this, we use themap

CP2 j+1 Ð→ S4 j+2 .

In E(2)∗(−), the generator for the sphere, s4 j+2 maps to u2 j+1. Since we know the
generator for the spheremust be a permanent cycle, so must u2 j+1 ∈ E(2)∗(CP2 j+1).
We have û = v3

2u, so the permanent cycle is

u2 j+1 = (v−3
2 û)2 j+1 = v−6 j−3

2 û2 j+1 = v2 j−3
2 û2 j+1 .

_ese elements are all there in E3 sowe know d3 by naturality from the sphere,which
is just like the coeõcients. It is just

d3(v2
2(v

2 j−3
2 û2 j+1)) = v̂1v−4

2 v2 j−3
2 û2 j+1 = v̂1v

2 j+1
2 û2 j+1 .

As a result, the x3-torsion from this part is as stated and likewise for the contribution
to E4.

We only have d5 and d7 le�. _e ûrst term is dealt with by a d7 from CP∞.
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We know that v2 j−3
2 û2 j+1 is a permanent cycle. _at means it must be in the image

of either d5 or d7.
_ere are two ways to go about determining this. We could compute ER(2)∗(−)

forCP2 j+1/CP2 j−1 and look at themap of BSSs from this toCP2 j+1. _is is similar to
what the ûrst and third author did with RP2n in [KW08a]. Or, the way we do it here,
is to look at the AHSS to determine which diòerential it is.
For degree reasons, the only possible candidates for the BSS d5 are

d5(v{2,6}2 û8k+{0,4}) = v{1,5}2 û8k+{1,5}

and, since d5 commutes with v4
2 (from the coeõcients),

d5(v{6,2}2 û8k+{0,4}) = v{5,1}2 û8k+{1,5} .

Recall that v2 j−3
2 û2 j+1 = u2 j+1 is a BSS permanent cycle, so v52 û

8k+1 = u8k+1 and
v2û8k+5 = u8k+5 are bothBSS andAHSS permanent cycles for n = 8k+1 and n = 8k+5,
respectively. In the AHSS, we know that d4(x2u8k+{−1,3}) = x5u8k+{1,5} . _us, we
must have a BSS d5, because u8k+{1,5} is x5-torsion. We get, in the BSS, for purely
dimensional reasons, that the candidate d5 above is the correct diòerential.

Our x5-torsion is as stated as well as the E6 = E7. _e E7 inherits d7 from CP∞,
so our x7 torsion is as stated.

We have seen that the only possibilities for d5 occur, so for 8k + {3, 7}, we are le�
with only d7. Recall E7 is:

Z/(2)[v±4
2 ]{ û2 , v2

2 û
8k+{2,6} , v2 j+1

2 û8k+{3,7}} .

_e ûrst term is dealt with by a d7 from CP∞. _e degrees are not right for d7 to go
from the second termof E7 to the third, so each termmust disappear on its own from
a d7.

_e third term is easy because it comes directly from the sphere, sowe can read oò
our x7-torsion generators from it.

_e second term is easy as well, since we can map to the space CP8k+{2,6}, where
we know the diòerential on these terms. We can read oò the new x7-torsion from the
middle term. And, of course, there is the x7-torsion from Z/(2){û2}.
All that remains is to prove _eorem 1.2. We can just read oò all the elements

in degrees 16∗ from our theorems and then use _eorem 6.7 to identify them with
powers of p̂1.

8 The Norm

_is section is devoted to a proof of_eorem 1.7. _e analogous result in [Lor16] for
ER(n)∗(CP∞) requires signiûcant theory, mainly because of the arbitrary n. How-
ever, in our case, with n = 2, we have explicitly written down all of the elements in
ER(2)∗(BZ/(2q)) in _eorem 3.3, so our job here is just a matter of chasing these
elements around.

We refer the reader to [Lor16] for all necessary background on the norm, N∗, and
its behavior forCP∞. In particular, because z is an element of ER(2)∗(BZ/(2q)), the
norm commuteswith it. Following [Lor16, Section 7] andDeûnition 1.6, the reduction
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of im(N res
∗

) to E(2)∗(BZ/(2q)) is generated by

Z(2)[v̂1 , v±2
2 ][[ûc(û)]]{ û + c(û), v2(û − c(û), z(û + c(û)), v2z(û − c(û))} .

