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UNIFORM CONTRACTIFICATION 

BY 
KOK-KEONG TAN™ 

ABSTRACT. Let (X, T) be a metrizable space and {/„ : n = 1,2,...} 
be a commuting family of continuous mappings on X with a 
common fixed point f e X such that (I) for each k -
l , 2 , . . . , / a x ] - M f l as n^°o and (II) UBask/n[X]-»{{} as fc^oo. 
Then for each c € (0,1), there exists a metric d on X inducing the 
topology T such that d(fn(x), fn(y))^cd(x, y), for all JC, yeX and 
n = l , 2 , . . . . The above result is also generalized to Tychonoff 
spaces. 

Let (X, T) be a Tychonoff space and/>(T) be the collection of all families of 
pseudometrics on X inducing T. If A<=X, Â denotes the closure of A. If 
D eft{r), a sequence (xn)n=i in X is said to be a Cauchy sequence with respect 
to D if for each deD, d(xn, x m ) -»0 as n, m-»o°. (X, T) is sequentially 
complete with respect to D if every Cauchy sequence with respect to D 
converges in (X, r). 

THEOREM 1. Let (X, T) be a Thchonoff space and {fn : n = 1, 2 , . . . } a com-
muting family of continuous mappings on X with a common fixed point £ e X 
such that 

(i) for each k = 1, 2 , . . . , /£[X]-> {£} as n -> oo 
(ii) U n S k / n [X]-*{£} as fc-^ oo. 

Then for each D e^(r ) , tfiere exists D*e ^ ( r ) such tfiaf (i) Card D = Card D*, 
and (ii) /or each p G D*, p < 1 and p(fn(x), fn(y)) — p(*, y), for all x,yeX and 
n = 1, 2 , . . . . Moreover, if (X, T) is sequentially complete with respect to D, (X, T) 
is also sequentially complete with respect to D*. 

Proof. Let D G ^ ( T ) . We may assume that d< 1 for each d e D , otherwise we 
replace d by the equivalent pseudometric d/l + d. For each deD, define 

d*(x, y) = sup{d(/ï- • • # ( x ) , # • • • fkAy)) : fc^ 0, n = 1 ,2 , . . .} 

for all x, y e X Let D* = { d * : d e D } . Then D* satisfies all the required 
properties. (See the proof of Theorem 1 in [1].) The last assertion follows from 
the fact that d < d * for all deD. 

(1) The author is partially supported by the National Research Council of Canada under grant 
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COROLLARY 2. Let (X, r) be a metrizable space and {fn : n = 1, 2, . . . } fee a 
commuting family of continuous mappings on X with a common fixed point ÇeX 
such that the conditions (i) and (ii) in Theorem 1 are satisfied. Then there exists 
a bounded metric d(< 1) on X inducing r such that d(fn(x), fn(y)) < d(x, y), for all 
x, y e X and n = l , 2 , . . . . Moreover, the metric d can be chosen complete if 
(X, T) is completely metrizable. 

In the proof of the next theorem, we use the idea first developed in the proof 
of theorem 2 in [4]. 

THEOREM 3. Let (X, r) be a metrizable space and {fn : n = 1, 2 , . . . } be a 
commuting family of continuous mappings on X with a common fixed point £ e X 
such that the conditions (i) and (ii) in Theorem 1 are satisified. Then {fn:n = 
1,2 , . . .} is uniformly contractifiable under a bounded metric on X, i.e., for 
each ce (0 ,1 ) , there exists a bounded metric d ( < l ) on X inducing T such 
that d(/n(x), fn{y)) — cd{x, y), for all x, y e X and n = 1, 2 , . . . . 

Proof. By Corollary 2, there exists a bounded metric p ( ^ 1) on X inducing r 
such that p(/n(x),/n(y))<p(jc, y), for all x, yeX and n = 1 ,2 , . . . . For x, y e X , 
let 

n(x) = sup{m : m = nx + • • • + nk, where nt >0, k > 1 and x e / J 1 - - - /kk[X]}, 

n(x, y) = min{n(x), n(y)}, 

\{x, y) = cn ( x y )p(*, y), with the convention that c°° = 0, 

d(x, y) = inf{Xr=i Afo, xi+1) : JCX, . . . , xn+1 € X with Xj = x and 

*n+i = y , M = 1 , 2 , . . . } . 

Then we can show that (a) d is a bounded (by 1) metric on X such 
that d(fn(x), fn(y))^cd(x,y), for all x,yeX and n = l , 2 , . . . and (fe) for all 
x, y G X with x ^ £ d(x, y) > cc(x) • min{Lx, p(x, y)}, where Lx = 
infjptx,/!1- • •/£[X]):q > 1 and ^ + - • • + fq > rc(x)}>0. (See the proof of 
Theorem 3 in [1].) To complete the proof, it remains to prove that d and p are 
equivalent. Since d<p, it suffices to show that for xn, x e X, n = 
1 ,2 , . . . , d(x, xn) —» 0 as n —> oo implies p(x, xn) —» o° as n —» oo. 

CASE 1. Suppose x¥- %. Then by (fe), d(x, x n )> cn(x) • min{Lx, p(x, xn)}, where 
L x > 0 depends only on x. Since d(x, x n ) - » 0 as n^>™, we must have 
p(x,xn)->oo. 

