
4

Kinks in quantum field theory

A particle in a classical harmonic oscillator potential, mω2x2/2, has minimum en-
ergy when it sits at rest at the bottom of the potential. Then the particle’s energy
vanishes. The Heisenberg uncertainty principle however modifies this picture for
the quantum harmonic oscillator. The particle cannot sit at rest (with definite mo-
mentum) at the bottom of the potential (a definite location). Indeed, the quantum
zero point motion lifts the ground state energy to ω/2. Further, the excited states
of the simple harmonic oscillator are discrete and occur at energies (n + 1/2)ω,
n = 0, 1, 2, . . .

Just as the classical harmonic oscillator is modified by quantum effects, any
classical solution to a field theory is also modified by quantum effects. Quantum
effects give corrections to the classical kink energy owing to zero point quantum
field fluctuations. These quantum corrections are small provided the coupling con-
stant in the model is weak. To “quantize the kink” means to evaluate all the energy
levels of the kink (first quantization) and to develop a framework for doing quantum
field theory in a kink background. This involves identifying all excitations in the
presence of the kink and their interactions. The field theory of the excitations in
the non-trivial background of the kink is akin to second quantization. Finally, one
would also like to describe the creation and annihilation of kinks themselves by
suitable kink creation and annihilation operators. This would be the elusive third
quantization.

Initially we calculate the leading order quantum corrections to the energy of the
Z2 and sine-Gordon kinks. As these two examples illustrate, the precise value of
the quantum correction depends on the exact model and kink under consideration.
Yet there is one common feature – quantum corrections tend to reduce the energy
of the kink. This result is quite general and we prove it using a variational argument
in Section 4.5.

The quantum corrections to the kink mass are obtained by using a perturbative
analysis where the coupling constant is the expansion parameter, as first done
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4.1 Quantization of kinks: broad outline 51

in [38, 42]. For fixed values of the masses of particles in the field theory, the
energy of the classical solution is proportional to the coupling constant raised to
a negative power (for example, see Eq. (1.20)) and so the perturbative analysis
holds only if the kink is much more massive than the particles in the model. As the
coupling constant is increased, quantum effects become stronger and eventually
the perturbative scheme breaks down. Remarkably, the sine-Gordon model is still
amenable to analysis in this regime and, at strong coupling, the sine-Gordon kinks
become lighter than the particles. Indeed, there exists a weakly coupled description
of the model in which perturbative methods can be used: this is the massive Thirring
model in which the particles (low energy excitations of a fermionic field) correspond
to the sine-Gordon kinks at strong coupling (see Section 4.7).

The phenomenon observed in the sine-Gordon and massive Thirring models, in
which solitons of one model (Model 1) are identified with the particles of a second
model (Model 2) and vice versa in certain regimes of the coupling constants, is
known as “duality.” Model 1 is said to be dual to Model 2 if the particle-plus-soliton
spectrum of Model 1 maps onto the soliton-plus-particle spectrum of Model 2 and
vice versa. Both models describe the same physics, except that the light and heavy
degrees of freedom are interchanged.

The Z2 model does not share the remarkable symmetries of the sine-Gordon
model and less is known about the Z2 kink at strong coupling. However, the mass
of the Z2 kink can be evaluated at strong coupling using lattice field theory. We
describe these results in Section 4.8 and conclude, once again, that the kink becomes
less massive as the coupling is increased and eventually becomes massless.

In this book, we only describe quantization of the mass of the kink using canonical
techniques. A more extensive discussion of various other techniques and issues can
be found in [35, 126] and in the series of papers in [38, 42].

4.1 Quantization of kinks: broad outline

In this section, we evaluate the contribution of the zero point fluctuations to the
energy of the kink. Then we briefly discuss excited states.

The quantization procedure can be outlined as follows:

� Consider a field theory in two dimensions with compact spatial dimension of size
L , assumed large compared to any other length scale in the problem. Periodic
boundary conditions are imposed on the fields. Eventually take L → ∞.

� Consider small quantum fluctuations, ψ , about the classical kink background,
φk,

φ(t, x) = φk(x) + ψ(t, x) (4.1)
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n = 0
n = ± 1

n = ± 2

n = ± 2

n = −1
n = +1
n = 0

Figure 4.1 A trivial potential on a periodic space with period L is shown on the
left. The field modes are labeled by an integer n = 0, ±1, ±2, . . . When there is a
kink, the potential felt by the modes becomes non-trivial as depicted by the curved
bottom of the figure on the right. What used to be the n = 0 mode in the trivial
potential (on the left) becomes the lowest bound state, the zero mode, in the non-
trivial potential. Similarly a linear combination of the n = ±1 modes in the trivial
box may become a second bound state (n = +1 in this illustration) and the other
states remain unbound but shift in form and energy.

Linearize the equation for ψ and then quantize, that is, regard the field ψ as a
quantum operator

ψ(t, x) =
∑

[ak fk(t, x) + a†
k f ∗

k (t, x)] (4.2)

where a†
k and ak are creation and annihilation operators. The fk are mode functions

i.e. orthonormal solutions of the linearized equations of motion for ψ in the kink
background. The equation satisfied by fk is

∂2
t fk − ∂2

x fk + V ′′(φk(x)) fk = 0 (4.3)

� Find all the eigenmodes, fk, of the fluctuations and their eigenfrequencies ωk. As
shown in Fig. 4.1, in the presence of the kink the modes are displaced. Some of
the low-lying modes without the kink become bound states in the presence of the
kink, and the others become scattering states as L → ∞.

� Each eigenmode corresponds to a quantum harmonic oscillator with zero point
fluctuations. Sum up the zero point energies of all the modes to get the quantum
correction to the classical kink energy, Ecl,

Ẽ = Ecl +
∑

i

1

2
ωi (4.4)

In the L → ∞ limit, the sum over the modes becomes a sum over bound states
and an integral over scattering states. Also note that Eq. (4.4) is only valid to
leading order in the quantum corrections since we have ignored interactions of the
fluctuation field, ψ .
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In following this procedure, quantum field theoretic subtleties arise.

