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HOPF ALGEBRAS FROM BRANCHING RULES 

P. HOFFMAN 

Below we work out the algebra structure of some Hopf algebras which 
arise concretely in restricting representations of the symmetric group to 
certain subgroups. The basic idea generalizes that used by Adams [1] for 
iJ*(BSU). The question arose in discussions with H. K. Farahat. I would 
like to thank him for his interest in the work and to acknowledge the 
usefulness of several stimulating conversations with him. 

1. Review and statement of results. A homogeneous element of a 
graded abelian group will have its gradation referred to as its dimension. 
In all such groups below there will be no non-zero elements with negative 
or odd dimension. A graded algebra (resp. coalgebra) will be associative 
(resp. coassociative), strictly commutative (resp. co-commutative) and 
in dimension zero will be isomorphic to the ground ring F, providing the 
unit (resp. counit). We shall deal amost entirely with F = Z or F = Z/p 
for a prime p; the cases F = 0 or a localization of Z will occur briefly. 
In every case, the component in each dimension will be a finitely gener
ated free F-module, so dualization works simply. 

The basic example is 5 = Z[hi, hi, . . .] as a Z-algebra, graded by 
dim hn = 2n, and made into a Hopf algebra with coalgebra structure 

hn\-± ^2 ^t ® h y 
i+j=n 

Here ho = 1. For each n ^ 1, the primitives P2n(S) == Z, with generator 

sn = E (-l)ltohtQhh . . . hh, 

summation over all finite sequences (t0l . . . , tt) with ^ v tv — n (see 
[3, 5.12]). The basis {ha\a h n\ of monomials in the hu indexed by parti
tions a of n, has a dual basis in 5*, where the dual is defined by (S*)2n = 
Horn (S2n> Z) as a group. Let at denote the member of this dual basis 
corresponding to (hi)1. Then the algebra map S —> S* determined by 
hi H-> at is in fact an isomorphism of Hopf algebras [4]. Our main aim is 
to describe the algebra structure of some Hopf algebras derived from S. 

Let \hi, . . . , hk-i\ be the ideal in S generated by {&i, . . . , hk-i). It is a 
Hopf ideal, so S/\hi, . . . , fc^-il becomes a Hopf algebra (which is of 
course isomorphic as an algebra to Z[hkl hk+u • • •])• 
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178 P. HOFFMAN 

THEOREM A. As an algebra, (S/\hh . . . , /**-i|)* is also a polynomial 
algebra on generators, one in each even dimension 2k, 2k + 2, . . . . 

The subalgebra Z[h\, . . . , ht] of 5 is clearly a sub Hopf algebra. By 
abuse of notation we shall also denote by at G Z[hi, . . . , ht]* the "dual" 
of (hi){ in the basis dual to the monomials in the hu and we shorten 
a< ® 1 to ai in Z[h\} . . . , h;]* ® Z/p. For given / = 1 and a prime p, 
let / = 1(1, p) be the set of those positive integers which can be written 
in at least one way as ipf for some/ = 0 and some i satisfying 1 ^ i ^ /. 

THEOREM B. As an algebra 

Z/p[an\ ne I] 
Z[hu...}hl]*®Z/p = (rn\ n 6 I and n > /) ' 

where the denominator on the right is the ideal generated by certain elements 
rn, exactly one in each dimension 2n as indicated. 

In Section 2 we give the proof of B. For / > 2 the relations rn seem 
quite complicated. In particular, the set [an\n Ç /} is seldom a set of 
Borel generators; that is, usually rn ^ (an/pC)pc for any c. At the end of 
Section 2 we record some computations. For all p, the an are Borel 
generators when 1=1 and / = 2, but this fails for p = 2 when / = 3. 

In Section 3 we show how A follows from B. This is a straightforward 
generalization of Adams' argument [1, pp. 258-9] which is the case k = 2 
in mild topological disguise. 

