COMPOSITIO MATHEMATICA

Cohomological Hall algebra of a symmetric quiver

Alexander I. Efimov

Compositio Math. 148 (2012), 1133-1146.

LONDON
MATHEMATICAL
SOCIETY

Cohomological Hall algebra of a symmetric quiver

Alexander I. Efimov

Abstract

In [M. Kontsevich and Y. Soibelman, Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants, Preprint (2011), arXiv:1006.2706v2[math.AG]], the authors, in particular, associate to each finite quiver Q with a set of vertices I the so-called cohomological Hall algebra \mathcal{H}, which is $\mathbb{Z}_{\geqslant 0}^{I}{ }^{-}$ graded. Its graded component \mathcal{H}_{γ} is defined as cohomology of the Artin moduli stack of representations with dimension vector γ. The product comes from natural correspondences which parameterize extensions of representations. In the case of a symmetric quiver, one can refine the grading to $\mathbb{Z}_{\geqslant 0}^{I} \times \mathbb{Z}$, and modify the product by a sign to get a super-commutative algebra (\mathcal{H}, \star) (with parity induced by the \mathbb{Z}-grading). It is conjectured in [M. Kontsevich and Y. Soibelman, Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants, Preprint (2011), arXiv:1006.2706v2[math.AG]] that in this case the algebra ($\mathcal{H} \otimes \mathbb{Q}, \star$) is free super-commutative generated by a $\mathbb{Z}_{\geqslant 0}^{I} \times \mathbb{Z}$-graded vector space of the form $V=V^{\text {prim }} \otimes \mathbb{Q}[x]$, where x is a variable of bidegree $(0,2) \in \mathbb{Z}_{\geqslant 0}^{I} \times \mathbb{Z}$, and all the spaces $\bigoplus_{k \in \mathbb{Z}} V_{\gamma, k}^{\text {prim }}, \gamma \in \mathbb{Z}_{\geqslant 0}^{I}$. are finite-dimensional. In this paper we prove this conjecture (Theorem 1.1). We also prove some explicit bounds on pairs (γ, k) for which $V_{\gamma, k}^{\text {prim }} \neq 0$ (Theorem 1.2). Passing to generating functions, we obtain the positivity result for quantum Donaldson-Thomas invariants, which was used by Mozgovoy to prove Kac's conjecture for quivers with sufficiently many loops [S. Mozgovoy, Motivic DonaldsonThomas invariants and Kac conjecture, Preprint (2011), arXiv:1103.2100v2[math.AG]]. Finally, we mention a connection with the paper of Reineke [M. Reineke, Degenerate cohomological Hall algebra and quantized Donaldson-Thomas invariants for m-loop quivers, Preprint (2011), arXiv:1102.3978v1[math.RT]].

1. Introduction

In this paper we study the cohomological Hall algebra (COHA) introduced by Kontsevich and Soibelman [KS11], in the case of a symmetric quiver without potential. Our main result is the proof of the Kontsevich-Soibelman conjecture on the freeness of the COHA of a symmetric quiver.

Consider a finite quiver Q with a set of vertices I and with $a_{i j}$ edges from $i \in I$ to $j \in I$, so that $a_{i j} \in \mathbb{Z}_{\geqslant 0}$. One can choose trivial stability conditions on the category of complex finitedimensional representations, so that stable representations are precisely the simple ones, and

[^0]
A. I. Efimov

they all have the same slope. In particular, each representation is semi-stable with the same slope. Then, for each dimension vector

$$
\gamma=\left\{\gamma^{i}\right\}_{i \in I} \in \mathbb{Z}_{\geqslant 0}^{I},
$$

the moduli space of representations of Q is an Artin quotient stack M_{γ} / G_{γ}, where M_{γ} is an affine space of all representations in coordinate vector spaces $\mathbb{C}^{\gamma^{i}}, G_{\gamma}=\prod_{i \in I} \mathrm{GL}\left(\gamma^{i}, \mathbb{C}\right)$, and the action is by conjugation (see $\S 2.1$). One then defines a $\mathbb{Z}_{\geqslant 0}^{I}$-graded \mathbb{Q}-vector space \mathcal{H} by the formula

$$
\mathcal{H}=\bigoplus_{\gamma \in \mathbb{Z}_{\geqslant 0}^{I}} \mathcal{H}_{\gamma}, \quad \mathcal{H}_{\gamma}:=H_{G_{\gamma}}^{\bullet}\left(M_{\gamma}, \mathbb{Q}\right) .
$$

Note that originally in [KS11], one takes cohomology with integer coefficients, but we will deal only with the result of tensoring by \mathbb{Q}.