� The zero point energy of the trivial vacuum (without the kink) must be subtracted
from the zero point energy of the kink since we want to define the energy of the
trivial vacuum to be zero. Therefore

E = Ecl +
∑

i

1

2
ωi −

[
Ecl,0 +

∑
i

1

2
ω

(0)
i

]

where Ecl,0 is the classical energy of the trivial vacuum and is chosen to vanish
(Ecl,0 = 0), and ω

(0)
i are the eigenfrequencies of the modes in the trivial vacuum.

� The energy must be expressed in terms of renormalized parameters.

In the trivial vacuum, the energy eigenvalue for the mode with n nodes is

ω(0)
n =

√
k2

n + m2
ψ (4.5)

where kn = 2πn/L and n ∈ Z, the set of all integers. Now suppose that the kink
potential V ′′ is turned on slowly, i.e. that the potential term in Eq. (4.3) is multiplied
by a parameter that vanishes for the free field theory and is continuously increased
to one to get to the kink case. As the parameter increases, modes in the trivial
box evolve into modes in the kink background. Some of the low-lying modes in
the trivial box become the bound states of the kink. Let us label these modes by
the index b (for “bound”) and the remaining modes by c (for “continuum”). (In the
example of Fig. 4.1, b = 0, 1, and c is any integer except for 0, 1.) Then

E = Ecl + 1

2

∑
b

(
ωb − ω

(0)
b

) + 1

2

∑
c

[√
p2

c + m2
ψ −

√
k2

c + m2
ψ

]
(4.6)

where ωc ≡
√

p2
c + m2

ψ and mψ denotes the mass of the ψ particles. In the limit

L → ∞, the sum over continuum states becomes an integral.
The terms in Eq. (4.6) can be understood quite simply. The first term on the right

is the classical kink energy, the second contains the excess quantum corrections
owing to the zero point motion of the modes bound to the kink, and the third term
is the excess energy in the zero point motion of the modes that are not bound to the
kink. The wave numbers of the scattering modes in the background of the kink are
denoted by pν while that of the modes in the trivial vacuum by kn .

In the trivial vacuum and when L → ∞, the scattering states are plane waves,
which are both energy and momentum eigenstates with kn = 2πn/L . In the pres-
ence of the kink, the scattering states are energy eigenstates but not momentum
eigenstates and, in general, an incoming wave gets both reflected and transmit-
ted. Without specifying the field theory, further progress is possible when the
scattering potential, V ′′(φk(x)), is reflectionless. This may seem very restrictive,
but it holds for both the Z2 and sine-Gordon models and we assume it to be
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true for the remainder of this analysis. Then, asymptotically, the scattering states
behave as

ei(px−α(p)/2) as x = −L/2 → −∞ (4.7)

ei(px+α(p)/2) as x = +L/2 → +∞ (4.8)

where α(p) is a phase shift. Note that on multiplying by exp(iα(0)/2), the p = 0
state can be chosen to be purely real at x = −∞. Since the scattering potential,
V ′′(φk(x)), is also real, this implies that the imaginary part of the wavefunction can
be taken to be zero everywhere. Therefore α(0) = 0.

The phase of the scattering states has a winding number given by the total phase
change across the box. Since we have imposed periodic boundary conditions, the
total phase winding, (pL + α(p))/2π , must be an integer. This quantizes p so that

pν L + α(pν) = 2νπ (4.9)

where ν ∈ Z and we have denoted the νth wave-vector by pν .
Now that the scattering states in the soliton potential have been labeled by the

integer ν, and those when the potential vanishes by the integer n, correspondence
must be drawn between ν and n. To illustrate the problem, consider the pν = 0
mode. As discussed above, α(0) = 0 and hence, from Eq. (4.9), ν = 0 labels this
mode. Further, this mode has the lowest energy of the continuum states. In the
specific example of Fig. 4.1, this mode corresponds to the n = −1 mode in the
trivial box since the n = 0, 1 modes have become bound and have dropped out of
the set of scattering states. Therefore n = −1 corresponds to ν = 0, in this example.

With kn = 2πn/L , we can write

pν L + �(pν) = 2nπ = kn L (4.10)

where

�(pν) ≡ α(pν) + 2π (n − ν) (4.11)

The shift in going from n to ν is the change in the total winding of the phase as
the potential evolves from the trivial box to the soliton potential (see Fig. 4.1). As
long as there is no change in the relative ordering of the energy levels, the heirarchy
of the energy levels is maintained, and the mapping between n and ν is a constant
shift. Since some of the low-lying states in the trivial potential have dropped out
from the set of continuum states and have been converted into bound states, the set
of integers n is partitioned into two subsets – one for the integers that lie above
the would-be bound states and another for the integers that lie below the would-be
bound states. The map from n in each subset to ν is a constant shift but the shift is
different in the two subsets.
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Next we think of n − ν as a function of k. In the L → ∞ limit, (n − ν) is constant
everywhere except at k = 0, meaning that the derivative of n − ν with respect to k
is a Dirac delta function at k = 0,

d�

dk
= coeff.δ(k) + dα(k)

dk
(4.12)

To determine the coefficient of the delta function, let us denote by Nb the number
of states in the trivial potential that have dropped out as bound states in the kink
potential. In a large interval n+ − n− (n+ is positive and n− is negative), the cor-
responding interval in ν is smaller by Nb, and hence the coefficient of the delta
function is given by −2π Nb

d�

dk
= −Nb2πδ(k) + dα(k)

dk
(4.13)

For large momenta (and energy) the modes are unaffected by the deformation of
the potential at the bottom of the well. Hence pν → kn in this region and �(p) → 0
as |p| → ∞.

