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THE IMPLICATIONS FOR DIFFERENTIABILITY OF
A WEAK INDEX OF NON-COMPACTNESS

JOHN R. GILES AND WARREN B. MOORS

In a recent paper the authors showed that certain set-valued mappings from a Baire
space into subsets of a Banach space which have a continuity property defined
in terms of Kuratowski's index of non-compactness have inherent single-valued
properties. Here we generalise the continuity property to one defined in terms
of a weak index of non-compactness and we show that this wider class of set-
valued mappings also has significant implications for the differentiability of convex
functions on Banach spaces.

1. INTRODUCTION

For a bounded set E in a metric space X, the Kuratowaki index of non-compactness
of E is a(E) = inf {r: E is covered by a finite family of sets of diameter less than r} . In
[7], we investigated the special properties of a new continuity property defined in terms
of Kuratowski's index of non-compactness. A set-valued mapping $ from a topological
space A into subsets of a metric space X is called a upper semi-continuous at t 6 A
if given e > 0, there exists an open neighbourhood U of t such that a($(t/)) < e.
We showed that a minimal weak* upper semi-continuous compact convex set-valued
mapping from a Baire space into subsets of the dual of a Banach space which is a
upper semi-continuous on a dense subset of its domain is generically single-valued.
This has consequences in particular for differentiability theory for convex functions of
Banach spaces.

Here we study a similar continuity property defined in terms of a weaker index of
non-compactness introduced by de Blasi, [4]. We consider a Banach space X over the
real numbers with dual X* and denote the closed unit ball of X by B(X) = {x G
X: \\x\\ < 1} and the unit sphere of X by S(X) = {x e X: \\x\\ = 1}. For a bounded
set E in X the weak index of non- compactness of E is

w(E) = inf{r: there exists a weakly compact set C such that E C C + rB(X)}.
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This w index has the elementary properties satisfied by Kuratowski's a index for
bounded subsets of a Banach space, [1, p.216]:

(i) u(E) = 0 if and only if E is relatively weakly compact,
(ii) UECF then w{E) ^ w(F),

(iii) u(kE) = \k\w(E), for each real fc,

(iv) w(coE) = w(E), where coE denotes the closed convex hull of E.
The IJJ index also satisfies a similar generalisation of Cantor's intersec-
tion property:

(v) given a nested sequence of non-empty weakly closed sets {Fn}, Fi D
oo

F2'D ...D FnD .. with the property that lim w(Fn) = 0 then f|Fn
n—>oo j

is non-empty and weakly compact.

We say that a set-valued mapping $ from a topological space into subsets of a
Banach space X is w upper semi-continuous at t 6 A if given e > 0, there exists an
open neighbourhood U of t such that «($([/•)) < e. In Section 2 we examine how
this property is related to the usual norm and weak upper semi-continuity properties
for set-valued mappings. We show that any minimal weak* cusco from a Baire space
into subsets of the dual of a Banach space which is w upper semi-continuous on a dense
subset of its domain is single-valued and norm upper semi-continuous on a dense Gs

subset of its domain.
Given a non-empty bounded set E in a Banach space X, for / 6 X* \ {0} and

8 > 0, the slice of E denned by / and 6 is the subset S(E, f, 6) = {x G F: f(x) >

sup f(E) — 6}. In Section 3 we show that for closed bounded convex sets in any Banach
space, certain slices of small w index contain slices of small diameter and this enables
us to establish an equivalence of denting point structure for denting points defined by
diameter and ui index.

A Banach space is called an Asplund space if every continuous convex function on
an open convex domain is Frechet differentiable on a dense Gs subset of its domain.
Namioka and Phelps, [13, p.739] gave the main characterisation theorem for such spaces
in terms of weak* strongly exposed point structure of weak* compact convex sets in
the dual. In Section 4, we extend this characterisation theorem using the w index. A
recent result, [9, Theorem 3.5], established special differentiability properties for those
Banach spaces which have an equivalent norm where every point of the unit sphere is a
denting point. We extend this result to show that the same differentiability properties
hold for those Banach spaces which have an equivalent norm where every point of the
unit sphere is an a; denting point.

2. T H E SPECIAL PROPERTIES OF W UPPER SEMI-CONTINUOUS MAPPINGS

A set-valued mapping $ from a topological space A into subsets of a topological
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space X is said to be upper semi-continuous at t G A, if given an open subset W

containing $(<) there exists an open neighbourhood U of t such that $(Z7) C W. We
call such a $ an usco mapping at t if also $(<) is non-empty and compact; when X

is a linear topological space we call such a $ a cusco at t if $(<) is non-empty, convex
and compact.

For set-valued mappings from a topological space into a Banach space there is a
very satisfying close relation between a upper semi-continuity and norm upper semi-
continuity, [7, Theorem 2.4]. The relation between a; upper semi-continuity and norm
and weak upper semi-continuity is not quite so straightforward.

THEOREM 2 . 1 . Consider a set-valued mapping $ from a topological space A
into subsets of a Banach space X.

