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Introduction

As L. Sario Γ8] and the others have shown, an important method to investi-
gate the properties of an open Rlemann surface F is the use of an exhaustion
of F consisting of compact domains on F. But, for the same purpose, the in-
vestigation of properties of a non-compact region on F is also important.

Recently Lauri Myrberg Cδl gave remarkable results for some harmonic
functions and Ullemar [12], C13] gave interesting theorems on a symmetric
Fuchsian or fuchsoid group without any elliptic transformation and of genus
zero. These results concern with the property of a non-compact region.

Let G be a non-compact domain on F whose relative boundary C consists
of at most an enumerable number of compact or non-compact anay' ic curves
clustering nowhere in Fl). We can construct an open Riemann surface G by
the process of symmetrization. There is given an indirectly conformal mapping
of G on itself which leaves every point on C fixed. The image of a point pE=G
is denoted by p, the image of G by G. If i — x + iy is the local parameter at
p&G, the local parameter at p is given by t = x — iy.

In this article, we shall investigate some properties of such a surface G
and give some remarks on the results obtained by Myrberg and Ullemar as its
application.

I. Properties of G

1. We denote by HB or HD the class of single-valued bounded or Dirichlet
bounded2) harmonic functions respectively. If any function of HB (or HD) In
G, which equals to zero on C and is continuous on G^C, equals identically to
zero, we may say that G belongs to the class SOm: (or SO/ip). Further, we
call that G belongs to the class NOnιΊ (or NOUD\ if each function of HB (or
HD) in G whose normal derivative at every point on C vanishes and which is
continuous on G^C, reduces to a constant.

First we shall prove the following

Received April 20, 1953.
ι> Simply we call such a domain G a non-compact region throughout this article.
2 ! We may say that the function is Dirichlet bounded in a region if the Dirichlet integral of

it over the region is finite.
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THEOREM 1. // G is a non-compact region on a?ι open Riemann surface

F with null boundary, then G&SOHB, ELSOHD, BNOHB and ELNORD.

Proof. It is an immediate consequence from the maximum and minimum
principle that G^SOHB and ^SOHD. We shall give a proof of G<ELNOΠB.

Let {F71} (w = 0, 1, . . .) be an exhaustion of F satisfying the condition
FoCG and Γn be the relative boundary of F n - We denote by u the harmonic
function in Fn-Fo (n^l) which equals to zero on ΓQ and to log^« on Γn,
where \ogμn is the harmonic modulus35 of Fn — Fo, and by v the conjugate
function of u. Then, from the definition of the harmonic modulus,

Let A be the part of a niveau curve u~λ(0<λ^ \ogμn) contained in G.
If G^NOHB, there exists a non-constant function U(p) oί HB on G whose

normal derivative -~— vanishes at every point on the relative boundary C of

G- If D(λ) is the Dirichlet integral of U(p) taken over the compact open set
bounded by Γ\ and C and consisting of a finite number of compact domains,
we have

for -£— equals to zero on C By the Schwarz inequality, we get

provided that I U(P) \ ^ M, whence it follows that

Integrating the both sides from λ = 0 to λ = log μn, we obtain

3> The notion of the harmonic modulus was introduced by Sario [8] and Pfiuger [7].
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where Dn is the Dirichlet integral of Uip) taken over GΠFn. Therefore, it
is immediate that lira μn < °°.

n->oo

On the other hand, it is well known that lim/j« = oo, if and only if F has

a null boundary (cf. Kuroda [2]). Thus G&NOππ if F has a null boundary.
By the similar arguments as above (cf. Kuroda [3], Tsuji Ell]), we can

prove the fact that G&:NOnn in the case of F with null boundary.

2. Here we shall state a theorem of Myrberg in the following form.4)

THEOREM 2. Suppose that G&SOHB (or <ESOHD) and that Uip) is a func-
tion of HB (or HD) on 0. Then U{p) = Uip) for any

oProof Putting Vip) = Uip) - Uip), we can see that Vip) is also a func-
tion of HB (or HD) on G and so in G and V(jf>) = 0 on C. Since GGSOUB (or
GSOHD), Vip) reduces to a constant zero in G and hence */(.£) = U(p).

Now we can prove the following

THEOREM 3, // GGSOHB and GNOHB, then GGOHB, in other words, there
exists no non-coyistant function of HB on G and vice versa.

Proof. Let Uip) be a function of HB on G. By Theorem 2, we get Uip)
-Uip) on G. Hence It is immediate that the normal derivative of Uip)

at every point on C vanishes. Since GGNOHB by the assumption, Uip) must
reduce to a constant, which proves the first part of our assertion.