The phase shift �(pν) depends on the potential in the equation of motion for
ψ(t, x), as in Eq. (4.3). As we explain below, the scattering potential created by
the soliton background is non-perturbative. Therefore the phase shifts need not
be small owing to factors of the coupling constant. However, note that �(pν)/L
is small as L → ∞ and we need only keep terms up to linear order in 1/L .
Therefore

√
p2

ν + m2
ψ =

√(
kn − �(pν)

L

)2

+ m2
ψ

=
√

k2
n + m2

ψ − kn�(kn)

L
√

k2
n + m2

ψ

+ O

(
1

L2

)
(4.14)

Note that in the last line �(pν) has been replaced by �(kn) since pν = kn + O(1/L).
We now want to express the energy of the kink in terms of renormalized param-

eters. If we denote the renormalized mass of ψ by mψ,R and the bare mass by mψ,b,
then

m2
ψ,R = m2

ψ,b − δm2
ψ (4.15)

where δmψ denotes the quantum contribution of vacuum fluctuations to the mass
of ψ , and δm2

ψ is due to the self-coupling of the field and hence is proportional to
the coupling constant.

The expression for the energy in Eq. (4.6) is valid to leading order in quantum
corrections. The classical energy is inversely proportional to the coupling constant
(e.g. Eq. (1.20)) and so the leading corrections are independent of the coupling
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constant. Note that mψ in the last two terms in Eq. (4.6) can be freely replaced
by mψ,R since we are only evaluating the lowest order (coupling constant inde-
pendent) quantum correction to the energy and δm2

ψ is proportional to the coupling
constant. Retaining only the terms that are of leading order in the coupling constant,
expanding Ecl in δm2

ψ , and using Eq. (4.14), we get

E = Ecl[mψ,R; λR] + �Ecl + 1

2

∑
b

(
ωb − ω

(0)
b

) − 1

2L

∑
n

kn�(kn)√
k2

n + m2
ψ,R

(4.16)

where �Ecl denotes the leading order change in Ecl when replacing bare parameters
by renormalized parameters.

In the limit L → ∞, the sum over n becomes an integral

∑
n

→ L

2π

∫ +∞

−∞
dk (4.17)

Hence,

E = Ecl[mψ,R; λR] + �Ecl + 1

2

∑
b

ωb − Nb

2
mψ,R − 1

4π

∫
dk

k�(k)√
k2 + m2

ψ,R

(4.18)

where we have made use of the fact that ω
(0)
b =

√
k2

b + m2
ψ,R → mψ,R as kb ∝

1/L → 0.
On integration by parts∫

dk
k�(k)√

k2 + m2
ψ,R

=
[
�(k)

√
k2 + m2

ψ,R

]+∞

−∞
−

∫
dk

√
k2 + m2

ψ,R

d�

dk
(4.19)

Since �(k) vanishes as k → ±∞, the boundary term gives a finite contribution.
The last term contains the derivative of �(k) and is given in Eq. (4.13). Therefore
the final result is

E = Ecl[mψ,R; λR] + �Ecl + 1

2

∑
b

ωb − 1

4π
[|k|�(k)]+∞

−∞

+ 1

4π

∫
dk

√
k2 + m2

ψ,R

dα

dk
(4.20)

Our general calculation can be pushed a little further since, in one spatial dimen-
sion, all divergences can be removed by normal ordering a “renormalized potential,”
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VR, which can be written in terms of the bare potential, V (φ) [35]

VR = exp

{
1

8π

(
ln

4�2

m2

)
d2

dφ2

}
V (φ) + ε0 (4.21)

where � is a momentum cut-off, and m is the bare mass. The constant ε0 renor-
malizes the vacuum energy, and is chosen so that the expectation value of the
Hamiltonian in the ground state vanishes. For example, in λφ4 theory (Eq. (1.2)),

VR = [γ (3γ λ − m2) + ε0] + 1

2
(6γ λ − m2)φ2 + λ

4
φ4 (4.22)

where

γ ≡ 1

8π
ln

(
4�2

m2

)
�→∞= 1

8π

∫ +�

−�

dk√
k2 + m2

(4.23)

Then, the quantum correction to the mass is δm2 = 6λγ , while the quantum cor-
rection to the mass of the excitations in the Z2 model is:

δm2
ψ = 2δm2 = 12λγ (4.24)

In the sine-Gordon model (Eq. (1.51))

VR = α

β2
[1 − e−γβ2

cos(βφ)] + ε0 (4.25)

and the quantum corrections to the parameters can be read off.
Returning to the general expression in Eq. (4.21), the bare parameters occurring

in V (φ) can be chosen to absorb the cut-off dependent factors. Then the potential
VR is given entirely in terms of finite physical parameters. If the classical solution
is found for the physical value of the coupling constant, denoted by λR, then �Ecl

only depends on the correction to the mass term, δm2
ψ ,

�Ecl = E ′
cl[mψ,R; λR]

2mψ,R
δm2

ψ (4.26)

where E ′
cl denotes derivative of Ecl with respect to the mass, mψ,R. At this stage,

we are still left with the last two terms in Eq. (4.20) involving the phase shifts.
However, there is no general prescription for finding the phase shifts, and each
problem has to be dealt with individually.