(i) If $ is norm upper semi-continuous at t G A and $(<) is weakly compact
then $ is u> upper semi-continuous at t.

(ii) If $ is u upper semi-continuous at t G A and #(<) = D{$({7) : U G B}
where B is a local base for t then $ is weak upper semi-continuous at t
and $(<) is weakly compact.

PROOF: (i) If $ is norm upper semi-continuous at t G A, then, given e > 0 there
exists a neighbourhood U of t such that $(U) Q $(<) + eB(X). If $(<) is weakly
compact then this implies that w($({7)) < e.

(ii) If $ is b> upper semi-continuous at t G A there exists a nested sequence
{Un} of open neighbourhoods of t such that lim w($(t/n)) = 0. So by w property

(iv), lim w($({7n)) = 0 and by w property (v), |~| ${Un) is weakly compact. But
71—>OO j

OO

(~)$(Un) D n{$({7) : U G B} — $(<)> so $(t) is also weakly compact. For a weakly
1

open set W where $(<) C W, consider K = f)$(Un) \W which is weakly compact.
l

Now n{$(U)W: U G B} n K = $(*) D K = 0 so by the finite intersection property

there exists a finite subfamily {Uai, ••-, VOn } in B, such that 0 = f) $ (Uai) D if =
l

„
if. So there exists some V G 5 such that $(F) D K = 0. Now

M = ifV^1" \ W is weakly closed. If for each n G N, $(t/n)'° H M / J then by

property (v), 0 ^ f)*(^n) n M = *(v) n iif. So there exists some n0 G N such
l

that $(^n o)" ' n M = 0. But then ^( t /^ D V) \ W C $ ( t / n o ) " ' n l p O " \ W = 0. So
we conclude that there exists some U G B such that $(U) C W; that is $ is weakly
upper semi-continuous at t. 0
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We should note that the local base condition given in Theorem 2.1(ii) is always
fulfilled by a set-valued mapping which is weak upper semi-continuous and weakly
compact valued, (see [7, Proposition 2.1]).

A set valued mapping which is w upper semi-continuous is not necessarily norm
upper semi-continuous as the following example shows. Consider X an infinite dimen-
sional reflexive Banach space and the identity mapping id from B(X) with the relative
weak topology into X with its norm topology. Now id is clearly not norm upper
semi-continuous on B(X), but since B(X) is weakly compact, it is trivially u> upper
semi-continuous on B(X).

After Theorem 2.4 we shall give an example to show that there is no neat equiva-
lence of w upper semi-continuity with weak upper semi-continuity.

The significance of this generalised continuity property we have introduced is that
an important class of such mappings from a Baire space are single-valued on a dense
G{ subset of their domain. This is a consequence of the special properties of weakly
compact convex sets in Banach spaces which were pointed out by Bourgain, [2].

We need to examine more closely the definition of w upper semi-continuity.

LEMMA 2 . 2 . Given a non-empty subset E of a Ba.na.ch space X and r > 0, if
E C C + rB(X) where C is a weakly compact subset of X then there exists a minimal
convex weakly compact subset Cm such that E C Cm + rB(X).

PROOF: Let V denote the family of non-empty convex weakly compact subsets C
of X such that E C C + rB(X). Now V is non-empty since coC is weakly compact,
[3, p.68], and E C coC + rB(X). Consider V partially ordered by set inclusion
and {Ca} a totally ordered subfamily of V. Clearly (^Cc is non-empty convex and

a

weakly compact, and for each x £ E, (x + rB(X)) D Ca ^ 0 for all a, so by the
finite intersection property (x + rB(X)) D f)Ca ^ 0 so E C f\Ca + rB(X); that is,

a a

f\Ca eV. And fl Ca C Ca for all a. Therefore, by Zorn's Lemma, V has a minimal
GE a

element Cm. u

An usco (cusco) mapping from a topological space into subsets of a topological
space (linear topological space) is said to be minimal if its graph does not contain the
graph of any other usco (cusco) with the same domain. Given a minimal weak* usco
$ from a topological space A into subsets of the dual X* of a Banach space X, it
is known that the mapping $ defined by $(x) = co™ $(z) is a minimal weak* cusco
from a into subsets of X* , [8, p.357]. So throughout the paper we work with minimal
cuscos keeping in mind that results extend to minimal uscos by this relation.

We need the following characterisation of minimal cuscos, [7, Lemma 2.5].

PROPOSITION 2 . 3 . A cusco $ from a topological space A into subsets of a
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separated linear topological space X is a minimal cusco if and only if for any open set

V in A and closed convex set K in X where $(V) $Z K there exists a non-empty open

set V C V such that $ ( F ' ) C\K = %.

THEOREM 2 . 4 . Consider a topological space A and a Banach space X. We
denote by T the norm or weak topology on X and if X is the dual of a Banach space
then also the weak* topology on X. Consider a minimal T-CUSCO $ from A into-subsets
of X.

(i) Given any non-empty open subset V of A and e > 0 sucn tiat w(
e/4, there exists a non-empty open subset UofV such that diam$(£/) <
e.