In Section 4 we show how to construct specific polynomial generators 
for the algebra in A. The original motivation for this work was the work 
of Kochman [5] who gives formulae over Z/p and over Z(P) in the case 
k = 2. 

In Section 5 we discuss the interpretations of the above Hopf algebras 
in topology and in the representation theory of the symmetric group. 

2. Proof of theorem B. We denote as usual by Q2n (resp. P2n) the 
indecomposable quotient (resp. primitive subgroup) of an algebra (resp. 
coalgebra) in dimension 2n. Fix / and p and let 

A - Z[*i, . . . , A,]* (2) Z/p. 

Since Q2n(A)* ^ P2 w(^*), we obtain, for all » = 1 

Q2n(A) ^ P2n(Z/p[hu . . . , ht]) ci> P2n(S 0 Z/p) 

^Qin(S® Z/p) ^ Z/p. 

The second last isomorphism follows from the self duality of S. A gener
ator sn of Pin(S 0 Z/p) is the mod p reduction of sni which is non-zero 
in S (g) Z/p since (h\)n occurs with coefficient ( — \)n+l in sn. We show 
Q2n(A) = 0 for n i I by showing that sn $_ Z/p[hi, . . . , ht] for these 
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HOPF ALGEBRAS 179 

values of n. This follows by writing n — qpf with q prime to p. Then 
q > I since n Q I, and the coefficient of (hg)

pf in sn is ( — l)p+lq, so 
sn (? Z[fei, . . . , hi) + £ • 5, as required. 

The dual of Z[Ai, . . . , ftj] ^ 5 is an epimorphism 5* —> Z[hu • • • , /**]*, 
and the elements an generate 5* as an algebra. Combining this with the 
previous paragraph, we see that A is generated as an algebra by {an\n £ /} • 
What we must now prove is that the algebra map 

Z/p[xn\n 6 I]-* A 

has kernel which can be generated by a set of elements, exactly one in 
each dimension \n\n £ I and n > I). 

For this, it suffices to find an epimorphism 

z/p\yn\ne I]-+A 
of algebras whose kernel is generated as above, since one can easily 
complete the commutative diagram 

Z[xn | neih 

Z[yn | n 6 iy 

with an algebra isomorphism 6 (not necessarily unique). 
But A is a commutative algebra of finite type admitting a Hopf 

algebra structure, so by Borel's theorem [2], we may find a surjective 
algebra map 

Z/p\ya\a £ T]->A 

with kernel generated by {{ya)
v,ia\a Ç T} for suitable JU<* with 1 ^ \xa ^ oo . 

But from our knowledge of Q(A), we can take V = I, with dim yn = 2n 
for each n G I- (In fact it is easy to see apfl = 0 for all a G A for any 
\i with p» > /, so each iin ^ logp /, but we don't need this.) It remains 
only to show that the elements {(yn)

v>ln\n G I) lie in all dimensions 
{2n\n G I and n > 1} with only one in each dimension. This is combina-
torially obvious to anyone who has worked with tensor products of trun
cated polynomial algebras (note that A has the same rank in each dimen
sion as a polynomial algebra with one generator in each dimension 2, 4, 
6, . . . , 21, since it is the dual of Z/p[hi, . . . ,ht]). However, we shall state 
the relevant combinatorial result below and give a formal proof. 

LEMMA. Let 0 < di < d2 < . . . be an infinite sequence of positive integers. 
Suppose A is a graded Z/p algebra satisfying: 
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180 P. HOFFMAN 

a) rank Ain = # of partitions of n with all parts 6 \d\, dit . . . . dt\; 

(b)A~<g) z/Pbi] 
(yty = o. 

with dim y * = 2d t for somefi which are positive integers or GO . 
Then the numbers \fidt\i ^ 1,/* < oo } take exactly the values {dj\j > / } , 

each exactly once. 

Proof. Assume the result fails, let ex ^ e2 ^ • • • be the set 
{dffi\i ^ ly fi < co\ wri t ten in non-decreasing order, and pick the 
smallest t with et ^ di+t. 