Equation (4.20) is our final general expression for the ground state energy of the
quantized kink provided that the classical kink solution gives rise to a reflectionless
potential. To make further progress one needs to find Ecl[mψ,R; λR], �Ecl, ωb, and
the derivative of α(k). These quantities are model specific and we shall find them
in the λφ4 and sine-Gordon models in the next two sections.
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Before going on to some examples, it is helpful to track the coupling constant
dependence of the various terms in Eq. (4.16). We write the potential as

V (φ) = −m2

2
φ2 + εS(φ) (4.27)

where m is the mass parameter, ε is the small coupling constant, and S is some
unspecified function of φ, perhaps containing other parameters. The classical energy
term in Eq. (4.16) is inversely proportional to the coupling constant. So the leading
order correction is independent of the coupling constant. In the second term, δm2

ψ

is proportional to the coupling constant but E ′
cl is inversely proportional to the

coupling constant. Hence the product is independent of the coupling constant. Next
we come to the coupling constant dependence of the energy eigenvalues and the
phase shifts. The spectrum of excitations is found by solving for eigenmodes in
the kink background. The kink background provides a potential with which the
excitations interact. The important point here is that this potential is non-trivial
even to zeroth order in the coupling constant. The vacuum expectation value of φ,
denoted by φ0, is found by minimizing V . Therefore

S′(φ0)

φ0
= m2

ε
(4.28)

Then

V ′′(φ0) = −m2 + εS′′(φ0) (4.29)

and approximating S′′(φ0) as S′(φ0)/φ0,

V ′′(φ0) ∼ −m2 + ε
S′(φ0)

φ0
∼ m2 (4.30)

Hence the scattering potential in Eq. (4.3) for the mode functions is independent
of the coupling constant, and the phase shifts, α(k), are non-trivial even to zeroth
order in the coupling constant.

As we see in the specific examples given below, both δm2
ψ and the last sum in

Eq. (4.16) are divergent. However, the divergences cancel, leading to a finite result
for the energy.

4.2 Example: Z2 kink

We now find the energy of the quantized Z2 kink by evaluating explicitly the terms
in Eq. (4.16).

The classical energy piece is already known from Eq. (1.20)

Ecl[mψ,R; λR] = 2
√

2

3

m3

λR
= m3

ψ,R

3λR
(4.31)
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Then �Ecl is given by Eq. (4.26) and E ′
cl is found by differentiating Eq. (4.31)

E ′
cl[mψ,R; λR] = m2

ψ,R

λR
(4.32)

The mass correction δm2
ψ arises owing to the interaction term λφ4/4 in this

model. The calculation of δm2
ψ is quite involved since it requires renormalization

in a model with spontaneous symmetry breaking, which means that we should
find the mass correction from the action in Eq. (1.5). Then there are both cubic
and quartic interactions. This calculation can be found in quantum field theory
textbooks, for example [119]. The end result is

δm2
ψ = 3λR

2π

∫
dk√

k2 + m2
ψ,R

(4.33)

The integral in Eq. (4.33) is divergent. However it is only one term in the expression
for the quantum kink energy in Eq. (4.18). In particular, the last term with the
phase shifts is also divergent, but the quantum kink energy is finite since the two
divergences cancel. Note that we can replace mψ by mψ,R in the final integral since
we are only evaluating the leading order correction.

Next consider the terms in Eq. (4.16) that involve the spectrum of fluctuations
about the classical kink. To find the spectrum, substitute Eq. (4.1) in the field
equation, Eq. (1.4), and expand to lowest non-trivial order in ψ . This was already
done in Section 3.2 and we now summarize the results

ω0 = 0, χ0 = sech2z

ω1 =
√

3

2
mψ, χ1 = sinhz sech2z

mψ < ω < ∞, χk = eikx [3 tanh2z − 1 − w2k2 − i 3wk tanhz]

where z = x/w = mψ x/2, and the dispersion relation is

ω2
k = k2 + m2

ψ (4.34)

Note that the eigenvalues ωk are independent of the coupling constant because λ

does not occur in Eq. (3.10) if mψ = √
2λη is held fixed. However, this statement

is only true to leading order in λ because the mass parameter, the kink width, and
indeed the form of the kink solution get modified owing to quantum corrections,
and induce λ dependence in the spectrum. Since we are only working to leading
order in quantum corrections, the mass parameter mψ entering Eq. (3.10) and the
definition of the kink width, w, are the same as mψ,R.
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The next step is to impose periodic boundary conditions with period L → ∞ on
the scattering state. For this we find the asymptotic behavior of χk

χk → eikz(2 − w2k2 ∓ i 3wk) ∝ exp{i(kz ± α(k)/2)}, z → ±∞ (4.35)

from which the phase shifts follow

α(k) = 2 tan−1

[
3wk

w2k2 − 2

]
(4.36)

Hence

dα

dk
= −6w

w2k2 + 2

(w2k2 + 1)(w2k2 + 4)
(4.37)

and

�(k) → 6

wk
, |k| → ∞ (4.38)

Now we combine all the terms in Eq. (4.20)

E = m3
ψ,R

3λR
+

√
3

4
mψ,R − 3

2π
mψ,R − 3m3

ψ,R

16π

∫ +∞

−∞

dk√
k2 + m2

ψ,R

1

k2 + m2
ψ,R/4

(4.39)

The last integral is done easily yielding the final result for the kink mass with
leading order quantum correction

E = m3
ψ,R

3λR
−

(
3

π
− 1

2
√

3

)
mψ,R

2

= m3
ψ,R

3λR
− 0.33mψ,R (4.40)

Note the minus sign in front of the quantum correction to the energy. In Section 4.5
we show that this is a general feature.

