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Abstract. We review the most standard impact monitoring techniques. Linear methods are
the fastest approach but their applicability regime is limited because of the chaotic dynamics of
near-Earth asteroids. Among nonlinear methods, Monte Carlo algorithms are the most reliable
ones but also most computationally intensive and so unpractical for routine impact monitoring.
In the last 15 years, the Line of Variations method has been the most successful technique
thanks to its computational efficiency and capability of detecting low probability events deep
in the nonlinear regime. We also present some more recent techniques developed to deal with
the new challenges arising in the impact hazard assessment problem. In particular, we describe
keyhole maps as a tool to go beyond strongly scattering encounters and how to account for
nongravitational perturbations, especially the Yarkovsky effect, when their contribution is the
main source of prediction uncertainty. Finally, we discuss systematic ranging to deal with the
short-term hazard assessment problem for newly discovered asteroids, when only a short observed
arc is available thus leading to severe degeneracies in the orbit estimation process.
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1. Introduction
Impact monitoring is a crucial component of the mitigation or elimination of the haz-

ard posed by asteroid impacts. Once an asteroid is discovered, it is important to timely
identify the risk posed by future Earth encounters so that astronomers can collect ad-
ditional observations to better characterize the orbit and hopefully rule out the possible
impacts. The detection of a possible impact hazard should take place as early as possible
to maximize the time available for deflection or other mitigation efforts.

In March 1998 B. G. Marsden, who at the time was the director of the Minor Planet
Center, issued IAU Circular 6837 (Marsden 1998), accompanied with a press release.
The latter claimed that asteroid 1997 XF11 was going to make a close Earth encounter
in 2028, when “... the chance of an actual collision ... (would be) ... small but ... not
entirely out of the question ...”. Because of the estimated size of 1997 XF11, a kilometer-
size object, an impact would be catastrophic. At that time the Minor Planet Center had
a policy of holding onto the data for a time period of about a month before making
them available to other users. This policy would have made it impossible for other orbit
computing centers to independently assess the 2028 hazard. However, due to the clamor
that immediately accompanied the issue, the data were made available to selected groups
with a much shorter delay. Then, independent calculations performed at JPL and the
University of Helsinki showed that the original claim by Marsden was essentially wrong
at that there never was a significant chance of a collision in 2028 (Yeomans et al. 1998).

The 1997 XF11 case had the merit of showing that the asteroid community was still
unprepared to deal with the asteroid impact hazard assessment problem. In particular,
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Figure 1. Left: b-plane with respect to the asteroid’s trajectory relative to the Earth. Right:
b-plane coordinates and interpretation. The solid line circle is for the actual size of the Earth,
the dashed circle is the impact cross section.

it was clear that astrometric data needed to be timely disseminated and that impact
prediction calculations had to be independently validated to make sure that the results
were transparent and accurate. The situation has much improved since then: the Minor
Planet Center distributes astrometric observations of near-Earth asteroids on a daily
basis and within hours two independent impact monitoring systems, JPL’s Sentry† and
University of Pisa’s NEODyS‡, compute whether or not impacts are possible for new
discoveries as well as for asteroids with new observations.

2. The b-plane
One of the most common and convenient frameworks to perform the hazard assess-

ment is the so-called b-plane (Öpik 1951; Kizner 1961; Öpik 1976; Valsecchi et al. 2003).
Whenever there is a close encounter between an asteroid and the Earth, the b-plane is
defined as the plane with the Earth at the origin and normal to the asymptotic relative
incoming velocity of the asteroid v∞. The position b of the inbound asymptote deter-
mines whether or not there is a collision between the asteroid and the Earth. Grazing
impacts occur when |b| = b⊕, where

b⊕ = R⊕

√
1 +

2GM⊕
R2

⊕|v∞|2 ,

where GM⊕ and R⊕ are the dynamical parameter and radius of the Earth, respectively.
Note that b⊕ is scaled from R⊕ to account for the gravitational focusing of the Earth
during the encounter. Impacting trajectories correspond to |b| < b⊕, which is often
referred to as impact cross section.