(ii) If A is a Baire space and $ is u> upper semi-continuous on a dense subset
of A then $ is single-valued and norm upper semi-continuous on a dense
Gs subset of A.

PROOF: (i) By Lemma 2.2 there exists a minimal convex weakly compact set
Cm such that $(F) C Cm + (e/4)B(X). We assume that diamCm ^ e/2. Since
Cm is weakly compact and convex there exist / £ S(X*) and S > 0 such that
diam S(Cm, / , S) < e/2, [2, p.199]. Now K = Cm\S(Cm, f, 6) is weakly compact and
convex and so it is r-closed and convex. But K + (e/4)B(X) is also r-closed and con-
vex. Since Cm is a minimal convex weakly compact set, $(V) % K + (e/A)B(X). Since
$ is a minimal r-cusco it follows from Proposition 2.3 that there exists a non-empty
open subset U of V such that

C (c C S(Cm, f, 6) + e-B(X),

so $(U) has diameter less than e.
(ii) Given e > 0, consider Oc = (J{open sets U in A: diam$({7) < e}. Now Oe

is open; we show that Oe is also dense in A. Consider a non-empty open set W in
A. There exists t 6 W where $ is u upper semi-continuous. Therefore there exists
a non-empty open subset V of W such that UJ($(V)) < e/4. From (i) there exists
a non-empty open subset U of V such that diam$(t7) < e. So U C Oe and Oe is
dense in A. We conclude that $ is single-valued and norm upper semi-continuous on

flOi/n, a dense Gg subset of A. U
l

Theorem 2.4(i) enables us to give the counter-example for Theorem 2.1 which we
promised. We give an example of a weak cusco which is not u upper semi-continuous.
Consider an infinite dimensional Banach space X and the identity mapping id from
X with its weak topology into X with its norm topology. Now id is a minimal weak
cusco on X. Suppose that id is w upper semi-continuous at x (E X. Then given
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e > 0 there exists a weak open neighbourhood V of x such that u>(id(V)) < e/4. But
then by Theorem 2.4(i) there exists a non-empty weak open subset U of V such that
diamid(tf) < e. But as a weakly open set in an infinite dimensional space X, U =
id (17) cannot be bounded. So we conclude that id cannot be u> upper semi-continuous
at any point of X.

A special case of Theorem 2.4(i) was given by Namioka, [12, p.527], using different
methods. He showed that any non-empty weak* compact set K in the dual X* of a
Banach space X with u>(K) < e/4 has a non-empty relatively open subset U with
diaxaU < e. This follows from Theorem 2.4(i) by considering $ to be the identity
mapping from K with the relative weak* topology, which is a Baire space, into K with
the relative weak* topology.

Theorem 2.4(ii) has implications for the differentiability of convex functions. A
continuous convex function <j> on an open convex subset A of a Banach space X is
said to be Frechet dijferentiable at x 6 A if lim (<l>(x + ty) — <f>(x))/t exists and is
approached uniformly for all y £ S(X). A subgradient oi <j) a.t xo E A is & continuous
linear functional / on X such that f(x— Xo) ^ <f>{x) — 4>{xo) f°r all JJ £ A. The
subdifferential of <p at XQ is denoted by d<j>(xo) and is the set of subgradients of <j>
at Xo • The subdifferential mapping x —» dcf>(x) is a minimal weak* cusco from A
into subsets of X*, [14, p.100]. Further, <j> is Frechet differentiable at x E A if and
only if the subdifferential mapping x —> d<f>(z) is single-valued and norm upper semi-
continuous at x, [14, p.18]. So from Theorem 2.4(ii) we have a result which improves
[7, Corollary 2.7].

COROLLARY 2 . 5 . A continuous convex function <f> on an open convex subset
A of a Banach space X whose subdifferential mapping x —* d<f>(x) is w upper semi-
continuous on a dense subset of A is Frechet differentiable on a dense Gs subset of
A.

Theorem 2.4(ii) also reveals the special differentiabihty properties of reflexive Ba-
nach spaces. To examine this in full generality we need the following property of minimal
weak* cuscos, [9, Lemma 3.4(ii)].

LEMMA 2 . 6 . Given a minimal weak* cusco $ from a Baire space A into subsets
of the dual X* of a Banach space X, there exists a dense Gg subset D of A such that
at each t G D, the real valued mapping defined on A by

p{t) = inf{||/|| : / 6 *(*)}

is continuous and 3>(f) lies in the face of a sphere of X* of radius p(t).

It follows from this lemma that a minimal weak* cusco $ from a Baire space A
into subsets of the dual X* of a Banach space X is locally bounded on a dense Gs
subset D of A. So we have the following well known result.
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COROLLARY 2 . 7 . Every minimal weak* cusco $ from a Baire space A into

subsets of the dual X* of a reSexive Banach space is single-valued and norm upper
semi-continuous on a dense Gf subset D of A. In particular, a reflexive Banach space
is an Asplund space.

