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AMITSUR COHOMOLOGY IN 
ADDITIVE FUNCTORS 

BY 

DAVID E. DOBBSO 

§1. Introduction and notation. Let Ljk be a Galois extension of fields with group 
G and let A be the category of ^-algebras isomorphic to finite products of finite 
field subextensions of Ljk. It is known that, with appropriately defined covers, A 
is dual to the underlying category of a Grothendieck topology T [5, Ch. I, Theorem 
4.2] and that (strict) cohomological dimension of G may be characterized via T-
Cech cohomology with coefficients in either additive (product-preserving) functors 
or sheaves [5, Ch. I, Theorems 4.3 and 5.9]. Indeed for any (torsion) additive 
functor F:A->Ab, there is a (torsion) T-sheaf S giving isomorphisms of Cech 
groups H%(k, F)g^H%(k, S) for all n. 

In this paper we show, i.a., that analogous isomorphisms do not, in general, 
hold for Amitsur cohomology at corresponding "layers" of the Cech groups. More 
precisely, §3 presents examples of finite field subextensions Kjk of Ljk and additive 
functors F with Amitsur cohomology FF{K\k, F) failing to satisfy certain proper­
ties (e.g., torsion, monomorphic inflation) known to hold for Amitsur cohomology 
in sheaves. We begin in §2 by indicating some relationships (e.g., the adjoint 
functor pair in Theorem 2.2) between the categories P of T-presheaves (functors 
A-^Ab) and Ad of additive T-presheaves. 

§2. Additive functors. It is well-known [1, p. 14] that P is an abelian category in 
which a sequence P1->P2->P3 is exact if, and only if, P1(A)-+P2(A)-+PZ(A) is exact 
for every object A of A. We now prove a similar result for Ad. 

PROPOSITION 2.1. Ad is an abelian category with arbitrary products and coprod­
uis. The canonical fully faithful functor y: Ad->P is exact. 

Proof. We shall establish that Ad is an abelian category by verifying the axioms 
in [6, p. 35]. It follows from the five lemma that the kernel and cokernel in P of 
any morphism in Ad are themselves in Ad. Since P and Ad have the same zero ob­
ject, any kernel (resp. cokernel) in P of a morphism in Ad is thus a kernel (resp. 
cokernel) in Ad. Hence Ad has kernels and cokernels. 
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To show any monomorphism m:F1-+F2 in Ad is a kernel, let i:Fs->F1 be ker(ra) 
in P. By the preceding remark, / is also ker(m) in Ad, hence P 3 ^ 0 and there is an 

m n 

exact sequence 0-^F1—>F2—^P4->0 in P. Then m is ker(rc) in P and hence is 
also ker(«) in Ad. Dually, any epimorphism in Ad is a cokernel. 

A simple diagram chase shows that the product (resp. coproduct) in P of an 
arbitrary family of objects of Ad is itself additive, and hence is the product (resp. 
coproduct) in Ad. Thus Ad is abelian with arbitrary products and coproducts. 
Since we have seen that kernels and cokernels in Ad may be computed in P, it also 
follows that j is exact, to complete the proof. 

Further information about Ad will be obtained in Corollaries 2.3 and 2,4 with 
the aid of the following analogue of sheafification (Cf. [1, Ch. II, Theorem 1.1]). 

THEOREM 2.2. There exists an exact left adjoint * :P—>Ad to j . 

Proof. We recall from [5, Ch. I, Proposition 3.5] that A has a skeletal full sub­
category B such that the inclusion /:B->A is a categorical equivalence. Indeed there 
is an additive functor 0:A->B such that 6i is the identity on B and id is naturally 
equivalent to the identity on A. Since the objects of B are easily described (they are 
cartesian products of the form Kx x • • • x Km9 for certain finite field subextensions 
Kr of Ljk), it is convenient to find an equivalent statement of the theorem involving 
B. 

