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Introduction

As L. Sario [8] and the others have shown, an important methcd to investi-
gate the properties of an open Riemann surface F is the use of an exhaustion
of F consisting of compact domains on F. But, for the same purpcse, the in-
vestigation of properties of a non-compact rezion on F is also important.

Recently Lauri Myrberg [5] gave remarkable results for some harmonic
functions and Ullemar [12], [13] gave interesting theorems on a symmetric
Fuchsian or fuchsoid group without any elliptic transformation and of genus
zero. These results concern with the property of a non-compact region.

Let G be a non-compact domain on F whose relative boundary C consists
of at most an enumerable number of compact or non-compact ana'y:ic curves
clustering nowhere in F". We can construct an open Riemann surface G by
the process of symmetrization. There is given an indirectly conformal mapping
of G on itself which leaves every point on C fixed. The image of a point G
is denoted by P, the image of G by G. If {=x+1iy is the local parameter at
pE@, the local parameter at p is given by t=x—iv.

In this article, we shall investigate some properties of such a surface G
and give some remarks on the results obtained by Myrberg and Ullemar as its
application.

I. Properties of G

1. We denote by HB or HD the class of single-valued bounded or Dirichlet
bounded® harmonic functions respectively. If any function of HB tor HD) in
G, which equals to zero on C and is continuous on G_C, equals identically to
zero, we may say that G belongs to the class SOy (or SO;n). Further, we
call that G belongs to the class NO,; (or NOyup), if each function of HB (or
HD) in G whose normal derivative at every point on C vanishes and which is
continuous on G_C, reduces to a constant.

First we shall prove the following

Received April 20, 1953.
L) Simply we call such a domain G a non-compact region througzhout this article.

2* We may say that the function is Dirichlet bounded in a region if thie Dirichlet integral of
it over the region is finite.
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TuaeoreM 1. If G is a non-compact region on an open Riemann surface
F with null boundary, then G& SOxp, €SOrp, € NOup and € NOpup.

Proof. It is an immediate consequence from the maximum and minimum
principle that GESOup and €SOpp. We shall give a proof of GENOyp.

Let {Fs} (#=0,1,...) be an exhaustion of F satisfying the condition
FyCG and I'y be the relative boundary of F,. We denote by % the harmonic
function in F,—Fo, (n>1) which equals to zero on Iy and to log sn on Iy,
where log z» is the harmonic modulus® of F,—F, and by v the conjugate
function of #. Then, from the definition of the harmonic modulus,

dv=2m.

Tn

Let I\ be the part of a niveau curve # = A(0<1 < log u») contained in G.
If G2 NOyp, there exists a non-constant function U(p) of HB on G whose

normal derivative %DQ vanishes at every point on the relative boundary C of

G. If D(R) is the Dirichlet integral of U(p) taken over the compact open set
bounded by I and C and consisting of a finite number of compact domains,
we have

(U
D() = SmU-a7du,

for %[”L equals to zero on C. By the Schwarz inequality, we get

D) = SmU’dem( %%)zdv

= _aof (37 Yao
£2zM* dl;;l) ’

provided that | U(P) | £ M, whence it follows that

2 dD(2)
arz2rM _DZ—U)—'

Integrating the both sides from 2 =0 to 4 =log ux, we obtain

1 1
log un<2 nM* D, "D,
2 1
<2;TM DO’

3) The notion of the harmonic modulus was introduced by Sario [8] and Pfluger [7].
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where D, is the Dirichlet integral of U(p) taken over GNF,. Therefore, it
is immediate that lim g, < .

n>®

On the other hand, it is well known that lim s = o, if and only if F has

1>

a null boundary (cf. Kuroda [2]). Thus G& NOyy if F has a null boundary.
By the similar arguments as above (cf. Kuroda [3], Tsuji [111), we can
prove the fact that G&NOpuy in the case of ¥ with null boundary.

2. Here we shall state a theorem of Myrberg in the following form.”

THEOREM 2. Suppose that GESOup (or €S0up) and that U(p) is a func-
tion of HB (or HD) on G. Then U(p) = U(P) for any pEG.

o Proof. Putting V(p) = U(p) — U(D), we can see that V(p) is also a func-
tion of HB (or HD) on G and so in G and V(9) =0 on C. Since GESOy; (or
€SO0up), V(p) reduces to a constant zero in G and hence U(p) = U(P).

Now we can prove the following

THEOREM 3. If GESOns and & NOyz, then G € Oup, in other words, there
exists no non-constant function of HB on G and vice versa.

Proof. Let U(p) be a function of HB on (. By Theorem 2, we get U ()
=U(p) on G. Hence it is immediate that the normal derivative of U(2)
at every point on C vanishes. Since G & NOyr by the assumption, U(p) must
reduce to a constant, which proves the first part of our assertion.