Case i ) . If et < di+t, we shall derive a contradiction to a) by showing 

tha t 

1 + rank A2et
 = # par t i t ions of e, with par ts £ {di, . . . , dj}. 

To this end, for each i, 1 £ i ^ I define (inductively o n j ) finite sequences 
yijt dtj a n d / , , by: 

?«> = y*i ^*o = d<, fio = ft-

Given y a, dtj a n d / ^ such t h a t for some k, 

y a = Jk, di3- = dk and ftj = fkl 

then either 

(I) fada ^ et: 

Here define st = j , and terminate the sequences. By the inductive 
hypothesis, this case will occur with equali ty exactly once. Denote the 
corresponding value of i as io. 

Or 

(II) ftjdij < et. 

In case ( I I ) , choose the unique k' > I such t h a t / i ; d 0 - = dk> (using the 
inductive hypothesis) . Define yij+i = yfc

f, ditj+i = dk> and/* fJ-+i = fk>. 
Then 

b , , | l £ i £ l , 0 £ j £st\ = \yk\l ^ k ^ l + t - l j 

and ytj ^ yi>y if (i,j) ^ {i',j')- Then 4̂2<?< has basis 

0 g a0- < / „ ; YjaiJdiJ = ^ n ?«•" 

T h e last sum can be wri t ten 

et = X ) d J ^zo + / i o a a +fnfioai2 + . . . + ( YIfij)ai8i • 
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HOPF ALGEBRAS 181 

The number multiplied into dt in the sum is the unique representation of 
an integer at satisfying 

0 ̂  at < ft/,, 

in which the base sequence is fi0l fiofa, /fo/u/<2, • • • and digit range 
0 ^ a a < fij. Every representation of et asJZLi di&t will occur exactly 
once, except the representation 

(ft/*J -
\ 7=0 / 

Ho 
\ ;=0 

which fails to occur. This completes Case i). 
Case ii). If et > dl+u the contradiction is that A 2d{+( has rank 1 + #partns 

di+t with parts £ {di, . . . , di). Define yijt dijy fij inductively on j for 
1 ^ i ^ I exactly as in Case i), except that we note that we cannot have 
djfk — di+t, and we terminate at that j for which diJa > dt+t. The basis 
for A2di+t leading to the above equation is 

0 ^ a^ < / i i f X) «<j^« = ̂ z 

the last summation in this case giving all partitions of dt+t with parts 
G {di, . • • , di) by the same digital representation of the "coefficient" a{ of 
di as in case i). This completes the proofs of the lemma and of Theorem B. 

For small /, the relations rn in Theorem B can be calculated with a bit of 
elbow grease. 

When / = 1, it is well known that 

Zfai, a,2, . . .] 

W = 7 ï±]r-\ and 

\ataj - „ , a i + y 

Z N * ® Z / ^ Z l a ; - y n - - ] for all/»; 

see [1, 2.1]. 
When / = 2, one can compute 

^ n 7 i* o 'z /o Z/2[ai, a2, Û4, as, . . .] , 
Z[Alf A2J* ® Z/2 = T(—ri——x and 

<(a2*) = 0) 

Z[*lfA,] ® Z/p - ( f l 0 , = Q f o r n = ^4 o r ^ f o r £ > 2 , 

so that in this case the an are Borel generators. 
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182 P. HOFFMAN 

Finally, when / = 3 and p = 2, one has 

_ Z/2[g2fc; a&.z\k ^ 0] 
Z[hl9hi,hz]* 0 Z / 2 

(a2k) = 0 ; (a2kd2k+i) = (a?.k.$)~ ' 

so in this case, the an are not Borel generators. 
T h e following is exactly wha t is needed for the proof of Theorem A in 

the next section. 

COROLLARY. The kernel of 

S* ® Z/p*>Z[hl9 ...,ht]*®Z/p 

can be generated by a set of elements with exactly one in each dimension 2n 
for each n > I. 