Before we prove the other case, we shall prove the following: 
(*) for any e > o, there exists a positive integer N(s) such that for all y 6 X, 

p(y, £ )>£ implies d(y, £ )>c N ( e ) • e/2. Indeed, let e > 0 . Since 
Un^k/n[X]-^{g} as k—>oo, there exists a positive integer N 0 > 1 such that 
U n , N 0 / n [ X ] c B ^ ; e / 2 ) = { z G X : p f e z ) < e / 2 } . For each k = 1 , . . . , N0- 1, 
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since /k[X]—> {£} as n —»o°? there exists a positive integer nk such that /kk[X]c= 
Bp(g; ell). Define N(e) = n t + • • • + ttNo-i- Note that for any z e X , 
z* U /2=No /,[X] U U fl0!1 /PCX] implies n(z)<N(e) . Now suppose p(y, £)>£. 
Let T J > 0 be given. Then there exists Xi = y, x 2 , . . . , xM+i = £ e X such that 
<*(y, ê) + T? > l i l i cn'(x- X i+ l )p(^ * i +i). Define fc = min{i : p(xP £) < e/2}, then fc > 2 
since p(y, £) > e. It follows that for i = 1 , . . . , /c - 1, p(Xj, £) > e/2 and hence 
n(Xi)<N(e). Thus 

d(y, «) + V * cN(e)p(y, x2) + • • • + cNie)p(xk_l9 xk) + cn^x->p(xk, xk+1) 

+ - + C " ( ^ { W M , { ) 

^cN ( e ) -{p(y,x 2 ) + --- + p(xk_1,xk)} 

- c N ( e ) - p ( y , x k ) 

2" 

Therefore d(y, £ )>c N ( e ) • e/2 as T J > 0 is arbitrary. 

CASE 2. Suppose x = £ i.e. d(xn, £)—>0 as n—»o°. Thus for e > 0 , there exists 
a positive integer N such that d(xm £ )<c N ( e ) • e/2 for all n > N . By (*), 
p(xn, £ )<£ for all n > N . Hence p(xn, £)—>0 as n-*<». This completes the 
proof of the theorem. 

The above result solves the problem posted at the end of section 1 in [2]. 

EXAMPLE 4. Let X = [0,1] equipped with the usual topology r. For n = 

1, 2 , . . . , define / n(x)= ( 1—jx, for all x e X . Then {/n : n = 1, 2 , . . . } is a 

commuting family of continuous mappings on X with a common fixed point 
£ = 0 and satisfies the condition (i) but not the condition (ii) in Theorem 3. 
Since /k[X]—» {0} as n —»<» is not uniform in k, {fn : n = 1, 2 , . . . } cannot be 
uniformly contractifiable, i.e. there does not exist a metric d on X equivalent 
to the usual metric on X such that each fn is a d-contraction with the same 
Lipschitz constant. 

If X is the real line, the above example was given by A. J. Goldman and P. 
R. Meyers in [2]. Since [0,1] is compact, the above examples shows that even if 
(X, T) is compact, the condition (ii) in Theorem 3 (and hence also Theorem 3 in 
[1]) cannot be omitted. 

Observing that if {/„ : n = 1, 2 , . . . } is uniformly contractifiable under a 
bounded metric, then /k[X]—>{£} as n->°o uniformly in k, Theorem 3 can be 
rephrased to give us the following characterizations: 

THEOREM 5. Let (X, r) be a metrizable space and {/„ : n = 1, 2 , . . . } be a 
commuting family of continuous mappings on X with a common fixed point 
£ e X such that Un>k /n[X]-»o°. Then the following are equivalent: 

(1) For each k = 1 ,2 , . . . , /£ [X]-* {£} as n ->» . 
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(2) /k[X]—>{£} as n—»o°, uniformly in k, 
(3) {/n : n = 1, 2 , . . . } is uniformly contractifiable under a bounded metric on 

X. 

Theorems 1 and 3 together with necessary modification in the proof of 
Theorem 4 in [1] give us the following: 

THEOREM 6. Let (X, T) be a Tychonoff space and {fn :n = 1, 2 , . . . } fee a 
commuting family of continuous mappings on X with a common fixed point ÇeX 
such that UnSk/n[X]—>{£} as k—»o°. Then the following are equivalent: 

(1) for each k = 1, 2 , . . . ,/k[X]->{£} as fc-^oo, 
(2) /k[X]-^>{£} as n-»<», uniformly in k, 
(3) {/n : n = 1, 2 , . . . } is topologically uniformly contractifiable under bounded 

pseudometrics on X, i.e. for each ce (0 ,1 ) and for each D G ^ ( T ) , there exists 
D*e /P(T) swdt tfiaf (0 Card D = Card D*, and (ii) for each p e D*, p < 1, and 
p(/n(*),/n(y))^cp(x, y), /or a// x, y e X and n = l , 2 , . . . . 

If / is a mapping on X, define fk = fk for k = l , 2 , . . . , we see that the 
conditions (i) and (ii) coincide. This observation gives us the following: 

COROLLARY 7. Let (X, T) be a Tychonoff space and / : X —> X be continuous 
with a fixed point ÇeX. Then the following are equivalent: 

(1) f [ X ] - M 0 a s n - > o o , 
(2) for each ce (0 ,1 ) and for Defi{r) there exists D*e fi(r) such that (i) 

Card D = Card D* and (ii) for each peD*, p < l and p(/(x),/(y))<cp(x, y) 
for all x,yeX. 

The above result answers the question raised at the end of [3]. 
We conclude here with the following two open problems: 

Problem 1. In Theorem 3, if (X, r) is completely metrizable, can the metric 
d be so chosen to be also complete? 

We remark that the above question remains open even if {/n : n = 1, 2 , . . . } is 
finite. 

Problem 2. In Theorem 5 (resp. Theorem 6), if we drop the condition 
"U n>k/ n [X]-*{£} as k->oo," do conditions (2) and (3) remain equivalent? 
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