Part of the study of Asplund spaces has been to find conditions sufficient for a
Banach space to be Asplund. Many of these conditions have concerned differentiability
properties of the norm. Given a Banach space X, for each x G S(X) we denote by
D(x) the set {/ G S{X*): f(x) = 1}. The set-valued mapping x -> D(x) from S(X)
into subsets of S(X*) is called the duality mapping on S(X). It is known that a Banach
space X whose duality mapping x —* D(x) is a weak cusco on S(X) is an Asplund
space, [5, p.106]. So we can make the following deduction from Theorem 2.1(ii).

THEOREM 2 . 8 . A Banach space X with duality mapping x —* D(x) w upper
semi-continuous on S(X) is an Asplund space.

3. DENTING POINT STRUCTURE FOR CLOSED BOUNDED CONVEX SETS

We now examine the implications of Theorem 2.4 for the structure of closed
bounded convex sets in a Banach space.

For a closed bounded convex set K with 0 G K we define the polar of K as the
set K° = {/ G X*: f(x) ^ 1 for all x G K}. If 0 G int K then K° is weak* compact
and convex. We denote by K00 the polar of K° in X" . Since K is bounded then
0 G int K° and so K00 is weak* compact and convex.

We need the following basic properties of slices and polars, (see [7, Lemma 3.1]).
We use A to denote natural embedding elements.

PROPOSITION 3 . 1 . Consider a closed bounded convex set K with 0 G K in
a Banach space X . Then

(i) K is weak* dense in K00, and

(ii) given / G K* \ {0} and 0 < r < sup f{K) - sup f(K00) , S^K, f, r) is

weak* dense in S (K00 , f, A .

Consider a non-empty closed bounded convex set A" in a Banach space X. We say
that x G BK is a denting point, (a denting point, w denting point) of K if given £ > 0,
x is contained in a slice of K of diameter (a index, w index) less than e. It is clear
that if x is a denting point of K then x is an a denting point of K and if x is an a
denting point of K then x is an u denting point of K, but generally the implications
are not reversed. Similarly, for a non-empty closed bounded convex set K in the dual
of a Banach space X, we say that / G dK is a weak* denting point, (weak* a denting
point, weak* w denting point) of K if given e > 0, / is contained in a weak* slice of K
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of diameter ( a index, w index) less than e. For a non-empty closed bounded set K in
a Banach space X, it is well known that every denting point of K is an extreme point
of K. But since every finite dimensional Banach space Xn has every point of S(Xn)
an a denting point of B(Xn), a denting points of K and by implication w denting
points of K, are not necessarily extreme points of K.

We need the following relations between the various types of denting points of a
closed bounded convex set and those of its double polar.

LEMMA 3 . 2 . Consider a closed bounded convex set K with 0 G K in a Banach
space X.

(i) The set of weak* denting points of K00 is contained in K.
(ii) Given f G X* \ {0} and 0 < r < sup f(K) = sup f(K00),

diam5(X, / , r) - diamS^00, / , r) , a(S(K, f, r)) = a(s(tf00, / , r)) ,

and w(S(K, f, r)) > ui(s(jf00, / ,!•)) .

(iii) x is a wealr* denting point of K00 if and only if x is a denting point
of K, x is a weak* a denting (and extreme) point of K00 if x is an a
denting (and extreme) point of K, x is a weak* w denting (and extreme)
point of K00 if x is an w denting (and extreme) point of K.

PROOF: (i) Consider F £ X** \X. Then d(F, x\ = d > 0 and B(F, d/2)

contains no points of X. But by Proposition 3.1(ii) every weak* slice of K00 contains
points of K so F is not contained in any weak* slice of K00 of diameter less than d/2
and so is not a weak* denting point of K.

(ii) Using the fact that for any bounded set E in X, diamco"' E = diami?, we
can establish the equalities for diamter and a index. Suppose that w(S(K, f, r)) = e.
Then given e' > e, there exists a weakly compact set C in X such that S(K, f, r) C
C + e'B(X) so S(R, f,r) C C + e'B(X**) which is weak* closed. By Proposition

3.1(ii), S(K00, T,rj C C + e'B{X**). Since C is a weakly compact set in X** we

conclude that W(S(K™, f, r ) ) ^ e.

(iii) If for x € K, given e > 0 there exists / G X* \ {0} and 6 > 0 such that x £

S(K, f, 6) a n d diam5(i if , f,6)<e, (a(S{K, f, 6)) < e, u(S(K, f, 6)) < e), then x G

