NOTES AND PROBLEMS NOTES ET PROBLEMES

This department welcomes short notes and problems be-
lieved to be new. Contributors should include solutions where
known, or background material in case the problem is unsolved.
Send all cornmunications concerning this department to
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RIGHT AND LEFT ORTHOGONALITY
Jonathan Wild

{received October 1,1960)

Let V be a vector space over an arbitrary field F. In
V a bilinear form '

f: x,vy > (x,y)

is given. If f is symmetric [(x,y) =(y,x)] or skew-symmetric
[(x,y) + (y,x) 0], then

(1) (x,y) = 0« (y,x) = 0.
Thus right and left orthogonality coincide. It is well known that
(1) implies conversely that f is either symmetric or skew-sym-

metric in V. We wish to give a simple proof of this result.

If (x,x)=0 forall xe¢V, then

(x, 7))+ ly,x) = (x+y,x+7y)-(xx)-(y,y) = 0.

Thus f is then skew-symmetric. From now on we may assume
that there exists a vector v such that

(2) (v.v) # 0.
We wish to show that f then is symmetric.

Let a,b be any two vectors in V. Assuming (1) we have
to show

(3) (a,b) = (b,a).
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Case (i). (a,a)# 0. Put
¢ = (a,b) -a - (a,a) - b.
Then
{a,c) = (a,b) -(a,2) - (a,a)- {a,b) = 0.
Hence by (1)
0 = (c,a) = (a,b) -(a,a) - (a,a) - (b,a) = (a,a) ((a,b) - (b,a)).
Since (a,a) # 0, this yields (3).

By (2), we now have in particular
(4) (a,v) = (v,a) and (b,v) = (v,b).

Case (ii). (a,a2) =0. We first show there exists an element

(5) AeF, N4 0

such that

(6) (a+v,\a+v) # 0.
By (4),

(Aa +v,Na+Vv) = xz-(a,a) + 2\ -(a,v) + (v,v) = 2\ - (a,v) + (y,v).

If (a,v) =0 or if the characteristic of F is two, A\ =1 will
satisfy (5) and (6). Let 2.(a,v)# 0. Then F contains at least
three elements and there isa A€ F such that

(v,v)

X4 0, # "

Thus this \ satisfies (5) and (6).

By case (i), (6) implies
(Aa +v,b) = (b,\a+ v)
or
A-(a,b)+ (v,b) = A-(b,a) + (b, v).
By (4) and (5), this implies (3).

Formula (1) permits a second interpretation. If U is any
subspace of V, f determines two new subspaces

183

https://doi.org/10.4153/CMB-1961-021-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1961-021-2

*
d
"

"

{x] (x,y) 0 for all y e U}

and

U* 0 forall xe U}.

{y | (xy)

Thus e.g. *U consists of all the vectors that are left orthogonal
to U. Then (1) is readily seen to be equivalent to

(7) ¥U = U* for all U.
Thus (7) holds true if and only if f is either symmetric or

skew-symmetric.

Collins Bay, Ontario
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