The coordinates (ξ, ζ) on the b-plane are oriented in such a way that the projection
of the heliocentric velocity of the Earth v⊕ on the b-plane is oriented as −ζ and ξ =
v∞×ζ/|v∞|. Thus, the ζ coordinate is related to the along-track position of the asteroid
and so reflects how early or late the asteroid is for the Minimum Orbital Intersection
Distance (MOID, Gronchi 2005), which is approximated by |ξ| (for more details see
Valsecchi et al. 2003). Figure 1 gives a schematic representation of the b-plane.

† http://neo.jpl.nasa.gov/risks
‡ http://newton.dm.unipi.it/neodys
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3. Linear impact monitoring
Given a perfect knowledge of an asteroid’s orbit it is possible to establish whether or

not there is going to be an impact on Earth. However, orbits are only known within an
uncertainty region, whose extent depends on the amount and quality of the observational
data (e.g., see Farnocchia et al. 2015b).

The method to be used to perform the hazard assessment depends on the validity of
linear approximations when describing the orbital uncertainty. The linear method can be
used when the uncertainty of the orbit determined by fitting the astrometric observations
and its mapping to the time of the Earth encounter and the corresponding b-plane are well
approximated by ellipsoids. When these approximations are valid, the uncertainty on the
b-plane is expressed by an ellipse. Therefore, we have a normal probability distribution
fb defined by a mean b̄ corresponding to the nominal b-plane prediction and a covariance
matrix Γb . The impact probability IP can be computed as integral over the Earth cross
section:

IP =
∫
|b|<b⊕

fb db .

This numerical calculation is fast, however it is important to make sure that the linear-
ity assumptions are met. While an observational arc of several days is generally sufficient
to attain linearity in the orbit determination process, orbital propagation is likely to
introduce nonlinearities. In fact, the position uncertainty tends to stretch along the or-
bit, which is curved, and so when the uncertainty becomes large enough ellipsoids in
Cartesian space are not an adequate representation. Moreover, near-Earth asteroids ex-
perience planetary encounters and the differential gravitational pull of the planets may
scatter neighboring trajectories. As a rule of thumb the linear method for impact mon-
itoring is reliable for IP > 0.001, below this threshold we are generally far from the
nominal orbit and so the linear approximation can easily prove inaccurate.

4. Monte Carlo approach
The idea of Monte Carlo methods is to randomly generate a large number N of orbital

samples, propagate them in the future, and count the number of impacts nimp . The
impact probability is simply computed as IP = nimp/N . The left panel of Fig. 2 shows
the example of asteroid (99942) Apophis for the potential impact of April 2029 based
on the observations available in December 2004 when the impact probability was ∼ 3%.
† The 2029 impact for Apophis was later ruled out (Chesley 2006; Giorgini et al. 2008;
Farnocchia et al. 2013b; Vokrouhlický et al. 2015).

When the orbit determination is linear and the least squares orbit x̄ has an ellipsoidal
uncertainty expressed by a covariance Γx , the orbital samples can be randomly generated
from the normal distribution with mean x̄ and covariance Γx . In case the orbit deter-
mination is somewhat nonlinear but it is still possible to find a converging least squares
solution, one can iteratively randomly perturb the observational dataset according to
the observation uncertainties and add the corresponding least squares solution to the
sequence of random orbital samples.

Monte Carlo methods are the most robust and conceptually simple approach but also
the most computationally intensive. For instance, to achieve a resolution of 10−6 in impact
probability, at least 106 samples are required. Actually, to deal with Poisson statistics
uncertainties, one needs ∼ 4×106 samples or so. Propagating this large number of samples
to scan for possible impacts in the next hundred year would take few days on a single core,

† http://neo.jpl.nasa.gov/news/news146.html
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Figure 2. Map on the April 2029 b-plane for asteroid (99942) Apophis based on the observations
available in December 2004 when the impact probability was ∼ 3%. The left panel is done by
using Monte Carlo points, while the right panel is based on the Line of Variations (LOV)
technique. The projection of the LOV on the b-plane is ∼ 100 km wide.

thus making Monte Carlo methods unpractical for routine impact monitoring. However,
one can always resort to a Monte Carlo approach for critical cases or when other methods
encounter degeneracies and fail.