S(KO°, f,Sj and from (ii) our primary result follows. If for x 6 K, given e > 0 there

exists / G X' \{0} and 6 > 0 such that x 6 S(K00, f, *) and diamS^iif00, / , *) < e,

from (i) we have that x is a denting point of K.
For the secondary result it is sufficient to show that if x is an w denting extreme

point of K then x is an extreme point of K00. Suppose that there exists F and
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G G K00, F ^ G such that x = XF + (1 - X)G for some 0 < A < 1. Since x is an

extreme point of K which is closed and convex and K is weak* dense in K00 then F

and G G X** \ X. For d = min{d(.F, x \ d(G, X \ } > 0 consider f £ X* \ {0} and

6 > 0 such that x G S(K, f, S) and w(S(K, f, 8)) < d/2. Then there exists a weakly

compact set C in X such that S(K, f, S) C C + {d/2)B{X). But s ( t f , / , 6\ is weak*

dense in S(K00, f, *) so S ^ 0 0 , f,6^CC + (d/2)B(X**). Now at least one of F

and G is in S(K00, f, j ) . Suppose F 6 S 1 ^ 0 0 , / , *) . Then F 6 C + (d/2)B(X")

which implies that d(F, Xj ^ d/2 contradicting d(F, X J ^ d. We conclude that x

is an extreme point of K00. D

Given a closed bounded convex set A" in a Banach space X we say that K
has property a for / £ X* \ {0} if given e > 0 there exists S(e, / ) > 0 such that
a(S(K, f, 6)) < e. Similarly, we say that K has property u> for / 6 X* \ {0} if given
e > 0 there exists 6(e, / ) > 0 such that u(S(K, f, 6)) < e. Both properties have been
studied in relation to drop properties of K. K is said to have the drop property (weak
drop property) if for every closed (weakly sequentially closed) set C disjoint from K
there exists x 6 C such that C D co{x, K} = {x}. Kutzarova showed, [10, p.284]
that K with int K ^ 0 has the drop property if and only if it has property a for each
/ G X* \ {0} and Kutzarova and Papini showed, [11, Propositions 1 and 5] that K
with int K ^ 0 has the weak drop property if and only if it has property u> for each

For a closed bounded convex set K with 0 G intii", the gauge p of K defined by
p(x) = inf{A > 0: x G \K} is a continuous sublinear functional on X. For a closed
bounded convex set K with 0 G int if, there is a very satisfying duality between a
upper semi-continuity of the subdifferential mapping x —> dp(x) for p the gauge of K
and property a for K° and between property a for K and a upper semi-continuity
of the subdifferential mapping / —> dp(f) for p the gauge of K°, [7, Theorem 3.2].
We now explore similar relations for o> upper semi-continuity and property u. We
need the following basic properties relating slices of K° to the subdifferential mapping
x -> dp(x), (see [7, Theorem 3.2(i)]).

PROPOSITION 3 . 3 . Consider a closed bounded convex set K with 0 G int K

in a Banach space X with p the gauge of K.

(i) Given x G X \ {0} and 0 < S2 < sup x (K°) ,

S(K°, x,S2)C dp{B(x;6)) + SB(X').

(ii) Given x G X \ {0} and 0 <r < sup x (K°) there exists 6>0 such that
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LEMMA 3 . 4 . Consider a closed bounded convex set K with 0 € int K in a
Ba.na.ch space X.

(i) For p the gauge of K on X, the subdifferential mapping x —* dp(x) is
w upper semi-continuous at x G X \ {0} if and only if K° has property
w for x.

(ii) For p the gauge of K° on X* , the sub differential mapping f —» dp(f) is
w upper-semi-continuous at f £ X* \ {0} if K has property w for f.

PROOF: (i) If x —» dp(x) is u> upper semi-continuous at x, given e > 0 there exists
a weakly compact set C in X* and 0 < 6 < e such that dp(B(x;6)) QC + eB{X*).
Then by Proposition 3.3(i), S(K°, x, 62) C C + 2eB(X*); that is, K° has property u
for x.

Conversely, if K° has property w for x, given e > 0 there exists a weakly compact
set C in X* and 0 < r < supx(K°) such that S(K°, x, r) C C + eB(X'). Then by
Proposition 3.3(ii) there exists a 6 > 0 such that dp(B(x;S)) C C + eB(X*); that is,
x —» dp(x) is w upper semi-continuous at x.

(ii) If K has property w for / , given e > 0 there exists a weakly compact set C
in X and 0 < r < sup f{K) = sup f(K00) such that S(K, f, r) CC + eB(X*). Then

S(K, f,r) C C + eB(X**) and C is weakly compact in X** and C + eB(X**) is

weak* closed. By Proposition 3.1(ii), S(K00, f, r) C C + eB{X*'); that is K00 has

property w for / . Then by (i), / —* dp(f) is w upper semi-continuous at / . D

It is not known whether the converse to Lemma 3.4(ii) holds locally. The converse
depends on knowing whether given / 6 X* \{0}, K00 having property w for / implies
that K has property w for / . However, the converse does hold globally because if the
subdifferential mapping / —> dp(f) for p the gauge of K° is w upper semi-continuous
on X* \ {0} then by Theorem 2.1(ii), / -> dp(f) is a weak cusco on X* \ {0} and this
implies that K is weakly compact, [6, p.381]. Since int K ^ 0. we have that X is
reflexive and in this case K has property u> for all / G X* \ {0}.

LEMMA 3 . 5 .

(i) Consider a non-empty weak* compact convex set K in the dual X* of a
Ba.na.ch space X . Any weaA* slice of K which contains a weak* u> denting
extreme point of K contains the closure of a weak* slice of arbitrarily
small diameter.