If Q is the category of ^-valued additive functors defined on B, then inverse 
categorical equivalences </>:Ad->Q and ^:Q->Ad are clearly induced by composi­
tion with i and 6 respectively. Hence the adjointness assertion of the theorem will 
follow from the existence of a left adjoint a:P->Q to jxp. In fact, with * = ^ a , there 
will correspond to any objects P of P and F of Ad the following sequence of 
natural bijections of morphism classes : 

(*P, F) = (WP, F)g± ( #yaP) , <f>F) = (aP, c/>F)^ (P, (jy>)(ffî)ç*(PJF). 

For any object P of P , define <xP on a typical object K±x- - -xKm of B as 
PiKj)®- - '®P(Km). If f'.^x- - - x i ^ - ^ L i X - —xLn is a morphism in B and 
l<s<n, there is a unique factoring 

Kx x • - - X Km * Kv{s) 

1 X * * * X JLtyi J-*ig 

where the horizontal maps are projections. Then (ocP)/ is defined by requiring 
commutativity of the diagrams 

( a P X ^ x — x X J — • P(KvW) 

| ( a P ) / \p(ft) 

(ocP)(L 1 x---xL n )—> P(LS) 
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in which the horizontal maps are projections. It is clear that aP is an additive 
functor. 

To define a natural transformation tP:P-^(jf)(<xP) on an object A, let XA:A-> 
6A=K1X- - -xKm be the canonical isomorphism and qr\Kxx- • -xKm->Kr the 
r-th projection. Then (tP)A:P(A)->(jip)(oiP)(A)==(aiP)(eA)==P(K1)®' • - 0 P ( X J i s 
defined by requiring that its composition with the projection into P(Kr) be P{qrhA) 
for all r. To check naturality of tP with respect to a morphism/: A->A'', let 0A' = 
Lx x • • • X Ln and consider commutative diagrams 

OA ~^> OA' 

( g / ) i 

as above. Naturality of tP, i.e. checking commutativity of 

PA —> (*P)(6A) 

i i 
PA' (<x.P)(0A') 

i i 
{*P)(dA') —> P(LS) 

amounts to showing P(psùA>f)=P((Of)sqn{s)ùA), which follows since (6f)sqnis) = 
pM)^kAff={df)XA. 

The question of adjointness now reduces ([2, Proposition 1.14]) to the following 
universal mapping problem. Given objects P of P and Q of Q with a natural trans­
formation u:P-+(jtp)Q, we must show there is a unique natural transformation 
v : OLP->Q, such that u= (jipv)tP. 

For any object B=KXx• • • xKm of B, it is clear that (tP)B:PB->(j\p){u.P)(B)= 
P{K^)®' - '®P(Km) is given by applying P to the projection maps qr:B->Kr, since 
6B=B. Similarly, any natural transformation V\OLP->Q satisfies jipv=v. If v 
satisfies the required mapping property, it follows that vK=uK for any field object 
K of B. Naturality of v with respect to the qr gives a commutative diagram 

(<xP)(B) — * 0(aP)(Kr) 

fi* —> ee(iQ 
whose top arrow is the identity, whose bottom arrow is an isomorphism (since Q 
is additive), and whose right vertical arrow is ®vK =®uK . Hence v, if it exists, is 
uniquely determined. 

Define v on an object B=KX x • • • X Kr by requiring that vB : (OLP)(B)=®P(Kr)-+ 
QB be the composite of @uKfi ®P(Kr)^®(jy)Q)(Kr)=®Q(Kr) with the inverse of 
the isomorphism QB->(BQ(Kr). To show v is a natural transformation, consider 

https://doi.org/10.4153/CMB-1973-065-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1973-065-2


420 DAVID E. DOBBS [September 

any morphism f:B=K1x- • 'XKm->B,=L1x- • *xLn in B; next observe that 
naturality of u implies that the juxtaposition of the diagram 

0 P ( K r ) = ( a P ) ( B ) — > QB 

i i 
eP(L s )=(aP)(B ' )—->Q(B' ) 

whose commutativity is in question, with the commutative diagram 

6B - = * e e ( K , ) 

S(B') — * eô(L s ) 

produces a diagram which is commutative along its outer edges. Finally, it is 
straightforward to check that naturality of u implies v satisfies the mapping 
property, and so the required adjointness holds. 