Next we shall prove the converse. Suppose that GeEO0y,s. Then there
exists a non-constant function U(p) of HB in G which equals to zero on C and
is continuous on G_C. If we define a function V() on G such that

U(p) for peG_C

Vip) = { -U(p) for p=G

V(p) belongs to HB and is non-constant. On the other hand, if GeE NOys,
there exists a non-constant function U{(p) of HB in G whose normal derivatives
on C vanish and which is continuous on G_C. The function

U(p) for p=G_C

V(p):{m])) for pel

on G is a non-constant function of HB. Thus the proof is complete.
By Nevanlinna’s theorem [6], for a Riemann surface with finite genus,
FEOu; (or €0up)¥ is equivalent to that F has a null boundary. Hence we get

1) See Theorem 5.
5) The class Opyp means the class of Riemann surfaces on which there exists no non-constant
function of HD.
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CoroLLARY. If GESOu, and € NOyup and, further, G is finitely connected,
G has a null boundary.

By the similar arguments as above, we have the followings.
THeOREM 3. If GESO;;p and & NOyp, then G EO0un, and vice versa.

CoroLLARY. For a finitely connected vegion G, G has a null boundary under
the saine condition for G as in Theoremn 3.

Remark. TUnder the condition of Theorem 3, G has not always a null
boundary. This is observed from the example of a Riemann surface, due to
Toki [9], which has a positive boundary and belongs to Opx.

Further, we get

THEOREM 4. If GESOpn; (or €SOwmp), then G E0.4p (or €04p).°

Proof. Let f(p)=U(p)+iV(p) be a single-valued bounded (or Dirichlet
bounded) anaiytic function on G. Then, obviously, U(p)E HB (or € HD) and
V(p)eHB (or €HD). By Theorem 2, U(p)=U(p) and V(p)= V(p) for
any pe@. Therefore, the differential df must equal to zero at every point on
C. Thus /() reduces to a constant and so GE€ 0.4 (or €0.4p).

Remark. Mori [4] pointed out the fact that, for a simply connected region
G, the converse of Theorem 4 holds good.

II. Applications

L)

3. Now we shall prove Myrberg’s theorem [5] applying theorems stated
above. We suppose that a non-compact region G is simply connected. Then
G can be mapped on the upper half z-plane one to one conformally such that
a point on the relative boundary C of G corresponds to z= . The ideal
boundary of G corresponds to a bounded closed linear set E on the real axis
of the z-plane. If we denote by 2 the complementary domain of E with respect
to the whole z-plane, £ is equivalent to G conformally.

By Mori’s remark [4], E is of measure zero, if and only if GESO,;. And,
if we notice Ahlfors-Beurling’s theorem [1], it is easily seen that £ is of span
zerc if and only if GES0Oup. Hence we have the following by Theorem 2.

TreoreM 5 (Myrberg [3]). Let E be a bounded closed set on the veal axis
in the z-plane and l2t U(z) be a function of HB in the complementary donain
L of E with respect to the z-plane. If E is of measure zero, then Ulz) = U(Z).

6 We denote by Ous (or Oap) the class of Riemann surfaces on which there exists no non-
constant singie-valued bounded (or Dirichlet bounded) analytic function.
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And, if V(z) is @ function of HD in Q and the sban of 2 equals to zero,
then Viz) = V(z).

4. We shall use the notation as in the previous section and prove the
following

THEOREM 6. A simiply connected region G belongs to NOup, if and only if
the set E is of logarithmic capacily zero.

Proof. 1f F is of logarithmic capacity zero, then, of course, 2& O, and
hence G& 0. Thus the sufficiency of our condition is obvious from Theorem
3. We shall state the proof of the necessity.

For its purpose, it is sufficient to prove that, if the logarithmic capacity of
E is positive, there exists a non-constant function of HB in the upper half z-
plane whose normal derivative at every point on the real axis vanishes exclud-
ing the set E. Since the logarithmic capacity of E is positive, there exist two
closed subsets £; and E» of I such that they are disjoint each other and their
logarithmic capacities are both positive. We denote by 2’ the complementary
domain of E,_E; and choose an exhaustion {@.} (2 =1,2,...) of 2' as follows:

The boundary I of £, copsists of two classes I, and I'Y’ of analytic closed
curves such that {I'’} (n=1,2,...) clusters to E; and {I'} (n=1,2,...)
to E., and £, is symmetric for the real axis.

Let o, be a harmonic function in £, which equals to zero on I'y’ and to 1
on I'tY. Then we can easily find a suitable subsequence, say again {w»), such
that it converges to a non-counstant limiting functicn « which is harmonic in £2'.