(ii) Consider a non-empty closed bounded convex set K in a Ba.na.ch space
X. Any slice of K which contains an u> denting extreme point of K
contains the closure of a slice of arbitrarily small diameter.

PROOF: We may assume in both cases that 0 G K.
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(i) Consider x £ X\{0} and 8 > 0 and S(K, x, 8) containing a weak* u extreme
denting point / of K. Then given e > 0 there exists y € X \ {0} and 6' > 0 and
such that / € S(K, x, 8) D S(K, y, 8') and u>(S(K, y, 8')) < e/8. Now there exists
0 < A < 1 such that / e S(K, x, X8) f"l S(K, y, 8'). Since / is an extreme point K,
f £ co"'(K \ (S(K, x, XS) n S(K, y, 6'))). So there exists z 6 X\{0} and 6" > 0 such
that / G S(K, z, 8") and S{K, z, 8") C\ co"* (K \ {S{K, x, \S) f~l S(K, y, 6'))) = 0.
Define the functional p on X by p(x) = sup{/(a;): / 6 K}. Then p is a continuous
sublinear functional on X. Also p is the gauge of C = {x £ X: p(x) < 1} and
K = C°. Now the set of weak* support points of K is dense in dK, [15, p.180].
Consider w £ X a weak* support functional of K where dp(w) D S(K, 2, 6") ^ 0. By
Proposition 2.3 there exists a non-empty open subset V of a neighbourhood of w such
that dp(V) C S(K, z, 6"). Then w(dp(V)) < e/8 and from Theorem 2.4(i) there exists
a non-empty open subset U of V such that diam9p(£7) < e/2. Choose xo € U \ {0}
and 0 < 6i < min(e/4, XS, (1 — X)8) such that B(xo;Si) C U. Then from Proposition

3.3(i), S(K, xo,6l) C ap(B(zo;*i)) + * i5(X*) , so diaxnS(K, x0, 6f) < e. Notice that
(dp(B(x0; 5i)) + *i5(X*)) n K C (S(iif, ?, A*) + (1 - X)8B(X*)) HKC S(K, x, S).

(ii) Consider / 6 X* \ {0} and 6 > 0 where 5(A", / , 8) contains an « denting

extreme point x ol K. Then a: €E 5(if0 0 , / , 5J and by Lemma 3.2(ii), x is a weak*

w denting extreme point of K00. So by (i) given e > 0 there exists <7 £ X* \ {0} and

8' > 0 such that S(tf00, g, 8') C 5(if0 0 , / , *) and diamS(iT0 0, ?, * ' ) < £ • T h e n by

Proposition 3.1(ii), 0 ^ 5(if, ^, *') C S(K, f, 8) and diamS(K, g,8')<e. D

It is interesting to note that in any Banach space there is an equivalence of denting
point structure for a closed bounded convex set. We begin with the equivalence theorem
for such sets in the dual and then use it to establish the corresponding theorem for sets
in any Banach space.

THEOREM 3 . 6 . Consider a non-empty weak* compact subset K of the dual of
a Banach space X. Then the following are equivalent.

(i) K is the weak* closed convex hull of its weair* denting points.

(ii) K is the weak* closed convex hull of its weak* a denting extreme points.

(iii) K is the weak* closed convex hull of its weak* u> denting extreme points.

PROOF: Since every weak* denting point is a weak* a denting point and every
weak* a denting point is a weak* w denting point, the implications (i)=>(ii)=>(iii) are
obvious. It remains to prove (iii)=>(i).

Suppose that K is the weak* closed convex hull of its weak* w denting extreme
points but not of its weak* denting points. Denote by M the weak* closed con-
vex hull of the weak* denting points of K. There exists x 6 X \ {0} and 8 > 0
such that S(K, x, 6) D M = 0 and there exists a weak* w denting extreme point
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/ G S(K, x, 6). By Lemma 3.5(i) there exists Xi G X \ {0} and Si > 0 such that
S(K, xi, Si) C S(K, x, 6) and diamS(K, xi, Si) < 1/2. Again there exists a weak* w
denting extreme point / i G 5(iiT, x i , £i) and by Lemma 3.5(i) there exists x2 G

and 62 > 0 such that S(K, x2, S2) C £ ( # , z i , Si) and diamSC-K", £2, £2) < 1/4.
Continuing, we construct a nested sequence of weak* slices {S(K, xnt Sn)} such that

diam5(-K", xn, Sn) < 1/2". Now f| S(K, xn, Sn) = C\S{K, xn, Sn) is a singleton and
1 1

this point is clearly a weak* denting point of K. But as this point lies in K \M we
have contradicted our supposition about M. D

The dual theorem follows by Lemma3.5(ii) using the same argument.

THEOREM 3 . 7 . Consider a closed bounded convex subset K of a Ba.na.ch space

X . The following are equivalent.

(i) K is the closed convex hull of its denting points.
(ii) K is the closed convex hull of its a denting extreme points.

(iii) K is the closed convex hull of its w denting extreme points.