4.3 Example: sine-Gordon kink

To quantize the sine-Gordon kink of Section 1.9, we follow the same procedure as
for the Z2 kink. The mode functions now satisfy

−d2ψ

dX2
+ (2 tanh2 X − 1)ψ = ω2

m2
ψ

ψ (4.41)
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where X ≡ mψ x . The kink solution, from Eq. (1.52), is

φk = 4

β
tan−1

(
e
√

αx
) ≡ 4mψ√

λ
tan−1

(
emψ x

)
(4.42)

where λ ≡ αβ2. The classical energy (Eq. (1.55)) is

EsG,cl = 8

√
α

β2
≡ 8

m3
ψ

λ
(4.43)

The spectrum has only one bound state, the translational zero mode given by

ω1 = 0, ψ0 = dφk

dx
= 2m2

ψ√
λ

sech(mψ x) (4.44)

The scattering state with wave-vector k can be written quite generally in terms of
hypergeometric functions (see [113], Vol. II, Section 12.3, or Appendix C)

ψκ = N (cosh X )iκ X F

(
−iκ − 1, −iκ + 1

2
+ 3

2
|1 − iκ| e−X

eX + e−X

)
(4.45)

where N is a normalization factor and κ = k/mψ corresponds to the wave-vector.
The phase shifts are found by taking the asymptotic forms of Eq. (4.45)

ψκ → Neiκ X , X → ∞
→ Nei(π+2θ )eiκ X , X → −∞ (4.46)

where tan θ = κ . Hence the phase shift is

αk = π − 2 tan−1

(
k

mψ

)
(4.47)

Therefore

dαk

dk
= −2mψ

k2 + m2
ψ

(4.48)

At large |k|, �(k) (as needed in Eq. (4.20)) is given by

�(k) = 2mψ

k
, |k| → ∞ (4.49)

To find �Ecl occurring in Eq. (4.20), we can use the renormalized potential in
Eq. (4.25). The parameter β, which occurs in the argument of the cosine function,
is taken to be the physical (renormalized) value, while

(
√

α)b = (
√

α)R

(
1 + β2

2
γ

)
(4.50)
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62 Kinks in quantum field theory

to leading order in β2. The subscripts refer to bare and renormalized quantities and
γ is defined in Eq. (4.23). Therefore

�Ecl = mψ,R

2π

∫ +�

−�

dk√
k2 + m2

ψ

(4.51)

Finally, with
∑

ωb = 0, we can put together all the various terms in Eq. (4.20)
to get

E = 8m3
ψ,R

λR
+ mψ,R

2π

∫ +�

−�

dk√
k2 + m2

ψ

+ 0 − mψ,R

π
− mψ,R

2π

∫ +�

−�

dk√
k2 + m2

ψ

= 8m3
ψ,R

λR
− mψ,R

π

= 8m3
ψ,R

λR
− 0.32mψ,R (4.52)

Once again the quantum correction is negative and, coincidentally, quite close to
the Z2 value (see Eq. (4.40)).

4.4 Quantized excitations of the kink

So far we have only calculated the quantum correction to the mass of the kink in
its ground state. Now consider the excited states of the kink.

As in the second quantization of a free quantum field theory, particle creation
and annhilation operators are introduced for each of the excitation modes of the
kink. As we shall see, this is straightforward except for the zero mode. The end
result is a procedure for doing quantum field theory with both particles and kinks
included in the spectrum of states. Here we only give some introductory remarks.
For a more extended discussion see [67, 126].

Let us denote the bound state mode functions by Fb(t, x) and the scattering
mode functions by fk(t, x). The t dependence is of the form exp(−iωi t) where ωi

is the frequency of the bound or scattering mode. Then the second quantized field
operator is

φ = φk(x) +
∑

b

[
ĉb Fb(t, x) + ĉ†b F∗

b (t, x)
] +

∑
k

[
âk fk(t, x) + â†

k f ∗
k (t, x)

]
(4.53)

where φk is the classical kink solution, c†b, cb are creation/annihilation operators
for the bound states, and similarly a†

k , ak are creation/annihilation operators for the
scattering states. Now, for the zero mode, ω = 0 and F0(t, x) = F∗

0 (t, x). Therefore
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4.5 Sign of the leading order correction 63

the zero mode contribution to the sum is

[ĉ0 + ĉ†0]F0(x) (4.54)

Since c0 and c†0 are only present in the combination c0 + c†0 let us define b0 = ĉ0 + ĉ†0
which is then the annihilation operator for the zero mode. However, note that
b†

0 = b0 and so [b0, b†
0] = [b0, b0] = 0: the zero mode is classical as the operator

b0 commutes with all other operators. This is to be contrasted with [ak, a†
p] =

2πδ(k − p).
Just as the translation mode is a bosonic zero mode, there can also be fermionic

zero modes that we discuss in Chapter 5. In that case, the creation and annihilation
operators satisfy anticommutation relations leading to {b0, b†

0} = 0. This relation
has the remarkable consequence of leading to fractional quantum numbers as we
discuss in Chapter 5.

4.5 Sign of the leading order correction

A striking feature of the leading order quantum corrections to the energies of the
Z2 and sine-Gordon kink is that they are negative. In other words, quantum effects
reduce the mass of the kink. A variational argument [104] (Coleman, S., 1992,
private communication) shows that this observation holds true quite generally in
one dimension.1

Let the Hamiltonian of the 1 + 1 dimensional system be

H ≡
∫

dxH =
∫

dx [H0 + V (φ)] (4.55)

where φ is a scalar field,

H0 ≡ 1

2
π2 + 1

2
(∂xφ)2 (4.56)

and π is the canonical field momenta. Written in this way, the parameters entering
the Hamiltonian are bare parameters and subject to renormalization. In one spatial
dimension, however, it can be shown that [35]

H = Nm [H0 + VR] (4.57)

where Nm denotes normal ordering with respect to free particles of mass m, and
the renormalized potential is (Eq. (4.21))

VR = exp

{
1

8π

(
ln

4�2

m2

)
d2

dφ2

}
V (φ) + ε (4.58)

1 The conclusion may not hold if the model also contains fermionic fields.
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64 Kinks in quantum field theory

where � is an ultraviolet momentum cut-off and ε is a constant to be chosen such
that 〈0|H |0〉 = 0 where |0〉 is the true ground state of the model.

The energy of the kink, including the contribution of quantum fluctuations in the
ground state, is

E = k〈0|H [φk + ψ]|0〉k (4.59)

where |0〉k denotes the vacuum for the quantum fluctuations, ψ , around the classical
one kink state φk.