Proof. For clarity, let us momentar i ly abuse notat ion by calling in 
S* ® Z/p by an' the element previously called an. Then the given m a p is 

Z//>[ai', a2 ', . . . ] • 
Z/p[an\n g 1(1, p)] 

(rn:n € I(l,p),n > I) 

dn »-> a». 

A suitable set of generators for the kernel is then 

{rn'\n G I(l,p);n> 1} U {an
r - fH(ai', aj', . . .)\n d 1(1, p)} 

where, if rn = gn(a\, a2, . . .) for polynomial gn, we define rn' to be 
gn(ai, a>2, . . . ) ; and where the polynomial / n is chosen so t h a t an = 
fn(au a2, . . .) for n g 1(1, p). 

3. Proof of t h e o r e m A. As indicated in the introduction, we need only 
make a simple algebraic generalization of Adams ' a rgument [1] to deduce 
A from the previous corollary. The definitions below (particularly a) are 
inspired by the corresponding diagram in [1], whose properties are noted 
by Adams to follow trivially a t the topological level. 

Construct a diagram 

5 

|Ai . • • • , * * - i 
Z[hi, . . . , hk-i] «-

ô ® 1 

Z ® z Z[Ai, . . . , hk-{] <- Z[hu hk-i] 

by requiring all maps to be maps of graded algebras and sett ing 

0(1) = V,y(x) = 1 ®x;P(hi) = ht; 
and 

«(ht) = 

1 ® A, for 1 ^ i ^ jfe - 1 

for i ^ &• 
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H O P F ALGEBRAS 183 

LEMMA, i) The diagram is commutative; 
ii) a and y are bijective; 

iii) a is a map of comodules over the coalgebra 

S/|fti, • • , nk-!\ 

Proof, i) Both maps are algebra maps, and both send ht to 1 ® hi for 
1 ^ i ^ k - 1. 

ii) For 7 this is obvious. Note that , as an algebra, the codomain of a 
is isomorphic to Z[ 1 under 

il® ht fori < k 

^ " " U , ® 1 f o r i è *. 

Via this identification 

« < * < ) = { : i, for i < & 
i + products, for i ^ k, 

so a is an algebra isomorphism. 
iii) We must show the diagram below commutes, where A' and A" are 

induced by the coproduct A : 5 —» S 0 S. 

S ° > S/\hlt • • . , A*-i| ® Z[A„ . . .,/**_,] 

A' A" <g> 1 

S/|Alf . . . , A*-,| ® 5 1 0 t t > S / | f t i , . . . , A*-,| (2) 5/|*if . . . , ht-A ® Z[ft„ . . . , /**_,] 

Bu t all maps are algebra maps, so this follows from the computat ion of 
both composites on hf. 

iV->A 

1 ® 1 ® A, 

X) (*<-« 0 1 ® A, + 1 ® A Ï - , ® A,) 

I + Z) |Afl ® A6 ® hc 
a ^ k;b^k;0^c < k\ 

for i < k 

for i è &• 
|o + 6 + c 

Now fix a prime p, and define Hopf algebras as follows: 

Definition. A = Z[hi, . . . , A^_i]* (x)z Z//> (i.e., let / = k — 1 
Section 2) 

£ = S*(g)z Z/p 

c =(j*r^)*®* z / * 
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184 P. HOFFMAN 

Dualizing the previous diagram, and tensoring with Z/p we obtain a 
commutative diagram: 

C ®z,pA. 

yp ® II 

+ B 

Z/p® Z/p +A 

in which a! is a map of C-modules by iii) of the lemma; 
(p is an algebra map since fi is a coalgebra map; and 

ypQ : Co ^ Z/p . 