4. IMPLICATIONS FOR THE DIFFERENTIABILITY OF CONVEX FUNCTIONS

The classical characterisation theorem for Asplund spaces given by Namioka and
Phelps [13, p.739], and generalised in [7, Theorems 4.9 and 4.10] for the a index, has
comparable form for the u index. The theorem is expressed in terms of exposed point
structure.

Consider a closed bounded convex set K in a Banach space X. We say that x G K
is a strongly exposed point of K if there exists / £ S(X*) such that for every e > 0
there exists S > 0 such that x G S(K, / , 6) and diamS(K, f,S) < e; we say that /
strongly exposes K at x. Generalising, we say that a subset E of K is a strongly

exposed, (w strongly exposed) if there exists / G S(X*) such that E = f] S(K, f, 6)
«—0

and K has property a for / , (property w for / ) ; we say that / a strongly exposes

(w strongly exposes) K at E. For a closed bounded convex set K in the dual X* we

say that / G K is a weak* strongly exposed point of K if there exists x G •S'f-^J which

strongly exposes K at / and a subset E of K is weak* a strongly exposed, {weak*

w strongly exposed) if there exists x G S[X) which a strongly exposes, (w strongly

exposes) K at E.

We note that a singleton subset of If is a strongly exposed if and only if it is a
strongly exposed point of K, [7, Proposition 4.8]. A comparable result does not hold
for singleton subsets which are w strongly exposed. A reflexive Banach space with a
rotund but not locally uniformly rotund norm has every singleton subset of the unit
sphere w strongly exposed but not all are strongly exposed.
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For a closed bounded convex set K in the dual X*, a subset E of K which is
weak* w strongly exposed is weak* compact and so by the Krein-Milman Theorem
contains an extreme point which is an extreme point of K. So E always contains a
weak* w denting extreme point of K. Then the proof of the following characterisation
theorem is a direct consequence of Theorem 3.6.

THEOREM 4 . 1 . For a Ba.na.ch space X the following are equivalent;

(i) every continuous convex function <j> on an open convex subset A of X is

Frechet differentiable on a dense Gg subset of A,
(ii) every weak* compact convex subset of X* is the weak* closed convex hull

of its weak* strongly exposed points,
(iii) every weak* compact convex subset of X* is the weak* closed convex hull

of its weak* u strongly exposed points.

For a closed bounded convex set K in a. Banach space X, it follows from the w
index property (v) that a subset E of K which is u> strongly exposed is weakly compact
and again by the Krein-Milman Theorem contains an w denting extreme point of K.
So the proof of the following dual characterisation theorem is a direct consequence of
Theorem 3.7.

THEOREM 4 . 2 . For a Banac/i space X the following are equivalent;

(i) every continuous weak* lower semi-continuous convex function <f> on an

open convex subset A of X* is Frechet differentiable on a dense Gg subset

of A,

(ii) every closed bounded convex subset of X is the closed convex hull of its

strongly exposed points,

(iii) every closed bounded convex subset of X is the closed convex hull of its

u strongly exposed points.

There are separable Banach spaces which do not have the differentiability properties
of Theorem 4.2. But it has recently been shown, [9, Theorem 3.5], that there is a large
class of Banach spaces, including the separable spaces, where every continuous convex
function on an open convex subset of the dual is Frechet differentiable on a dense Gs

subset of its domain provided that the set of points where the function has a weak*
continuous subgradient is residual in its domain. Spaces of this class are those which
can be equivalently renormed to have every point of the unit sphere a denting point of
the closed unit ball. This result has been extended, [7, Theorem 4.5], to include spaces
which can be equivalently renormed to have every point of the unit sphere an a denting
point of the closed unit ball. The result can be extended further using the weak index
of non-compactness.

THEOREM 4 . 3 . Consider a Banach space X which can be equivalently renormed
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to have every point of S(X) an w denting point of B(X). Then every minimal weak*
cusco $ from a Baire space A into subsets of X" for which the set G = {t £ A: $(t)D
X ^ 0} is residual in A, is single-valued and norm upper semi-continuous on a dense
Gs subset of A. In particular, every continuous convex function <f> on an open convex
set A in X* for which the set G = {/ € A: d<j>{f)C\X £ 0} is residual in A, is Frechet
differentiate on a dense Gs subset of A.

PROOF: Consider X so renormed. Given t > 0, consider 0e = U{open sets V in
A: w($(V)) < e}. Now 0e is open; we show that 0e is dense in A. From Lemma 2.6
there exists a dense Gs subset G\ of A such that at every point t € G\ the mapping p
where p(t) = inf{||/| | : / E $(<)}, is continuous and $(<) lies in the face of a sphere of
X** of radius p{i). Now GC\G\ is residual in A. Consider a non-empty open subset W
of A and t0 € GC\G\P\W. There exists some x0 6 $(to)nX. If x0 = 0, then since p is
continuous at t0 there exists an open neighbourhood U of t0 such that $(t)C\eB(X**) ^