It remains only to verify that *=y)& is exact. If P1->P2->PZ is exact in P, then 
exactness of/ (Proposition 2.1) shows we need only prove (*P1)A->(*P2)A->(*Pz)A 
is exact for any object A of A. Additivity of the *PV shows that it suffices to consider 
a field A, in which case the sequence in question becomes P1(6A)-^P2(dA)-^P3(0A) 
and is clearly exact. This completes the proof of the theorem. 

COROLLARY 2.3. Ad is a Grothendieck category {Definition in [6, p. I l l ]) with 
a generator. 

Proof. The functor * of the theorem exhibits Ad as a quotient category of P in 
the sense of [2, p. 121]. Since P has a family of generators [1, Ch. I, (2.6)], an 
application of [2, Proposition 5.39] shows the same is true of Ad. The existence of 
arbitrary coproducts in Ad now implies Ad has a generator [2, Proposition 5.33] 
and is well-powered [2, Proposition 5.35]. It remains only to establish that Ad 
inherits the property (AB5) from P, and this also follows by [2, Proposition 5.39], 
to complete the proof. 

We now use dimension-shifting techniques to find another similarity in the 
behaviour of P and Ad. The following result justifies, to some extent, the con­
centration of one-dimensional cohomology in §3. 

COROLLARY 2.4. For every object F of Au. and every positive integer n, there exists 
an object Q of AA and natural isomorphisms of Amitsur cohomology Hn(BjA, F)^ 
H\B\A, Q) for any morphism A—>B in A. 

Proof. Since * is exact, [2, Proposition 6.3] shows that any injective object / of 
Ad is also injective in P. Then [1, Ch. I, Theorem 3.1] implies Hm{B\A, I)=Q for 
all morphisms A->B and all m > l . 
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Since Ad is a Grothendieck category with a generator, any object F of Ad has an 
injective envelope, say / , in Ad ([7, Théorème 1.10.1], [6, Theorem 6.25]). Take 
O-+F->I-+Q->0 exact in Ad; it is also exact in P by Proposition 2.1. The resulting 
long exact sequence of Amitsur cohomology [4, p. 48] gives, in view of the above 
remarks, isomorphisms Hm(B/A, F)^Hm~1(BlA, Q) for all rn>2, from which the 
result is evident. 

We close this section with an observation that will be helpful in constructing 
additive functors in §3. 

REMARK 2.5. Let C be a full subcategory of A whose objects form a set of k-
algebra isomorphism class representatives for the finite field subextensions of Ljk. 
(For example, one could take the "chosen fields" in [5, p. 19] as the objects of C.) 
Then Ad is equivalent to Abc, the category of ^-valued functors defined on C. 

For a proof, let Q be as in the proof of Theorem 2.2. Since we have seen Q is 
equivalent to Ad, it is enough to construct an equivalence fz:Abc-^Q. Assuming 
for convenience that C is obtained from the chosen fields, we can define /u by aping 
the construction of a in the proof of Theorem 2.2. For example, if F is an object 
of Abc, put OF)(XtX-- •XKJ=F(K1)®- - -®F(KJ. It is straightforward to 
check that ^, so defined, is fully faithful and essentially surjective, and hence is an 
equivalence. 

§3. Cohomological examples. In this section, we construct examples of additive 
functors whose Amitsur cohomology groups fail to satisfy certain properties of 
cohomology in sheaves. The usual notation and terminology concerning Amitsur 
cohomology [3, §5] (as well as the notation of the Introduction) will be in effect. 

We begin with a result that applies to sheaves. 

THEOREM 3.1. Let M be the normal closure {in L) of a finite field subextension K/k 
of Ljk. Let n be a positive integer. Let F be an object of Ad such that the canonical 
homomorphism F(Kv)->H0(Kv®kM/Kv, F) is surjective for v=n and injective for 
v=n+l. Then Hn(K/k9 F) is a torsion group. 