Since each function w, is symmetric for the real axis, the limiting function
w is also symmetric for the real axis. From this fact, the normal derivative of
o vanishes at every point on the real axis except all points of Ey and E.. Thus
our proof is complete.

In the above proof, choosing a suitable subsequence of {w.}, we can get
a limiting function o Dirichlet bounded in 2. Hence we have easily

TueoreM 6. The simply connected mnon-compaclt region belongs to NOup,
if and only if E is of logarithmic capacity zero.

As we can map the whole z-plane on the whole w-plane by a linear trans-
formation one to one conformally such that the upper half z-plane corresponds
to the unit circle |w| <1 and the ideal boundary of G corresponds to a closed
set E on the circumference |w| =1. Hence we can get the following.

THEOREM 7. Let E be a closed set on the circumference of the unil circle
on the complex plane and let C be the complementary set of E with respect to
the circuniference. In order that any function in the unit circle belonging to
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HB or HD, whosc normal derivative at every point on C wvanishes, reduces 1o a
constant, it is necessary and suffictent that the set E is of logarithmic capacity
zero.

In fact, it is sufficient to consider the case where E is not identical to the
circumference of the unit circle. Considering the complementary domain of E
with respect to the whole plane as an open Riemann surface and using Theorems
6 and 6/, we arrive at the required.

Reinark. Myrberg [5] proved only the sufficiency of the condition for HD.
Further, the following complete form of Mpyrberg’s theorem is also easily ob-
tained.

THaeOREM 7. Under the same notation as in Theorem 7, any single-valued
positive harmonic funclion in the unil circle whose normal derivative at each
point on C vanishes, reduces to a constant, if and only if E is of logarithmic
capacity zero.

For, there exists a non-constant function of HB in the unit circle whose
normal derivative at every point on C vanishes, if the logarithmic capacity of
E is positive. Ience there exists a single-valued non-constant positive harmonic
function in the unit circle whose normal derivative at every point on C vanishes.
Thus the necessity of cur condition is obtained. The sufficiency is nothing but
the result obtained by Myrberg.

5. From Theorems 6 and ¢, it is immediately seen that, for a simply con-
nected region G, G& NO; is equivalent to GE NOyp. Further, we have

THEOREM 8 (Tsuji [101). Let G be a simply connected domain bounded by
an analytic Jordan curve C and let E be a closed set on C with logariihmic
capacity zero. If we mad G on the unit circle one to one conformally and denote
by E' the closed set on the circumference of the unit circle corresponding to E,
then E' is of logarithmnic capacity zero.

In fact, the complementary domain of E with respect to the whole plane
may be considered as an open Riemann surface with null boundary. Hence,
by Theorem 1, we can see that G& NOus considering the set E as the ideal
boundary of this Riemann surface. Thus our assertion is an immediate result
of Theorem 6.

Remembering Mori’s remark stated in §3 and using Theorem 6, we have

THEOREM 9. The class NOus of simply connected regions is a proper sub-
class of SOux of simply connected regions.

6. Consider a finite or an enumerable number of circular open arcs {a;}
({=0,1,2,...) in the unit circle | 2] <1 which are orthogonal to the circumfer-
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ence i z| =1 and disjoint each others in |2]/<1 and denote by D, the simply
connected domain in | 2] <1 bounded by {a;} (=0, 1, 2,...) and the closed
set Eon |z|=1. If D, is the reflection of D, with respect to an arc of {a;},
say ay, then the domain Dy aos Dy is a fundamental domain of a symmetric
Fuchsian or fuchsoid group & without any elliptic transformation and of genus
zero. Conversely, such a symmetric group has a fundamental domain as stated
above.

We denote by {a;} (=0, 1, 2, ...) the boundary arcs of D, being equiva-
lent to {a;t (:=0,1,2,...) for @ Of course, @, is identical to «,. Identify-
ing the equivalent points on a; and @; (=1, 2, ...), we get an open Riemann
surface 0. This surface D can be decomposed by a relative beundary C into
two parts D and D, each one of which is the image of the other by an in-
directly conformal mapping. And D_C (or 2_C) is conformally equivalent

@ )

to Do Uw; (or Do Ua;).
0 i=0

i~

We shall show the following

TuroreM 10. If the set E is of logaritliiic capacity zevo, then D has a nul!
boundasy.

Proof. The complementary domain of E with respect to the whole z-plane
can be considered as an open Riemann surface with null boundary. Hence, by
Theorem 1, the domain D, and so D belengs to SOy and to NOyr. By the
Corollary of Theorem 3, D has a null boundary.

Remark. The necessary and sufficient condition in order that DeO0., or
€0,y was obtained by Ullemar (=Uskila) [12], [15]. IIis results can be
proved easily by using Theorem 4 and by remembering the remark stated in
§3
S O
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