Let C = ©n>o C2n. Then, as Z/p modules, 

C®cZ/p^[C®cB]®BZ/p 

^[C®c{C®zlvA)]®BZ/p 

by the diagram 

^[C®zlvA]®BZ/p 

^ K e r <p®B Z/p, 

by the diagram, since Ker \f/ = C. 
But by the corollary at the end of Section 2, the ideal Ker <p is generated 

by elements gn, one in each dimension n > k — 1. The elements gn ® 1 
then generate Ker v ®B Z/p as a Z/p-module, so C ® c Z/p can be 
generated by one element in each dimension 2n, for each n ^ k. But 

c<g>cZ/^<2(C) = g 
\ | A i . . . Ajfc-i|/ 

(8) Z/p 

^ Ç 
L\ |Ai . . .A*- i | / ®Z/p. 

Thus for 

L \\ni . . . ^ _ 

is a finitely generated abelian group G such that, for all p, G ® Z/p 
Z/p or 0. Hence 

[(—^—VI 

& ( £ _ y i is a cyclic group for each n ^ k. 

But then if Zfc*, xk+i, . . .] is polynomial ring with one generator in each 
even dimension 2Ï 2k, the algebra map 

Z[xk, xk+i, . . . ] — • (S/\hi. . . hk-i\y 
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mapping each xn to any element which projects to a generator of 
Q2n[(S/\hi . . . AA;-.I|)*], is an epimorphism. But for all d, [domain d]u and 
[codomain 0]2d are both free abelian groups whose rank is the number of 
partitions of d all of whose parts are ^ k, so 6 is an isomorphism. This 
completes the proof of Theorem A. 

We finish this section with a few comments about self duality. By 
Theorem A, S/\hi . . . ft*_i| is a Hopf algebra H such that 

H ^ H* as algebras. 

Thus, as coalgebras, H* 9£ #** 9Ë H. But I do not know whether H 9Ë # * 
as Hopf algebras. It would be interesting to try to classify graded con
nected Z-Hopf algebras of finite type which are self dual. Zelevinski 
[8, 2.2] has a classification analogous to the classical theorems over fields 
using positivity conditions as well as self duality. On the other hand, an 
apparently related condition, "bipolynomiality", allows for classifica
tion over Z(p) [6], but counterexamples exist [7] to the obvious analogue 
over Z. 

4. Construction of generators for (S/\hi. . . A*_i|)*. The algebra of 
the title may be identified with a subalgebra of S via 

*{k):(S/\hl...hk„1\)*ts*-£S. 

Here X is the dual of the projection, and v is the inverse of the isomorphism 

of Section 1 (i.e., an >—> hn). This can be made more specific. 

PROPOSITION 4.1. [Im $W]2n = n t î Ker [A<tn-<: S2n -> S2i ® S2n-2il 

Proof. To prove C, given/ G S2w* with/(x) = 0 for all x (E \hi. . . ft*-i|, 
and given i with 0 < i < k, we must show 

Ai,n-iM) = 0. 

It suffices to show 

(g ® A)[A<.»-<W)] = 0 for all g G 52 i* and h G 52*n_2,. 

But the left side isf[vn(g • A)], since the multiplication • in 5* comes from A 
in S. But 

*n(g ' h) = (vig)(vn-ih) and vtg 6 52l- C |Ai . . . A*-i| 

since l r g i ^ f e — l , so 

{vg)(vh) G |fei . . . fe*_i|. 

Hence/[0>g) (pfe)] = 0, as required. 
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To prove 2 , we must show that if x £ 5 ^ and Ai>n-i(x) = 0 for 
0 < i < k then 

(vn-'x)(y) = 0 for all y G |*lf . . . , A ^ . 

It suffices to take y = hiZ where 0 < i < k. But 

(vn-
lx){hi • z) = [A*i,n_<(i'n-

1x)](fei ® z), 

by the definition of A*, the coproduct on S*. But 

AVn-iOv-1*) = Or1 ® ^-rOCAz.n-^x)) 

since i>_1 is a map of coalgebras. Since Ai<n-i(x) = 0, the proof is complete. 