Proof. Foreach^>0,letF^betheobjectofAdgivenby^(^)=i/ç(^(x)À.M/^[,F). 
Then [4, Theorem 7.2] provides a first quadrant spectral sequence 

Hp(K/k9 F9) => H»+Q(Mlk, F) 

which we shall use to prove Hx(K/k, F°) is torsion for all A>1. 
Let q>\. Since [3, Lemma 1.7] shows K^^M is a Galois extension of K^ with 

group n=gal(M/£), [3, Theorem 5.4] identifies F9^) with group cohomology 
H«(Yl, F{Kll®kM)), which is annihilated by the order of II. Hence Hp(K/k,FQ) 
is torsion for all p. As it also reduces to group cohomology, Hp(M/k, F) is torsion 
f o r a l l p > l . 
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The above spectral sequence yields the exact sequence of low terms 

0 -* H\K/k9 F°) -> H\M/k, F) 

whose end terms are torsion, by the preceding remarks. Hence H\K\k, F°) is 
torsion, and the above claim is established in case X = \. 

Let A>1. If the above spectral sequence is denoted by E%Q=>Ev+q, then with the 
standard notation of spectral sequences [8, Chap. VI], there are exact sequences 

Ei-u-i _^ Ex.o _+ £A.o _^ 0 ( f o r 2^j <X) 

and 0-^1?^->EX. As wehaveseen, each E^~3,3~x is torsion; hence Ef'3,3"1 is torsion. 
Since EÀis torsion, it is now easy to check E^=Hx(Kjk, F°) is torsion, as claimed. 

The natural transformation F-+F0 induces a commutative diagram 

F(Kn) -> F(Kn+1) -> F(Kn+2) 
V V V 

F°(Kn) -> F°(Kn+1) -> F°(Kn+2) 

whose rows form part of the Amitsur complexes C{Kjk, F) and C(K\k, F°). By 
hypotheses, the left vertical map is surjective and the middle vertical is injective. A 
diagram chase shows the induced map Hn(K/k, F)->Hn(K/k, F°) is injective, from 
which the conclusion is immediate. 

The next result shows the conclusion of Theorem 3.1 is not true in general for 
additive functors. 

THEOREM 3.2. Let K/k be a cubic nonnormal field subextension of a separable 
closure L\k. (For example, let k be the rational field $ and let K be generated by a 
root of an irreducible polynomial X3+aX+b eZ[X] such that (—4a3—21b2)112 £ Q.) 
Then there exists an object F of "Ad such that F(K)—0 and Hx(K\k, F) is the additive 
group ofQ(co), where o is a primitive cube root of unity. 

Proof. We can write K=k(<x), where a is a root of some irreducible cubic poly-
nomial /e k[X]; let a2, a3 be the other roots of/ in L. Then M=K(OL2), the normal 
closure of Kjk inside L, is a Galois extension oîk with group £3, generated by the 
cycles cr=(l 2 3) and T = ( 1 2). 

By Remark 2.5, an additive functor F can be described by its restriction to the full 
subcategory C of A whose objects are the "chosen" fields. Let F(M)=$(co), for a 
primitive cube root œ of unity, and let F(N)=0 for any chosen field N^M. To 
define i^on morphisms, i.e. on elements of S3, we let FT and Fa be the automorphisms 
of Q(co) given by multiplication by —1 and co, respectively; then F on the other 
elements of S3 is determined by functoriality. It is clear that F, so defined, is an 
object of Abc, and hence can be viewed in Ad. 

To compute ^(Kjk, i7), we first describe the tensor powers K2 and K3 as products 
of fields. The composition of isomorphisms K2^k[X]/(f)®k K^K[X]l(f)^ 
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^[J]/(X~a)x^[Z]/(Z2~(a2+a3)X+a2a3)^A:xMsends jp(a)®9(a) to (p(a)j(a), 
/7(a2)^(a)), for/? and q in k[X]. Similarly K®1cM

JI->MxMxM via/?(oc)®mf-> 
(mp(tx), mp(<x.2), mp(oLd)). Then the composition of isomorphisms K3^K<8)k (Kx M)^ 
K2x{K®kM)^KxMxMxMxM sends /?(a)®#(a)®r(a) to (/?(a)#(a)r(a), 
^(a2)^(a)r(a),^(a)5r(a2)r(a),/?(a2)^(a2)r(a)5jp(a3)gr(a2)r(a)). It is straightforward to 
check that, viewed as ^-algebra homomorphisms from KxM to KxMxMx 
MxM, the face maps ei\K

2->Kz send (p(oL)q(oi), p(a2)q(&)) to (/?(a)ç(a),/?(a)^(a), 

p(*Jq(*)>p(*Jq(*),pMq(*))>M 
and (/?(a)#(oc), p(ajq(<x)9 p(ct)q{cL2), p(a2)ç(a2), /?(a3>)#(a2)) respectively. 