In [Lor16, Lemma 10.3], it is also shown that im(N res
∗

) is x-torsion. _is is enough
background to get us started with our proof.

We outline our proof as it is somewhat technical. From _eorem 3.3, we know the
x 1-torsion and im(N res

∗
) lies in this x 1-torsion. We ûrst identify this image. A�er that,

we take what is le� of_eorem 3.3 and rewrite it in terms of ER(2)∗, z, and p̂1. From
there it is easy to see a surjectivemap of

ER(2)∗[[p̂1 , z]]/(J)Ð→ ER(2)∗(BZ/(2q))/(im(N res
∗

).

_en all that remains is to identify these two.

Proof of_eorem 1.7 We start by computing the associated graded object for

ER(2)∗(BZ/(2q))/( im(N res
∗

)) .

Recall that we have ER(2)∗(BZ/(2q)) from _eorem 3.3. _e x 1-torsion generators
in (the associated graded object for) ER(2)∗(BZ/(2q)) are

Z/(2q−1)[v̂1 , v±2
2 , û2]{2v2û, 2û2} Z/(2)[v̂1 , v±2

2 , û2]{v̂1û2 , 2q−1v̂1û3}.

_e x3-torsion generators are

Z/(2)[v̂1 , v±4
2 ]{2q−1v̂1û} Z/(2)[v±4

2 , û2]{û4 , 2q−1û5}.

_e x7-torsion generators are Z/(2)[v̂±1
2 ]{2q−1û, û2 , 2q−1û3}.

We now remove the elements coming from im(N res
∗

). Modulo powers of û2, we
have that

v̂ i
1v

2 j
2 û2kv2( û − c(û)) Ð→ v̂ i

1v
2 j
2 û2k2v2û.

_is is the very ûrst term of the x 1-torsion above.
Our next concern is

û Ð→ N∗(û) = ξ(p̂1)Ð→ û + c(û).

By Lemma 2.7, we have

û + c(û) = v̂1û2 + v̂2û4 mod (2, v̂2
1 , û

5).

Wehave eliminated the ûrst terminour x 1-torsion andnowuse the ûrst term above
to set v̂1û2 and zv̂1û2 = 2q−1v̂1û3 equal to 0. _at reduces our remaining x 1-torsion to
only

Z/(2q−1)[v±2
2 , û2]{2û2}.

_e x3 and x7-torsion remain unaòected, since im(N res
∗

) is x 1-torsion. We did not
use the term zv2(û − c(û)), but there is nothing le� in this degree to hit.

To consolidate, the x i-torsion generators of

ER(2)∗(BZ/(2q))/(im(N res
∗

))
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are described as

x 1-torsion Z/(2q−1)[v±2
2 , û2]{2û2},

x3-torsion Z/(2)[v̂1 , v±4
2 ]{2q−1v̂1û}, Z/(2)[v±4

2 , û2]{û4 , 2q−1û5},
x7-torsion Z/(2)[v̂±1

2 ]{2q−1û, û2 , 2q−1û3}.

We set v̂2 = 1 = v−82 to simplify our computations.
Having done this, we want to rewrite our answer in terms of the elements this

description represents, namely, in our associated graded object: 2v2i
2 = α i , û2 = −p̂1,

v4
2 û

4 = v̂1v4
2 û

2 = w p̂1, v̂1v4
2 = w, and z = 2q−1û.

Now we rewrite ER(2)∗(BZ/(2q))/(im(N res
∗

)) as
x 1-torsion Z/(2q−1)[p̂1]{α i p̂1} 0 ≤ i < 4,

x3-torsion Z/(2)[v̂1]{v̂1z,wz} Z/(2)[p̂1]{p̂2
1 ,w p̂1 , z p̂2

1 , zw p̂1},
x7-torsion Z/(2){z, p̂1 , z p̂1}.