Note that we did not use the specific definition of v. The embedding 
&h) depends on the choice of Hopf isomorphism v (of which there are 
exactly four, since Hopf Aut S ^ Z/2 0 Z/2 [4]). But the subalgebra 
Im $(fc) is independent of v. Note also that, by (4.1), Im $(fc) may be 
characterized as the unique maximal sub Hopf algebra of 5* of connectivity 
2k - 1. 

Now we shall construct a family of elements Cd>n which have quite 
probably occurred elsewhere in the context of symmetric function theory. 

Definitions. Let P = Yln=o Szn. Then P ® C is canonically isomorphic 
t°riS=o (^2n ® C). If co G C is a primitive dth-root of 1 and i ^ 1, let 

oo 

f(w,«) = E w % € P® C, 
<-0 

and let 

(4.2) f„ = n f (w. *)• 
i - 1 

Then 

(4.3) r, = E c*.» € n s2n 
d|n d\n 

where 

a\-dl 

for the unique \xa for which 

o"z(/i , h , . . .) = (— 1) 2^ Msi,.s2 sk^siih, h, • • •) 
2si=ld 

• • • <rSk(tli ^2, • • • ) • 

Here crs is the sth-elementary symmetric function, and the above identity 
takes place in the ring of symmetric polynomials in a sufficiently large 
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set {ti, h, . . .} of variables. The proof of (4.3) is a simple manipulation 
with the identity defining <rs. 

Applying the definition (4.2) directly, we get 

(4.4) Cd,n = dhn mod decomposables in S for all d\n. 

Particular cases are 

(4.5) Ci,n = K 

and 

(4.6) Cn>n = sn, the generator of P2„(5). 

The verification of (4.6) is immediate from (4.4) and the fact that 
Cn>n is primitive. In fact, 

(4.7) A(Cd>dl) = £ Cd,ds 0 Cd<d{ 
s+i=l 

where Cdjo = ho = 1. This last formula is obtained by taking the obvious 
extension of the coproduct A : 5 —> S 0 5 to 

A : P - > n (S2i® S2,), 

then to 

A : P 0 C -> H (̂ 2z 0 C) 0 (S2j- 0 C). 

Now 
CO 

= Z wiaA„ 0 w % = f (w, t) 0 f (w, *). 

But A preserves products, so by (4.2) we get 

(4.8) Afd = U 0 fd 

which immediately yields (4.7). In particular, combining (4.1), (4.3) and 
(4.7), we obtain 

(4.9) Cdin € [Im $*]2w for all d ^ ky d\n. 

THEOREM 4.10. A set of polynomial generators {hktn\n ^ k} for the subring 
Im <ï>(A;) of S may be obtained as follows. Define 

g(k, n) = g . c . d. {d\d ^ k and d\n). 

Choose integers ut and divisors dt of n, dt ^ k such that ^2 utdi = g(k, n). 
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Then set 

hjcn = X uiCdi,n-

i 

For example, when k = 2, we have 

/ri v j p iin = pu for a prime £, 
g ( 2 ' w ) = \ l otherwise. 

Then we may take hi,vu = CPiPu, but if n is divisible by two primes pi 
and £2, take hi,n = U\CP n + u<iCViin for any integers Wi and ui with 
#i£i + u<ipi = 1. Modulo using the Euclidean algorithm to obtain (ui, u2), 
this gives a simple formula for the h2,n in terms of the hn. One can simplify 
this by replacing Z-coefficients by Z(p), the localization at a fixed prime p, 
and one rederives Kochman's formulae [5]. Note that the formula for 
g(2, ri) agrees with his result that 

<22„(Im$<2>)^<22„(S) 

has cokernel of order p when n = pu, and of order 1 otherwise. 
It may be worth mentioning that the family {Cd>n £ -S^} is character

ized by properties (4.4) and (4.7). The proof is not difficult; one proceeds 
by induction on n/d. The proof of Theorem 4.10 is combinatorial. 