Next we shall prove the converse. Suppose that GφSOHB. Then there
exists a non-constant function Uip) of HB in G which equals to zero on C and
is continuous on G^C. If we define a function Vip) on G such that

V { p ) = \-U(p) for peύ '

Vip) belongs to HB and is non-constant On the other hand, if GΦNOUB,

there exists a non-constant function Uip) of HB in G whose normal derivatives
on C vanish and which is continuous on G^C. The function

-l f o r

-\U(}) for

on G is a non-constant function of HB. Thus the proof is complete.
By Nevanlinna's theorem [6], for a Riemann surface with finite genus,

n (or Gθffl))δ) is equivalent to that Fhas a null boundary. Hence we get

4) See Theorem 5.
5> The class OHD means the class of Riemann surfaces on which there exists no non-constant

function of HD.
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COROLLARY. If GELSOΠB and ELNOΠB and, further, G is finitely connected,

G lias a null boundary.

By the similar arguments as above, we have the followings.

THEOREM 3'. If G^SOJW and EiNOup, then GGOHD, and vice versa.

COROLLARY. For a finitely connected region G, G has a null boundary under
the same condition for G as in Theorem 31.

Remark, Under the condition of Theorem 3, G has not always a null
boundary. This is observed from the example of a Riemann surface, due to
Toki [9], which has a positive boundary and belongs to Oπn.

Further, we get

THEOREM 4. If GeSOns (or GSO/W), then OGOAB (or Gθ, l β). 6 )

Proof. Let fίβ) = Uip) + iV{p) be a single-valued bounded (or DirϊchJet
bounded) analytic function on G. Then, obviously, U(p)E:HB (or E:HD) and
V(p)EzHB (or tΞHD). By Theorem 2, U(p) = U(p) and V(p)=V(p) for
any pE:G. Therefore, the differential df must equal to zero at every point on
C. Thus/(i?) reduces to a constant and so G Έ O ^ (or

Remark. Mori [4] pointed out the fact that, for a simply connected region
G, the converse of Theorem 4 holds good.

II. Applications

3. Now we shall prove Myrberg's theorem [5] applying theorems stated
above. We suppose that a non-compact region G is simply connected. Then
G can be mapped on the upper half 2-plane one to one conformally such that
a point on the relative boundary C of G corresponds to z = oo. The ideal
boundary of G corresponds to a bounded closed linear set E on the real axis
of the 2-plane. If we denote by Ω the complementary domain of E with respect
to the whole 2-plane, Ω is equivalent to G conformally.

By Mori's remark [4], E is of measure zero, if and only if GEiSOπn. And,
if we notice Ahlfors-Beurling's theorem [1], it is easily seen that Ω is of span
zero if and only if G^SOHD. Hence we have the following by Theorem 2.

THEOREM 5 (Myrberg [5]). Let E be a bounded closed set on the real axis
in the z-plane and let U(z) be a function of HB in the complementary domain
Ω of E ivith respect to the z-plane. If E is of measure zero, then U{z) = U{z).

f>) We denote by OΛΠ (or 0.4/)) the class of Riemann surfaces on which there exists no non-
constant single-valued bounded (or Dirichlet bounded) analytic function.
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And, if Viz) is a function of HD in Ω and the span of Ω equals to zero,
then V(z) = Viz).

4. We shall use the notation as in the previous section and prove the
following

THEOREM 6. A simply connected region G belongs to NOmh if and only if
the set E is of logarithmic capacity zero.

Proof. If E is of logarithmic capacity zero, then, of course, Ω&Onπ and
hence GEZOJIB. Thus the sufficiency of our condition is obvious from Theorem
3. We shall state the proof of the necessity.

For its purpose, it is sufficient to prove that, if the logarithmic capacity of
E is positive, there exists a non-constant function of HE in the upper half z-
plane whose normal derivative at every point on the real axis vanishes exclud-
ing the set E. Since the logarithmic capacity of E is positive, there exist two
closed subsets Ex and Eι of E such that they are disjoint each other and their
logarithmic capacities are both positive. We denote by Ω' the complementary
domain of Ei^Ei and choose an exhaustion {Ωn} in = 1, 2, . . .) of Ω' as follows :

The boundary Γn of Ωn consists of two classes Γn] and /If1 of analytic closed
curves such that {Γn}} (n = 1,2, . . .) clusters to Ex and {Γlp} (n = 1, 2, . . . )
to 2s2, and Ωn is symmetric for the real axis.

Let ωn be a harmonic function in Ωn which equals to zero on Γn } and to 1
on Γn\ Then we can easily find a suitable subsequence, say again {ωn}, such
that it converges to a non-constant limiting function ω which is harmonic in Ω1.

Since each function ωn is symmetric for the real axis, the limiting function
ω is also symmetric for the real axis. From this fact, the normal derivative of
ω vanishes at every point on the real axis except all points of £Ί and E >. Thus
our proof is complete.