0 for all t € U. Then by Proposition 2.3, ${U) C eB{X**) so U C Oe H W. If
x0 ^ 0, then x0 is an u> denting point of p(to)B(X) so by Lemma 3.2(iii), x0 is a
weak* w denting point of p(to)B(X**). Then there exists g £ S(X*) and 5 > 0 such
that x0 6 5(p(<0)-B(X**), 5, S) and w(5(p(<0))-B(A'**), y, 5) < e/2. We can choose

1 < A < 2 such that x0 £ S(\p(to)B(X**), g, XS) = XS(p(to)B(X**), g, 6) and then
by the w index property (iv), u>(\S(p(to))B(X**), g~, 6) < e. Since p is continuous at
to there exists an open subset V of W containing to such that $(t)r\\p(to)B(X") ^ 0
for all t E V. So by Proposition 2.3, S(V') C \p(to)B{X**). Since $(F') g {F G
X**: F(g) ^ Ap(<o) — A5} then again by Proposition 2.3, there exists a non-empty
open subset V of V and so of W such that $(V) C 5(Ap(fo)B(A"**), ff, A*) and so

w($(F)) < e. We conclude that $ is u; upper semi-continuous on the dense Gs subset
00

Pi O\/n of A and our result follows from Theorem 2.4(ii).
1

We noted previously that the subdifferential mapping / —» d<f>(f) of a continuous
convex function <j> on an open convex subset A of X* is a minimal weak* cusco from
A into subsets of X** , so from Corollary 2.5, <j> is Frechet differentiate on a dense Gs

subset of A. D

The theorem as it now stands includes the earlier ones with spheres consisting of
denting points and spheres consisting of a denting points. Troyanski [16, p.306; 18,
Theorem 2.3] has shown that spaces which have every point of the unit sphere a denting
point (a denting point) of the closed unit ball can be equivalently renormed to have
locally uniformly rotund norm. It remains an open problem whether spaces of the class
satisfying the hypothesis of our theorem can be equivalently renormed to have locally
uniformly rotund norm.

As with the cases where every point of the unit sphere is a denting point or an
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a-denting point, we have a differentiability property for the dual norm of a Banach
space where every point of the unit sphere is an undenting point. This generalises the
earlier results given in [9, Theorem 3.2] and [7, Theorem 4.7]. We need the following
elementary property for slices, [7, Lemma 4.6].

LEMMA 4 . 4 . For a Banach space X and x G S(X) and any slice of B(X)
determined by f £ S(X*) and containing x, there exists £ > 0 such for all g € S(X*)
where \\g — f\\ < e there exists a slice of B(X) determined by g which contains x and
is contained in the slice determined by f.

Given e > 0, we denote by we(S(X*)) the set of points S(X*) which determine
slices of B(X) with w index less than e. From Lemma 4.4 we see that we(S(X*)) is

oo

open in S(X*). Further B(X) has property w for all / £ f|w1/n(5(X*)).

THEOREM 4 . 5 . A Banach space X where every point of S(X) is an u denting
point of B(X) has dual norm Frechet differentiate on a dense Gs subset of X*.

PROOF: Consider / £ S(X*) which attains its norm on S(X) say at x G S(X).
Then x is an w-denting point of B(X), so given 0 < £ < 1 there exists g £ S(X*)
and 0 < 6 < 1 such that x G S(B{X), g, 6) and w(S(B(X), g, 6)) < £. For 0 < r\ < £
consider h = r,g + (1 - 7))f. Then \\h - f\\ < 2TJ . Writing K = B{X) \ S(B{X), g, 6),
we have

sup h{K) ^ Vg(K) + (l-V) sup f{K) < r,g(x) + (1 - r,)f(x) = h(x).

So h separates x from K and defines a slice of B(X) containing x but contained in
S(B(X), f, S). Then h £ we(S{X*)). From the Bishop-Phelps Theorem we con-
clude that we(5(X*)) is dense in S(X") and since ue(S(X*)) is open in S(X*),
oo

f]u'i/n{S{X*)) is a dense Gg subset of S(X*). Then B(X) has property u> for all
l

oo

/ £ f |« i / , (5(J*)) and from Lemma3.4(ii), the duality mapping / —> D(f) on S(X*)
l

oo

is w upper semi-continuous on P|u»1/n(S(A'*)). We deduce from Theorem 2.4(ii) that
l

the norm of X* is Frechet differentiable on a dense Gs subset of S(X*). D

In a finite dimensional Banach space Xn every point of S(Xn) is an a denting
point of B(Xn) and in a reflexive Banach space X every point of S(X) is an u> denting
point of B(X). Troyanski [17, Example 4.4] has constructed for Co an equivalent norm
which is not rotund and where the weak and norm topologies do not agree at every point
of S(co) but where every point of S(CQ) is an a denting point of B(co). While Theorem
3.8 tells us that the closed unit ball for spaces of both classes we have considered is
the closed convex hull of its denting points, nevertheless the denting points are not
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necessarily dense in the unit sphere. Theorem 4.5 does give us the further information
that the closed unit ball for spaces where every point of the unit sphere is an a denting
point or CJ denting point is the closed convex hull of its strongly exposed points, [14,
p.87].
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