LEMMA 4.11. For each partition a = Vl2H . . . of n with length I = X)/*> 
define 

Then 

Sn=T, (-l)l+%ha. 
cfr-n 

Proof. We have 

sn = Y, (-l)ltohtohtl . . . htl, 

summation being taken over all sequences (/0, . . . , tt) with J2 tt = n. 
We must show 

I ' Z M(*o, . . . , / / ) G a} = n • —7jl\ ' 
irUi-) 

But listing the (to, . . . , ti) which give the same partition a as a column of 
sequences, the sum of all entries in the array is the left side above if we 
first add along each column, and is the right side if we first add along 
each row. 

LEMMA 4.12. For each a \- n such that a = 1A2/2 . . . with j \ = 0 for 
l S i < k,we have that g(k,n) divides $a. 
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Proof. Let p be any prime. We show that pv\g(k, n) implies pv\fia. Let 
n = pmq with q prime to p. Since pv\d for all d ^ k with d|w, we must 
have k > pv~1q (otherwise d = pv~lq gives a contradiction). But no parts 
of a are smaller than k, so n ^ feZ. (Recall / = J2fi-) Hence 

/ £ 2 < -Cf- = ,P-*\ 

Write / = p*s with 5 prime to p. Then j ^ m — v. Thus 

P o / T ( / , ! ) > ' S T ( / < 0 

is an integer multiple of pm~j/s. But 5 is prime to p and v ^ m — J, so 
£" divides ft». 

PROPOSITION 4.13. Gwew integers k and n such that 0 S k ^ n ^ 1, the 
following four integers are all equal: 

g"f(k, n) = g.c.d. {Pa\a h n and all parts of a are ^ k) 

g"(*, n) = order of P2n(S/\h1. . . A*_i|)/Im P2n(S) 

g'(k,n) = or^r^(22 , (5)/(32 , (Im $<*>) 

g(k,n) = g.c.d. {d|d ^ k and d divides n}. 

Proof. We show 

g'" (*, ») \g" (*, ») = g' (*, n) U(*, ») \gm (*, ») • 

The first divisibility relation follows from the fact that sn/g
,n (k, n) has 

integer coefficients modulo \hi, . . . , hk-i\ by 4.11, therefore gives a primi
tive in S/\hi . . . hk-i\, and projects to an element of order gtn'(&, w) in the 
group defining g"(&, w). The equality is deduced below from the usual 
connection between P2m(A*) and Q2m{A)*. 

g'{k, n): = order 

order' 

Q2n(S) 
Q2n(Im * ( f c ))J 

= order &„(£*) 

Q4lm UA-xl) J 

IrnÇ* 

order 

( * y 
[(. 5 )* 
L \ | A i . . . A » _ i | / 

Im [Q,n(S*)\* 

= order 
Im P*,(S) . 

= g"(k,n), 
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as required, the second last equality following from the diagram 

<**[(I*,..5*WI)J-^p**[(i*,.5.*^) j-P2nU..VJ 

[Qu(S*)]* - ^ + P 2 n ( S * * ) ^P 2 „(S) 

The relation g'\g follows by considering the element 

i 

where X) ^ 4 * = g(k, n) with dt ^ k and d\n for all i. By (4.4), 

hktn = g(k, n)hn(mod decomposables). 

But hk<n projects to 0 in the group defining gf (k, n). This group is cyclic 
generated by the image of hn, hence g'(k, n)\g(k, n). The last relation is 
exactly Lemma 4.12. 

Proof of Theorem 4.10. We must check that hktTl projects to a generator 
of <22n(Im $<*>). But the equality g'(ft, n) = g(k, n) of (4.13) means that 
we need only check that 

hk>n = ±g(&, n)hn (modulo decomposables in S). 

This is immediate from (4.4), as already noted in the proof of (4.13). 