In the above proof, choosing a suitable subsequence of {ωn}, we can get
a limiting function ω Dirichlet bounded in Ωf. Hence we have easily

THEOREM 6'. The simply connected non-compact region belongs to NOπn,
if and only if E is of logarithmic capacity zero.

As we can map the whole z-plane on the whole a'-plane by a linear trans-
formation one to one conformaily such, that the upper half z-plane corresponds
to the unit circle \w\ < 1 and the ideal boundary of G corresponds to a closed
set E on the circumference \w\ = 1. Hence we can get the following.

THEOREM 7. Let E be a closed set on the circumference of the unit circle
on the complex plane and let C be the complementary set of E ivith respect to
the circumference. In order that any function in the unit circle belonging to
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HB or HD, whose normal derivative at every point on C vanishes, reduces to a
constant, it is necessary and sufficient that the set E is of logarithmic capacity
zero.

In fact, it is sufficient to consider the case where E is not identical to the
circumference of the unit circle. Considering the complementary domain of E
with respect to the whole plane as an open Riemann surface and using Theorems
6 and 6', we arrive at the required.

Remark. Myrberg [5] proved only the sufficiency of the condition for HD.
Further, the following complete form of Myrberg's theorem is also easily ob-
tained.

THEOREM T. Under the same notation as in Theorem 7, any single-valued
positive harmonic function in the unit circle whose normal derivative at each
point on C vanishes, reduces to a constant, if and only if E is of logarithmic
capacity zero.

For, there exists a non-constant function of HB in the unit circle whose
normal derivative at every point on C vanishes, if the logarithmic capacity of
E is positive. Hence there exists a single-valued non-constant positive harmonic
function in the unit circle whose normal derivative at every point on C vanishes.
Thus the necessity of our condition is obtained. The sufficiency is nothing but
the result obtained by Myrberg.

5. From Theorems 6 and β', it is immediately seen that, for a simply con-
nected region G, G&LNOΠB is equivalent to GELNOHΌ. Further, we have

THEOREM 8 (Tsuji [10]). Let G be a simply connected domain bounded by
an analytic Jordan curve C and let E be a closed set on C with logarithmic
capacity zero. If we map G on the unit circle one to one conformally and denote
by Ef the closed set on the circumference of the unit circle corresponding to E,
then Ef is of logarithmic capacity zero.

In fact, the complementary domain of E with respect to the whole plane
may be considered as an open Riemann surface with null boundary. Hence,
by Theorem 1, we can see that G&NOHB considering the set E as the ideal
boundary of this Riemann surface. Thus our assertion is an immediate result
of Theorem 6.

Remembering Mori's remark stated in § 3 and using Theorem 6, we have

THEOREM 9. The class NOΠB of simply connected regions is a proper sub-

class of SOΠB of simply connected regions,

6. Consider a finite or an enumerable number of circular open arcs {au}
(i - 0,1, 2, . . . ) in the unit circle I z | <1 which are orthogonal to the circumfer-
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ence | z | = 1 and disjoint each others in I z | < 1 and denote by Do the simply

connected domain in \z\<Ί bounded by {<*/} (i = 0y 1, 2, . . . ) and the closed

set E on \z | = 1. If Do is the reflection of D$ with respect to an arc of {at},

say fro, then the domain Dowtfow-δo is a fundamental domain of a symmetric

Fuchsian or fuchsoid group @ without any elliptic transformation and of genus

zero. Conversely, such a symmetric group has a fundamental domain as stated

above.

We denote by {5/} (i — 0, 1, 2, . . . ) the boundary arcs of Do being equiva-

lent to {ai} U = 0? 1, 2, . . . ) for ®. Of course, aQ is identical to αr0. Identify-

ing the equivalent points on ai and an (/= 1, 2, . . . ), we get an open Riemann

surface D. This surface /) can be decomposed by a relative boundary C into

two parts D and /), each one of which is the image of the other by an in-

directly conformal mapping. And D^C (or D^C) is conformally equivalent

to AwUα:/ (or 5owU^i).
ί - 0 t =• 0

We shall show the following

THEOREM 10. If the set E is of logarithmic capacity zero, then D has a null

boundary*

Proof The complementary domain of E with respect to the whole 2-plane

can be considered as an open Riemann surface with null boundary. Hence, by

Theorem 1, the domain Do and so D belongs to SOπn and to NOHn. By the

Corollary of Theorem 3, D has a null boundary.

Remark, The necessary and sufficient condition in order that DEΪOΛI; or

eθi/) was obtained by UJlemar ( = Uskila) [12], D3]. His results can be

proved easily by using Theorem 4 and by remembering the remark stated in
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