5. Line of Variations
As shown by the left panel of Fig. 2, when propagating in time orbital uncertainties

tend to stretch along the orbit, which on the b-plane is approximately represented by
the ζ direction. This feature suggests the possibility of a one-dimensional sampling of
the uncertainty region, which is the underlying idea for the Line of Variations (LOV)
method (Milani et al. 2005b).

Given the orbital uncertainty resulting from the orbital fit to the astrometry and its
corresponding covariance Γx , the weak direction is defined as the unit eigenvector V
corresponding to the largest eigenvalue of Γx . It is worth pointing out that the weak
direction depends on the coordinates, e.g., Cartesian or Cometary, and the units used
for the orbital elements (for more details see Milani et al. 2005a).

In the linear regime, i.e., with an exactly ellipsoidal uncertainty, the LOV is a straight
line

x(σ) = x̄ + σV, σ ∈ R

where x̄ is the least squares solution. At this point one can generate multiple solutions
by taking a finite number of σ values covering the desired interval, e.g., 5σ.

More in general the LOV is not a straight line and multiple solutions are generated
iteratively by making sure that they correspond to a minimum in the space orthogonal
to the weak direction:
• x0 = x̄;
• x′

i+1 = x̄i + ΔσV, which is on the LOV in the linear approximation;
• xi+1 is the least squares solution in the space passing through x′

i+1 and normal
to V.
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For more details on the computation of LOV multiple solutions we refer to Milani et al.
(2005a).

Once the multiple solutions on the LOV are generated, they can be propagated in the
future and mapped to the b-planes of future encounters. The advantage is that, since the
LOV is a one-dimensional manifold, it is possible to interpolate between the multiple
solutions. The right panel of Fig. 2 shows the Apophis example already discussed in
Sec. 4, but LOV multiple solutions are used instead of Monte Carlo samples. Since the
width of the uncertainty region is only about 100 km, the impact probability calculation
is a one-dimensional problem and can be performed by integrating between ∼ 1.0σ and
∼ 1.1σ. When the width of the uncertainty is significant, one can always use a linear
approximation in the off-LOV direction to integrate over the impact cross section.

As of today, the LOV method has been the most successful impact monitoring tech-
nique because it allows the detection of low probability events in the nonlinear regime
with a reasonable computational load. A few thousand multiple solutions are generally
sufficient to achieve completeness levels of 10−7 in impact probability (Milani et al.
2005b), and so the hazard assessment can generally be performed in less than a few
hours. For these reasons, the LOV method is the engine of the two automated impact
monitoring systems Sentry and NEODyS (Milani et al. 2005b). On the other hand, mul-
tiple planetary encounters may stretch and fold the LOV thus making its geometry quite
complex and making it possible to miss some pathological cases.

6. The Yarkovsky effect
For most asteroids impact prediction uncertainties result from the uncertainty in the

astrometric positions used to compute the orbit. On the other hand, for some objects
the dominant source of uncertainty are nongravitational perturbations, especially the
Yarkovsky effect (Bottke et al. 2006), which mainly acts as a secular variation in semi-
major axis. The reason why nongravitational perturbations induce uncertainty is that
they are essentially unknown as they depend on the physical properties of the individual
asteroid considered. Because of their small magnitude, these perturbations can generally
be neglected when modeling an asteroid’s dynamics. However, when an orbit becomes
well constrained and when impact predictions are affected by scattering encounters or
long-term propagation, the Yarkovsky effect becomes a key consideration in the impact
hazard assessment problem. This is the case of asteroids (101955) Bennu (Milani et al.
2009; Chesley et al. 2014), (99942) Apophis (Chesley 2006; Giorgini et al. 2008; Farnoc-
chia et al. 2013b; Vokrouhlický et al. 2015), (29075) 1950 DA (Giorgini et al. 2002;
Farnocchia & Chesley 2014), and (410777) 2009 FD (Spoto et al. 2014).