From this description we see that there is amap

ER(2)∗[[p̂1 , z]]Ð→ ER(2)∗(BZ/(2q))/(im(N res
∗

)).
Furthermore, this map must map (J) to zero. _e above analysis tells us that the
unusual elementswith the α i that must be expressed in higher ûltrations can be done
so, modulo the image of N res

∗
, in terms of ER(2)∗, p̂1, and z. We already knew that

this could be done for 2z = α0z, z2, and 2q p̂1. _is allows us to assert that relations,
mod image ofN∗, exist like this for α{1,2,3}z and 2q−1α{1,2,3} p̂1. _ese are the relations
we use in our _eorem 1.7.

Taken altogether, we get our map, which is now already obviously surjective:

ER(2)∗[[p̂1 , z]]
(J) Ð→ ER(2)∗(BZ/(2q))

(im(N res
∗

)) .

All that remains is to show that thismap is an isomorphism. We do this by proving
it is an isomorphism on the associated graded objects. To do that, we analyze the
source side of this map.

We begin with ER(2)∗ from Fact 2.1. We rewrite it as

x 1-torsion Z[v̂1]{α i} 0 ≤ i < 4,

x3-torsion Z/(2)[v̂1]{v̂1 ,w},
x7-torsion Z/(2){1}.

We continue with our ûltration and associated graded object. First, we make every-
thing free over this on p̂i

1 and p̂i
1z. We can make z2 = 0 using our ûltration. Like-

wise, 2q−1α i p̂1 = 0 = α iz. Writing this down, we will have used every relation except
ξ(p̂1) = 0. What we have at this stage is

x 1-torsion Z/(2q−1)[v̂1 , p̂1]{α i p̂1} 0 ≤ i < 4,

x3-torsion Z/(2)[v̂1 , p̂1]{v̂1 p̂1 ,w p̂1 , v̂1z,wz},
x7-torsion Z/(2)[p̂1]{p̂1 , z}.
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Next we take out the ûrst term of ξ(p̂1), i.e., v̂1 p̂1. _is is a bit diòerent from before
when the im(N res

∗
) was a submodule of ER(2)∗(BZ/(2q)). In (J), we are taking out

ξ(p̂1) as part of an ideal. We end up with

x 1-torsion Z/(2q−1)[p̂1]{α i p̂1} 0 ≤ i < 4,

x3-torsion Z/(2)[v̂1]{v̂1z,wz} Z/(2)[p̂1]{w p̂1 ,wz p̂1},
x7-torsion Z/(2)[p̂1]{p̂1 , z}.

To get this in the same form as ER(2)∗(BZ/(2q))/(im(N res
∗

)), there is justone last
step. _e element p̂2

1 that seems to be x7-torsion is the same, mod higher ûltrations,
as v̂1 p̂1 (recall ξ(p̂1) starts oò as v̂1 p̂1+ v̂2 p̂2

1 mod (2)). _is is x3-torsion, sowe should
onlyhaveZ/(2){z, p̂1 , z p̂1} le� as x7-torsion, andwe shouldhaveZ/(2)[p̂1]{p̂2

1 , z p̂
2
1}

as x3-torsion.
_is shows we have an isomorphism of associated graded objects and completes

the proof.

A Appendix

Becausewe use this table all the time, it should be available for general reference. Here
is ER(2)∗, written in its 48-periodic form, with k ≥ 0 and α0 = 1.

15 xα3k+2 31 xα3k 47 xα3k+1

14 x2α3k 30 x2α3k+1 46 x2α3k+2

13 29 45 x3

12 α3α3k 28 x4 , α3α3k+1 44 α3α3k+2

11 x5 27 43
10 26 42 x6

9 25 41
8 wα3k+1 24 α2 , wα3k+2 40 wα3k

2wα3k+1 = α2α3k+2 2wα3k+2 = α2α3k+3 2wα3k = α2α3k+1

7 xwα3k+2 23 xwα3k 39 xwα3k+1

6 x2wα3k 22 x2wα3k+1 38 x2wα3k+2

5 21 37
4 α1α3k+1 20 α1α3k+2 36 α1α3k

3 19 35
2 18 34
1 17 33
0 α3k 16 α3k+1 32 α3k+2
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