By means of the identifications C\K/k, F)=F(K2)=F(KxM)=F(K)®F(M)= 
Q(co) and C2(X/Â:, F)=0(a>)e«9(co)©@(co)eg(a)), the maps F(e,):F(K2)^F(K*) 
therefore send j eQ(co) to (0, j , j , j ) , (y, 0, j , ^((TV)^), and (y, (Fr)y, 0, (Fcr)y) 
respectively. Finally, the equation co2+co-{-1=0 implies the coboundary map 
d1:F(K2)->F(Kz), which is the alternating sum of the F{e^), is identically zero. As 
F(K)=0, H^Kjk^F) is identified with the group F(K2)=Q(co) of l-cocycles, to 
complete the proof. 

COROLLARY 3.3. Let K\k be a cubic nonnormal subextension of a Galois field 
extension Ljk. Let M be the normal closure of K\k (in L). Let F be an object of Ad 
such that F(OL) = 1 for all a e gal(M/Jfc). Then H\K\k, F)=0. 

Proof. As in the preceding proof, we can compute the maps F(e^:F(K2)-> 
F(KB). Consequently, if i:K-+M is the inclusion and a, r are as above, then d1: 
F(K2)-+F(K3) is identified with the map FK®FM-+FKeFM@FM®FM®FM 
given by d1(a,b) = (a, (Fi)a, b-(Fi)a+(Fr)b, (Fai)a, b-(Fa2r)b+(F(r)b) = 
(a, (Fi)a, 2b — (Fi)a, (Fai)a, b). Since the group of l-cocycles is clearly trivial, the 
proof is complete. 

COROLLARY 3.4. Let K/k be a cubic nonnormal field subextension of a separable 
closure L of a local (resp. global) field k. Let J be the unit functor (resp., the T-
sheaf assigning to any finite separable field extension of k its idèle class group). 
ThenH*(K/k,J)=0. 

Proof. In the terminology of [9, p. 53], class field theory shows / i s a formation 
sheaf, and hence [9, Theorem 5.3.4] supplies a reciprocity isomorphism Hs(Kjk, J)^ 
H\K\k,z). As z, defined in [9, pp. 31-33], clearly satisfies the conditions of 
Corollary 3.3, the proof is complete. 

REMARK. Let L be the separable closure of the field k of/?-adic numbers, for some 
prime p. Since G=gal(L/£) has strict cohomological dimension 2 [11, Chap. II, 
Proposition 15], it follows from [5, Ch. I, Theorem 4.3] that the unit functor U 
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satisfies H^(k, U)=0. It would be interesting to use this fact to find a proof of the 
local case of Corollary 3.4 by analyzing inflation of three-dimensional Amitsur 
cohomology. 

Morris [9, Theorem 3.4.1] has used his inflation-restriction result [10, Theorem 
3.2] to deduce that the vanishing of Amitsur cohomology in a sheaf for a separable 
field extension is guaranteed by its vanishing for all finite Galois field extensions. 
The next result shows that such a cohomological triviality criterion is not true 
in general for additive functors. 

COROLLARY 3.5. In the situation of Theorem 3.2, let K2\KX be any Galois extension 
of finite subextensions Kt of L\k. Then H1(K2IK1, F)=0, although H^K/k, F)^0. 

Proof. As [3, Theorem 5.4] shows H^KJK^ F^H^Il, F(K2)), where 11 = 
gal(K2/K1), the construction of F shows we need only consider the case K2=M. 
The possibilities for Kx are then K9 the conjugates k(<x2) and k(a3) of K, the unique 
quadratic subextension Q of M\k9 and k itself; corresponding values of II are 
(<T2T), <(7T), (T), (or) and S3, respectively. Since j - c o 2 j ^ 0 for 0^yeF(M)=Q(oj), 
the usual formula for cohomology of finite cyclic groups shows H1((a2r),Q(w))=0. 
The other three cases of cyclic II are equally straightforward. To handle the case 
n=*S,

3, apply the exact sequence of low terms of the Hochschild-Serre spectral 
sequence [8, p. 160, Théorème 1] 

0 -+ H\S3l(a), Q(œY) -> H\SZ, Q(œ)) -> H\(a)9 Q(œ)). 