The simplest way to derive the Yarkovsky effect is direct estimation: if the astrometric
dataset is good enough one can directly estimate the Yarkovsky related semimajor axis
drift da/dt from the orbital fit (Farnocchia et al. 2013a). Chesley et al. (2003) computed
the first ever direct detection of the Yarkovsky effect for asteroid (6489) Golevka and since
then we have had few tens additional detections (Vokrouhlický et al. 2008; Farnocchia
et al. 2014; Nugent et al. 2012; Farnocchia et al. 2013a; Chesley et al. 2015)

When there is no Yarkovsky signal in the astrometry one can use an asteroid’s physical
model as well as general properties of the asteroid population to sample the semimajor
axis drift da/dt as (Bottke et al. 2006):

da

dt
∝ (1 − A) cos γ√

aρD
f(TI, ω),

where a is the semimajor axis, A the Bond albedo, ρ the bulk density, D the diameter,
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Figure 3. Left: distribution of the Yarkovsky-related semimajor axis drift for Apophis. Right:
distribution of ζ on the 2029 b-plane for Apophis either including the Yarkovsky effect or with a
gravity-only dynamics. The vertical bars correspond to keyholes and their height is proportional
to the keyhole width.

γ the obliquity of the spin axis, and f a nonlinear function of thermal inertia TI and
rotation frequency ω. As an example, the left panel of Fig. 3 shows the da/dt distribution
for Apophis as obtained by using the known physical characterization (for details see
Vokrouhlický et al. 2015).

Once a semimajor axis drift probability distribution is available, the Yarkovsky effect
can be included in the model to provide more reliable predictions. For example, the right
panel of Fig. 3 shows the distribution of ζ for Apophis on the 2029 b-plane. The difference
between the gravity-only solution and the one that accounts for the Yarkovsky effect is
evident and clearly shows the importance of the Yarkovsky effect to attain accurate
impact predictions.

To perform the hazard assessment including the Yarkovsky effect there are two options.
The first option is to use a Monte Carlo method for both da/dt and the orbital elements:
• Randomly sample da/dt;
• Compute a best-fitting orbit with Yarkovsky accelerations as defined by da/dt;
• Randomly sample the orbital elements according to the covariance matrix;
• Propagate samples in the future and count the impacts.

The second option is to generalize the Line of Variations technique to a seven-dimensional
space (Spoto et al. 2014).

7. Keyholes
Even when a collision is ruled out for an Earth encounter, it is possible that such

encounter places the asteroid onto an impact trajectory for a later encounter. Chodas
(1999) defined a keyhole as the b-plane region corresponding to future encounters, e.g.,
the 2036 keyhole on the 2029 b-plane for Apophis is formed by the projections on the
2029 b-plane of the trajectories that impact in 2036.

Though non-resonant returns are possible (Milani et al. 1999), keyholes are generally
associated to a resonance: the primary Earth encounter changes the asteroid’s orbital
period in such a way that the asteroid completes n orbit revolutions as the Earth makes
m. Valsecchi et al. (2003) shows that the points on the primary b-plane leading to resonant
returns form approximate circles. Therefore, keyholes can be found as the intersection of
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Figure 4. Left: 2036 resonant circle for Apophis on the 2029 b-plane. The corresponding keyhole
is the intersection between the 2029 b-plane uncertainty and the circle. Right: Apophis’ keyhole
map: for each value of ζ in 2029 we compute the minimum post-2029 encounter distance. When-
ver this distance is less than 1R⊕ we have a possible future impact.

these circles and the orbital uncertainty mapped in the primary b-plane. The left panel of
Fig. 4 shows the example of the 2036 keyhole for Apophis on the primary 2029 b-plane.

Identifying the location of the possible keyholes is very useful for the impact monitoring
problem. By densely sampling the LOV we can construct the so-called keyhole map: for
each ζ value on the primary encounter we can compute the minimum distance to the
Earth at future encounters. Whenever this distance is less than 1R⊕ we have a possible
impact and therefore a keyhole. Scaling from the primary b-plane to the one corresponding
to the possible impact provides the size of the keyhole. For instance, the 2036 keyhole
for Apophis is 600 m wide (Chesley 2006). The right panel of Fig. 4 shows a close-up of
the Apophis keyhole map.

A comparison between the keyhole locations and widths and the mapped orbital un-
certainty on the primary b-plane can be used to perform the hazard assessment, as shown
by the right panel of Fig. 3. The impact probability can easily be computed by integrat-
ing the ζ probability density function over the keyhole. This technique has been used
for (101955) Bennu (Chesley et al. 2014), (99942) Apophis (Farnocchia et al. 2013b;
Vokrouhlický et al. 2015), and (410777) 2009 FD (Spoto et al. 2014).