Straightforward manipulation now gives the quantum correction to the kink mass

E − Ecl,R = k〈0|H [φk + ψ] − H [φk]|0〉k

=
∫

dx k〈0|Nm(H0[φk + ψ] − H0[φk] + VR[φk + ψ] − VR[φk])|0〉k

where Ecl,R is the energy of the classical solution obtained with the renormalized
potential, VR. Next we use the variational principle, which states that the ground
state energy of a system is minimized in its true ground state, and the expectation
of the Hamiltonian in any other trial state gives an upper bound to the ground state
energy. If we denote the perturbative vacuum state – the state with zero particles of
mass m – by |0, m〉, then

E ≤ Ecl,R +
∫

dx 〈0, m|Nm(H0[φk + ψ] − H0[φk] + VR[φk + ψ] − VR[φk])|0, m〉
= Ecl,R

The last line follows since there are no ψ independent terms in the expectation
value under the integral,2 and the annihilation operators of ψ occur to the right
owing to normal ordering and annihilate the trial vacuum state.

Note that Ecl,R is the energy of the classical solution found by minimizing HR[φ],
i.e. the Hamiltonian in Eq. (4.55) but with the potential given in Eq. (4.58). Since the
true ground state of the system is not known, the constant ε is not known either. The
potential VR can be minimized, but there is no guarantee that the minimal value of
VR will be zero. Therefore Ecl,R might get an infinite contribution from integrating
min(VR) over all of space. Then the variational bound E ≤ Ecl,R is not very useful.
However, we do know the value of ε to lowest order in the coupling constant and
this is precisely so that 〈0, m|H |0, m〉 = 0. This coincides with choosing ε so as to
make min(VR) = 0. Hence the bound

E ≤ Ecl,R = Ecl (4.60)

2 To see this, note that the expectation value vanishes if ψ = 0.

https://doi.org/10.1017/9781009290456.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290456.005


4.6 Boson-fermion connection 65

where Ecl denotes the classical energy without any quantum corrections, is mean-
ingful to leading order in perturbation theory and it provides us with the completely
general result that the lowest order correction to the soliton energy is negative.

4.6 Boson-fermion connection

A bosonic field, φ, in quantum field theory satisfies the equal time commutation
relation

[φ(x, t), φ̇(y, t)] = δ(x − y) (4.61)

Alternatively, a fermionic field, ψ , satisfies the anticommutation relations

{ψa(x, t), ψ†
b(y, t)} = δ(x − y)δab (4.62)

where a, b = 1, 2 label the two components of the spinor in one spatial dimension.
It is remarkable that one can construct explicitly a fermionic field ψ satisfying
Eq. (4.62) in terms of a bosonic field φ that satisfies Eq. (4.61) [108].

The connection between ψa and φ is

ψ1(x) = C : eP+(x) :, ψ2(x) = −iC : eP−(x) : (4.63)

where the c-number C is defined in terms of a mass parameter µ and another cut-off
parameter, ε,

C =
( µ

2π

)1/2
eµ/8ε (4.64)

The operators P± contain a free parameter β and are defined by

P±(x) = −i
2π

β

∫ x

−∞
dξ φ̇(ξ ) ∓ iβ

2
φ(x) (4.65)

The symbol :: in Eq. (4.63) denotes normal ordering with respect to the mass µ.
This means that the field φ is to be treated as a free field with mass parameter
µ and the quantum operator, φ, is expanded in terms of creation and annihilation
operators that create and destroy particles of this free field theory. A normal ordered
operator contains various products of creation and annihilation operators with the
annihilation operators always occurring on the right. It is understood that the in-
tegral in Eq. (4.65) is cut off at large ξ by a factor exp(−εξ ). Note that normal
ordering is a symbol and should be treated carefully – normal ordering of strings
of operators should be done prior to commuting operators that occur within the
string.
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66 Kinks in quantum field theory

To check if Eq. (4.62) is satisfied for x �= y, we use the identity (see Appendix D)3

: eA+B := e−[A+,B−] : eA :: eB := e−[B+,A−] : eB :: eA : (4.66)

where A and B are any two operators that can be written as a linear sum of terms
involving only creation or annihilation operators

A = A+ + A−, B = B+ + B− (4.67)

The commutators [A+, B−] and [B+, A−] are assumed to be c-numbers. Insertion
of Eq. (4.66) in Eq. (4.62) gives the commutation relation in Eq. (4.61) for x �= y.

It is harder to check that the commutation relations in Eq. (4.61) hold when
x = y. Since products of quantum operators at the same point are singular, the
commutator must be evaluated at two different points in space, x and y, followed
by the coincidence limit y → x . We now outline the scheme employed in [108].

We want to check the anticommutation relation

{ψa(x), ψ†
b(y)} = Zδ(x − y) (4.68)

where the constant Z , possibly infinite, has been introduced in recognition of the
fact that the fields get renormalized. Rather than check Eq. (4.68), we can check
the equivalent commutation relation

[ jµ(x), ψ(y)] = −
(

g0µ + β2

4π
εµ0γ 5

)
ψ(x)δ(x − y) (4.69)

where the current jµ has been regularized using point-splitting and is defined by

jµ(x) = lim
y→x

{[
δµ0 + β2

4π
δ

µ

1

]
[µ(x − y)]σ ψ̄(x)γ µψ(y) + Fµ(x − y)

}
(4.70)

where σ is a regularizing parameter and Fµ(x − y) an unspecified c-valued func-
tion. The γ -matrices are defined by the algebra

{γ µ, γ ν} = 2gµν, γ 5 = iγ 0γ 1 (4.71)

where gµν = diag(1, −1) is the two-dimensional Minkowski metric. An explicit
representation of the γ -matrices is given in Eq. (5.15). In Eq. (4.69), εµν is the
totally antisymmetric tensor.