5. Concrete interpretations in the representation theory of the 
symmetric group and topology. If we set S2n = i?(2n), the underlying 
group of the representation ring of the symmetric group, then the product 
and coproduct in the graded ring S are derived from inducing and 
restricting, respectively, with respect to the Young subgroup embeddings 
S< X 2; —» %i+j. By (4.1), the subobject Im $(fc) becomes identified with 
those virtual representations of Xn which restrict to zero in R(2U X 2 i 2 

X . . •) for all Young subgroups (with X̂  iv — n) for which iv < k for 
at least one v. Note in particular that 

CO 

Im ** ^ 0 Ker [R(2n) -» R(Sn^)]. 

Because Aut 6* = Z/2 © Z/2, there are four choices for the interpreta
tion of hn\ viz. 

hn = en or fn or ( — l)nen or (-!)% 

where en saidfn are respectively the trivial and the sign representations of 
Sn on C1. One must choose one of these four and stick to it for all n. 
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There are two alternate descriptions of Im 3>(A;). The primitive gener
ator sm becomes identified with that virtual representation whose 
character is ±n on the n-cyc\e, and zero on all other conjugacy classes 
of 2n. These are often useful because S 0 Q = Obi» ^2, • • •]• 

THEOREM 5.1. Im $(A:) = Q[sk} sk+i, . . .] Pi S (the intersection is in 
S 0 0 where we identify a G S with a 0 1 G 5 0 Q). 

Proof. Using (4.1) and that sn is primitive, we easily see the inclusion 
3 . Conversely, if we write an element of Im $(fc) as a polynomial p(si,s2,...) 
with rational coefficients and suppose that the least i for which st occurs 
is less than k, one immediately gets a contradiction to (4.1) by applying 
AiM-i: We have 

P(SU S2, • • •) = S/X + J 

where A *,„_/*_*(#) = 0, Ai<n-i(y) = 0, the exponent/ > 0 and x ?* 0. But 

A(5/* + :y) = A(s/)A(x) + A(y), 

so 

Ai,n-i(stfx + y) = fst 0 s / - 1* ^ 0. 

The other description involves the canonical inner product < , > on 

THEOREM 5.2. Im &k) = |fti, . . . , ^- î l - 1 , wftere 63; JL we denote the 
orthogonal complement in each dimension with respect to < , > afoz/e. 

Proof. Both inclusions are easy enough, but it suffices to prove 3 , 
since both sides have the same rank in each dimension, and the right side 
is a direct summand. So given x G S2n with (x, y ) = 0 for all ̂  G | ft 1 . . . ft*_i|, 
we must show Ait7l-i(x) = 0 for 0 < i < k. Write 

Aitn-i(x) = ^2 ha 0 xa 

where fta is the monomial in ht and xa G S2n-2i. But if we let {ha} be the 
dual basis to {ha}, then for all s G 5^-2*an<^ a ^ 0 H ^ 

0 = (x, ft^s) = <<AiiW^(x), hp 0 2 » = X (ft«, A/s)(̂ a, 2) = fa, z). 
a 

Thus xp = 0 for all 0 and AiiW_z(x) = 0, as required. (Recall that « , >̂> 
is the inner product induced on 5 0 S.) 

The "reciprocity" property used above follows in the present interpre
tation from Frobenius reciprocity applied to 2Z X 2y ^ 2 Î + J . Note that 
we appear to have two possible subrings \ex . . . e^1- and |/i . . . /A-II1-

depending on our choice for interpreting hn. This is not so, as it would 
contradict (5.1) ; the primitives sn depend only up to sign on the interpre-
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tation of the hn. But the real explanation is simpler: in fact \ei . . . ek-i\ 
= |/i . . . fk-i\ since both are the ideal generated by i?(2i) U i^(S2) 

An interpretation of 5 well known to topologists is 

S9ÉH*(BU) 9*H*(BU). 

Then 

Im $<» ^ Im [H*(BSU) -> H*(BU)) 

(see [1]). But 55^7 = $£7(4, . . . , oo). A more subtle question is the 
structure of 

Im [H*(BU(2ky . . . , oo)) -* H*(BU)]. 

For k > 2, this is strictly smaller than Im <ï>(A;). 
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