As $(co)ff=0, we conclude H1^, Q(co))=0, to complete the proof. 
By way of a positive criterion for cohomological triviality of additive functors, 

we have only the following proposition and example. 

PROPOSITION 3.6. Let k^K^M^Lbea chain of fields with Kjk nonnormal, 
M/k finite Galois and L/k Galois. Assume K=k(oi)9 where a is the only root in K of 
some irreducible polynomial over k. Let P be an object of Ad such that P(N)=0for all 

c 

fields N satisfying K^N<=• M. Then H\Kjk9 P)=P(K) and Hn(K\k, P)=0for all 
n>\. 

Proof. As in the proof of Theorem 3.2, we may compute the tensor powers Km 

by the Chinese remainder theorem. The upshot is that, for all m>2 , K™ is the 
product of K with finitely many fields each of which properly contains K and is con­
tained in M. By the hypotheseses, the Amitsur cochains Cn{K\k9 P) can be identified 
with P(K) and every P(et)= 1, from which the conclusion is evident. 

EXAMPLE 3.7. Let k, K, and L be as in Theorem 3.2. Use Remark 2.5 to define an 
objection Ad as follows. Arrange that Kbe a chosen field in [5, p. 19], set P(K) = 
Z/2Z and let P(N)=0 for any chosen field N^K. Then P is a torsion additive 

https://doi.org/10.4153/CMB-1973-065-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1973-065-2


1973] AMITSUR COHOMOLOGY IN ADDITIVE FUNCTORS 425 

functor, the Amitsur cochains Cm(K/k:, P)=Z/2Z for all m, and Proposition 3.6 
applies to show Hn{Kjk9 P ) = 0 for all n>l. Note this cannot be deduced from the 
cohomological triviality criterion of Morris referred to above, since P is not a T-
sheaf. 

We pause to record the following, a special case of an inflation result essentially 
proved by Morris in [10, Theorem 3.2]. 

PROPOSITION 3.8. Let A-^B-^C be morphisms in A andP an object ofP such that 
P(B®A B)^P(C®A C) is infective and P(B)-+H0(C/B, P) is surjective. Then the 
inflation homomorphism H^B/A, P)->Hl(CIA, P) is infective. 

We next show that the conclusion of Proposition 3.8 is not true for arbitrary 
A-+B-+C in A and torsion additive functor P. 

EXAMPLE 3.9. Let Kjk be a quadratic subextension of a separable closure Ljk. 
Then there exists a torsion object F of Ad such that for all n>0, Hn(K\k, F)^ 
Z/2Z and Hn(K2lKu F)=0 for any extension KJKl9 other than K/k, of finite 
subextensions Kt of Ljk. 

Proof. Use Remark 2.5 to construct an object F in Ad as follows. Set F(k) = 
Z/2Z=F(K)9 let F(N)=0 for any chosen field N^k or K9 and adopt either of the 
possibilities for F{k-+K). As II=gal(X/fc) is cyclic, periodicity implies 
H2n+1(K/k9 F)^H2n^(U9 ZI2Z)^IP(U9 Z/2Z)^Hom(II, Z/2Z)^Z/2Z for all n^ 
0. Since the norm mapZ/2Z->Z/2Zis trivial, we have H2n(K/k, F)^H2n(U, Z /2Z)^ 
(Z/2Z)n=Z/2Z. The final assertion follows by observing C(K2IKl9 F)=0. 

Let P be an object of P and P-^*P the natural transformation given by the 
adjointness in Theorem 2.2. We close by suggesting the need to study the induced 
map Hn(K/k9 P)->Hn(K/k, *P), if one is to consider Amitsur cohomology for 
arbitrary presheaves. 
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