First the current jµ is evaluated with ψa as given in Eq. (4.63). The evaluation
requires

[φ+(x, t2), φ−(y, t1)] = �+[(x − y)2 − (dt + iε)2] (4.72)

3 In the literature it is sometimes incorrectly stated that the identity eA+B = e[B,A]/2eAeB (no normal ordering)
is being used.
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where dt = t2 − t1 and �+ is the propagator. For small x − y

�+ = − 1

4π
ln[µ2{(x − y)2 − (dt + iε)2}] + O((x − y)2) (4.73)

By differentiating Eq. (4.72) we can also obtain the commutators of time derivatives
of φ+ and φ−. These appear in the evaluation of jµ since ψ is defined in terms of
φ̇ in Eq. (4.63).

The result for jµ is singular in the limit y → x except for a single choice of the
regularizing parameter, σ , occurring in the definition of jµ. This single choice is

σ = β2

8π

(
1 − 4π

β2

)2

(4.74)

With this value of σ , the commutator in Eq. (4.69) can be verified. Thus the
ψ operator indeed satisfies the anticommutation relations of a fermionic field.
Furthermore, the current can be explicitly calculated, leading to

jµ = − β

2π
εµν∂νφ (4.75)

To summarize, given a quantum scalar field in 1 + 1 dimensions, it is possi-
ble to construct a fermionic field from it via the relation (4.63). Starting with a
fermionic field, a bosonic field may be constructed from it via Eq. (4.75). Note that
the transformations from bosons to fermions and vice versa hold at the quantum
operator level and not just at the level of expectation values. Further, they hold
for any choice of interactions in the bosonic or the fermionic model. However, in
the case when the bosonic model is the sine-Gordon model, the fermionic model
obtained by transforming to the fermionic variables is another well-known model,
namely the massive Thirring model as we now describe.

4.7 Equivalence of sine-Gordon and massive Thirring models

The sine-Gordon model is given by the Lagrangian (Eq. (1.51))

LsG = 1

2
(∂µφ)2 − α

β2
(1 − cos(βφ)) (4.76)

while the massive Thirring model is

LmT = iψ̄ �∂ψ − mψ̄ψ − g

2
ψ̄γ µψ ψ̄γµψ (4.77)

where ψ is a two-component fermionic field.
In [34] (also see [35]) it is shown that the sine-Gordon model does not have a

well-defined ground state for β2 > 8π . To clarify what this means, consider the
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simple example of a free field theory

L free = 1

2
(∂µφ)2 − δ

2
φ2 (4.78)

This model has a well-defined ground state only in the range δ ≥ 0. The model does
not have a well-defined ground state for δ < 0. Similarly the sine-Gordon model
only has a ground state for a definite range of parameters, though the reasons are
much more subtle.4 The sine-Gordon only has a well-defined ground state if the
parameter β2 is restricted to lie in the interval (0, 8π ).

In the range, 0 ≤ β2 ≤ 8π , there is a one-to-one mapping between vacuum
expectation values of a string of operators in the sine-Gordon model to those in
the massive Thirring model. This means that any vacuum expectation value in the
sine-Gordon model has a “corresponding” vacuum expectation value in the massive
Thirring model. This strongly suggests that the two models are equivalent, even at
the operator level [35].

As we have seen in the last section, there is indeed a two-component fermionic
field, ψ , that can be constructed from a bosonic field φ (Eq. (4.63)). In [108] it was
shown that ψ also obeys the equations of motion of the massive Thirring model
if the bosonic field φ obeys the equations for the sine-Gordon equation with the
coupling constant g written in terms of the coupling constant β as

g

π
= 1 − 4π

β2
(4.79)

Note that when the sine-Gordon model is weakly coupled (small β), the massive
Thirring model is strongly coupled and vice versa. Hence the sine-Gordon model
and the massive Thirring model are completely equivalent as quantum field theories
but one is a better description at small β (large g) and the other at large β (small g).

What has the equivalence of the sine-Gordon and massive Thirring models got
to do with kinks? Consider the commutation relations between φ and ψ . Using
Eq. (4.63) and the identity (see Appendix D) [A, : eB : ] =: [A, eB] : with A =
φ(y) and : eB := ψ we find

[φ(y), ψ(x)] = 2π

β
ψ(x), (y < x) (4.80)

[φ(y), ψ(x)] = 0, (y > x) (4.81)

Now consider the action of ψ(x) on an eigenstate, |s〉 of the field operator φ. Let
us choose this eigenstate to be such that

φ|s〉 = 0 (4.82)

4 For example, in contrast to the model in Eq. (4.78), the classical sine-Gordon model has well-defined global
minima for all values of the coupling constant β.
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If we write |s ′〉 = ψ(x)|s〉, the relation in Eq. (4.80) gives

φ(y)|s ′〉 = 2π

β
|s ′〉, (y < x) (4.83)

and Eq. (4.81) gives

φ(y)|s ′〉 = 0, (y > x) (4.84)

Therefore the state obtained after action by ψ(x) is one where the value of φ is 2π/β

for y < x and 0 for y > x . In other words, the field ψ(x) creates a step-change of φ.
The step-function profile is viewed as a “bare kink” which gets dressed by quantum
effects that produce a smooth kink profile with some finite width. So the field ψ(x)
is the creation operator for a (bare) soliton at location x . In the Thirring model, the
field ψ(x) is interpreted as the creation operator for a fermion located at x . Hence
the sine-Gordon kink is identified with the fermion in the massive Thirring model.

The topological charge on a sine-Gordon kink is

Qk =
∫

dx j0
B =

∫
dx j0

F (4.85)

where the fermionic current is defined in terms of the bosonic current in Eq. (4.75).
Therefore the fermion in the massive Thirring model carries the topological charge
of the sine-Gordon kink. In other words, the kink of the strongly coupled sine-
Gordon model is better described as a weakly coupled fermion of the massive
Thirring model. Here we see the duality between particles and solitons.