Keyholes can also be used to inform deflection attempts for hazardous asteroids. In
fact, if the keyhole size is small it could be easier to deflect the asteroid before the
intervening encounter and move it off the keyhole rather changing the trajectory by
several thousand kilometers afterwards. Chodas (2012) performed a statistical study and
found that keyhole widths range from less than a kilometer to hundreds of kilometers or
even more. While close intervening encounters are likely to scatter nearby trajectories
and therefore would enhance deflection attempts, distant encounters between 0.10 and
0.15 au can have the opposite effect of focusing neighboring trajectories.

8. Systematic ranging
When the observation arc is very short, a few hours or so, there are severe degen-

eracies in the orbit determination process: it is generally not possible to find a unique
least squares orbital solution and orbital uncertainties cannot be described by ellipsoids.
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Figure 5. Application of systematic ranging to 2014 AA. The left panel shows the eccentricity
as a function of topocentric range and topocentric range rate. The right panel shows the RMS
of the astrometric residuals, as well as the region of impacting solutions.

However, it may be important to identify potential impactors even with little observa-
tional information. In fact, as of August 2015, the only two asteroids detected before
an impact, 2008 TC3 and 2014 AA, were only discovered 20 hours before striking the
Earth.†‡

Orbit determination techniques based on Bayesian inversion theory (Muinonen & Bow-
ell 1993) are suitable to provide a probability assessment of the orbital element space
with short observation arcs. The posterior probability density function is given by:

fpost(x) ∝ fprior (x) exp
(
−χ2

2

)
(8.1)

where x are the orbital elements, χ2 is the usual chi-squared of the observation residuals
against x, and fprior is a suitable prior distribution. The choice of fprior is not trivial
and to some extent arbitrary (for some discussion see Farnocchia et al. 2015a): possible
options are a uniform distribution in Cartesian state or a distribution based on an asteroid
population model (e.g., Grav et al. 2011).

To fill the phase space one can rely on the fact that a short arc of observations provides
a constraint of the plane-of-sky position and velocity, while the topocentric range ρ and
topocentric range rate ρ̇ are unconstrained. Therefore, ranging methods are well suited
to generate orbital samples. Virtanen et al. (2001) describe statistical ranging, where the
topocentric range is randomly sampled at two observation epochs to compute an orbit.
Another technique is systematic ranging, which is extensively described in Chesley (2005)
and Farnocchia et al. (2015a) and we briefly recall here.

The idea of systematic ranging is to scan a dense grid in (ρ, ρ̇) and for each fixed grid
point compute a constrained least-squares solution, which has a small uncertainty. Thus,
for each grid point we have an orbit that can be propagated forward in time, which allows
one to identify regions of the (ρ, ρ̇) plane corresponding to close approaches and impacts.
Moreover, the fit to the astrometric observations results in a probability density in (ρ, ρ̇)
via Eq. (8.1). Figure 5 shows the application of systematic ranging to 2014 AA by using
all the seven observations acquired before the impact. The resulting impact probability
is > 99%, thus showing that systematic ranging would have been effective at predicting
the impact.

† http://neo.jpl.nasa.gov/news/2008tc3.html
‡ http://www.nasa.gov/jpl/asteroid/first-2014-asteroid-20140102
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The development of an automated system to perform short-arc hazard assessment on
newly discovered asteroids is an ongoing project.

9. Conclusions
The last two decades have witnessed major steps forward in tackling the problem

of assessing the asteroid impact hazard. The data used in the orbit calculations and
impact predictions are now readily available to users and potential impactors are detected
within hours to trigger follow-up efforts. Even so, impact monitoring remains a current
challenge for the asteroid community. Surveys like LSST (Jones et al. 2009) and GAIA
(Hestroffer 2015) will soon start producing data and so the next few years will see a
significant increase in the amount and quality of astrometric data. Significant effort will
be devoted at ensuring an efficient and prompt data processing, as well as accurate
impact predictions. In particular, this includes the development of an ever more reliable
statistical treatment of the astrometry (e.g., Chesley et al. 2010; Farnocchia et al. 2015c)
and accurate modeling of asteroid dynamics.
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