Can we also interpret the bosonic particles of the sine-Gordon model in terms of
“solitons” of the massive Thirring model? The massive Thirring model only contains
fermions, and classical solutions of the Dirac equation do not have the interpretation
of solitons. This is because the fermionic fields anticommute and fermions obey the
Pauli exclusion principle. Instead a classical solution of the Dirac equation is a state
that one (and only one) fermion can occupy. However, there can be bound states
of two or more fermions since the force between a fermion and an antifermion is
attractive for g > 0. A bound state of two fermions can be shown to correspond to
a particle of the sine-Gordon field φ. If the fermions in the weakly coupled massive
Thirring model have mass m, then the bound state energy is approximately 2m
since it involves two fermions. However, the binding energy decreases (becomes
more negative) with increasing interaction strength, g, and eventually the bound
state becomes lighter than a single fermion. At this stage, a suitable description of
the system is in terms of the bound state being the fundamental degree of freedom
as in the sine-Gordon model.

The bound state of two massive Thirring fermions is also a bound state of
two sine-Gordon kinks i.e. a breather. Hence it should be possible to interpret
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the breather as a particle in the sine-Gordon model. This is seen to be true when the
breather is quantized [38–41, 35]. Then, to lowest order, the energy levels of
the quantized breather are equal to the mass of one, two, three, etc. particles of
the sine-Gordon particle.

4.8 Z2 kinks on the lattice

Lattice field theory provides another tool to probe the quantum nature of solitons
and, in particular, the variation of mass with coupling constant.

The starting point is the action for the Z2 model defined in Eq. (1.2). The action
is to be inserted in the Feynman path integral, which can then be used to find
expectation values for any quantum operator. In the Feynman path integral, it is
necessary to integrate over field configurations, and this is done numerically on a
discretized Euclidean space-time. The reader is referred to the lattice literature for
details [37, 112, 141]. Here we shall give the results relevant to the Z2 kink.

The mass of a Z2 kink is defined as the expectation value of a suitable operator
defined on the lattice in the limit that the lattice spacing, a, goes to zero. One
important issue is that there are several different candidate operators on the lattice
that all go to the correct limit as a → 0 and, in practice, it is not possible to take the
limit all the way to a = 0. At best, the numerical analysis gives the expectation of
the operator on the lattice for several different values of a and then some scheme
must be found for extrapolating the results to a → 0. In [32], the authors evaluate
the mass of the Z2 kink using two different lattice operators. The results are shown
in Fig. 4.2. We note that the kink mass decreases monotonically as the coupling
constant increases and remains bounded by the classical mass. At a certain coupling,
the kink mass goes to zero, and the kink, not the φ quanta, is the lightest degree of
freedom in the model.

The mass of the sine-Gordon kink has been calculated analytically for a range
of parameters in [156] (also see [35]).

4.9 Comments

Several researchers have taken alternate paths to studying quantized kinks. In
supersymmetric theories there is greater control over quantum corrections and the
mass can, in some cases, be evaluated exactly [51]. Alternate methods to quantize
supersymmetric kinks have also been developed in [66]. Variational methods to
study the λφ4 theory have been developed in [49]. The scattering of kinks in classi-
cal and quantum theory has been studied in [153]. Kink masses and scattering have
also been calculated in [132] using the Hartree approximation.
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Classical prediction
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Figure 4.2 The figure shows how the mass of the Z2 kink depends on the inverse
coupling constant, β0 = 1/λ0, where λ0 ≡ 6λa2 is the coupling constant in the
discrete theory on a 48 × 48 lattice and a is the lattice spacing. (The factor of 6
is due to our choice of 1/4 in the λ term in Eq. (1.2) as opposed to 1/4! in [32].)
The lattice mass parameter, r0 ≡ −m2a2, is held fixed at r0 = −2.2. From the
plot we see that the classical value of the kink mass is larger than the quantum
value. The one-loop corrected mass (see Section 4.2) and the mass found by using
two different choices of the lattice mass operator are also shown. The kink mass
vanishes at β0 = 0.0804. [Figure reprinted from [32].]

The construction of fermion operators from boson operators and vice versa has
been discussed and used extensively in condensed matter applications under the
name of bosonization. A review, in addition to an historical introduction, may be
found in [44]. Finally, the technique of bosonization has also been applied to thermal
systems in [69].

4.10 Open questions

1. The quantum corrections to the Z2 and sine-Gordon kinks were calculated explicitly using
the phase shifts. However, the phase shift approach only works if the potential U (x) is
reflectionless. What are the conditions necessary for a potential to be reflectionless? Are
reflectionless potentials always in factorizable form (see Section 3.3)? (The example of
a step-function potential shows that the converse is not true.)
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2. We have shown that the leading order quantum correction to the kink mass is always
negative. Can this statement be generalized to all orders? Can one show that the mass
of a kink goes to zero in the strong coupling limit? Or perhaps that it is monotonically
decreasing as a function of increasing coupling constant?

3. If the Z2 kink at strong coupling is to be viewed as a particle, then the particle must obey
unusual statistics because two kinks cannot be next to each other. Discuss this statistics
and its implications for the dual model.

4. From the SU (5) × Z2 example we learned that a classical kink may be embedded in
many different ways in “large” models. On quantization, do the different embeddings
correspond to distinct degrees of freedom?

5. Does the addition of fermionic particles change the conclusion that quantum corrections
always reduce the energy of a kink?

6. For the sine-Gordon model we have explicitly seen that there is a relation between kinks
and particles. It seems reasonable that the connection holds in other models too. In 3 + 1
dimensions, we could expect the connection to exist between magnetic monopoles and
observed particles (e.g. [162, 103]). Construct a model that has families of solitons,
similar to the electron, muon, and tau families observed in Nature (see [122]).

7. In Section 3.1 we have discussed the existence of quasi-breather solutions called
“oscillons” in the Z2 model. Can quantum oscillons have an interpretation that is similar
to quantized breathers as discussed at the end of Section 4.7?
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