Now, for every choice of two vectors $\gamma_{1}, \gamma_{2} \in \mathbb{Z}_{\geqslant 0}^{I}$, one has a natural correspondence $M_{\gamma_{1}, \gamma_{2}} / G_{\gamma_{1}, \gamma_{2}}$ between the stacks $M_{\gamma_{1}} / G_{\gamma_{1}}$ and $M_{\gamma_{2}} / G_{\gamma_{2}}$, which parameterizes all extensions (§ 2.1). We get natural maps of stacks

$$
\left(M_{\gamma_{1}} / G_{\gamma_{1}}\right) \times\left(M_{\gamma_{2}} / G_{\gamma_{2}}\right) \leftarrow M_{\gamma_{1}, \gamma_{2}} / G_{\gamma_{1}, \gamma_{2}} \rightarrow M_{\gamma_{1}+\gamma_{2}} / G_{\gamma_{1}+\gamma_{2}},
$$

which allow one to define a multiplication

$$
\begin{equation*}
H_{G_{\gamma_{1}}}^{\bullet}\left(M_{\gamma_{1}}\right) \otimes H_{G_{\gamma_{2}}}^{\bullet}\left(M_{\gamma_{2}}\right) \rightarrow H_{G_{\gamma_{1}+\gamma_{2}}^{\bullet-2 \chi Q}\left(\gamma_{1}, \gamma_{2}\right)}^{\bullet-}\left(M_{\gamma_{1}+\gamma_{2}}\right), \tag{1.1}
\end{equation*}
$$

where $\chi_{Q}\left(\gamma_{1}, \gamma_{2}\right)$ is the Euler form

$$
\chi_{Q}\left(\gamma_{1}, \gamma_{2}\right)=\sum_{i \in I} \gamma_{1}^{i} \gamma_{2}^{i}-\sum_{i, j \in I} a_{i j} \gamma_{1}^{i} \gamma_{2}^{j} .
$$

It is proved in [KS11, Theorem 1] that the resulting product on \mathcal{H} is associative, so this makes \mathcal{H} into a $\mathbb{Z}_{\geqslant 0}^{I}$-graded algebra, which is called the (rational) cohomological Hall algebra of a quiver Q.

Now we restrict to the case of a symmetric quiver Q, i.e. to the case $a_{i j}=a_{j i}$. In this case the Euler form $\chi_{Q}\left(\gamma_{1}, \gamma_{2}\right)$ is symmetric as well. One defines a $\left(\mathbb{Z}_{\geqslant 0}^{I} \times \mathbb{Z}\right)$-graded algebra structure on \mathcal{H}, by assigning to a subspace $H_{G_{\gamma}}^{k}\left(M_{\gamma}\right)$ a bigrading $\left(\gamma, k+\chi_{Q}(\gamma, \gamma)\right)$. It follows from (1.1) that the product is compatible with this grading. We also define a parity on \mathcal{H} to be induced by the \mathbb{Z}-grading (see $\S 2.3$).

In general, the algebra \mathcal{H} for symmetric quiver is not super-commutative, but it becomes so after twisting the product by a sign (§2.3). Denote by \star the resulting super-commutative product. Our main result is the following theorem which was conjectured in [KS11, Conjecture 1].

Theorem 1.1. For any finite symmetric quiver Q, the $\left(\mathbb{Z}_{\geqslant 0}^{I} \times \mathbb{Z}\right)$-graded algebra (\mathcal{H}, \star) is a free super-commutative algebra generated by a $\left(\mathbb{Z}_{\geqslant 0}^{I} \times \mathbb{Z}\right)$-graded vector space V of the form $V=V^{\text {prim }} \otimes \mathbb{Q}[x]$, where x is a variable of degree $(0,2) \in \mathbb{Z}_{\geqslant 0}^{I} \times \mathbb{Z}$, and for any $\gamma \in \mathbb{Z} \geqslant 0$ the space $V_{\gamma, k}^{\text {prim }}$ is non-zero (and finite-dimensional) only for finitely many $k \in \mathbb{Z}$.

The second result in this paper gives explicit bounds on pairs (γ, k) for which $V_{\gamma, k}^{\text {prim }} \neq 0$. For a given symmetric quiver Q, and $\gamma \in \mathbb{Z}_{\geqslant 0}^{I} \backslash\{0\}$, we put

$$
N_{\gamma}(Q):=\frac{1}{2}\left(\sum_{\substack{i, j \in I, i \neq j}} a_{i j} \gamma^{i} \gamma^{j}+\sum_{i \in I} \max \left(a_{i i}-1,0\right) \gamma^{i}\left(\gamma^{i}-1\right)\right)-\sum_{i \in I} \gamma^{i}+2
$$

Theorem 1.2. In the notation of Theorem 1.1, if $V_{\gamma, k}^{\text {prim }} \neq 0$, then $\gamma \neq 0$,

$$
k \equiv \chi_{Q}(\gamma, \gamma) \quad \bmod 2 \quad \text { and } \quad \chi_{Q}(\gamma, \gamma) \leqslant k<\chi_{Q}(\gamma, \gamma)+2 N_{\gamma}(Q) .
$$

The only non-trivial statement in Theorem 1.2 is the upper bound on k. In the proofs of both theorems, we use explicit formulas for the product in \mathcal{H} from [KS11, Theorem 2]. Namely, since the affine space M_{γ} is G_{γ}-equivariantly contractible, we have

$$
\mathcal{H}_{\gamma} \cong H^{\bullet}\left(\mathrm{B} G_{\gamma}\right),
$$

and the right-hand side is isomorphic to the algebra of polynomials in $x_{i, \alpha}$, where $i \in I$, $1 \leqslant \alpha \leqslant \gamma^{i}$, which are invariant with respect to the product of symmetric groups $S_{\gamma^{i}}$. Then, given two polynomials $f_{1} \in \mathcal{H}_{\gamma_{1}}, f_{2} \in \mathcal{H}_{\gamma_{2}}$, their product $f_{1} \cdot f_{2} \in \mathcal{H}_{\gamma}, \gamma=\gamma_{1}+\gamma_{2}$, equals the sum over all shuffles (for any $i \in I$) of the following rational function in variables $\left(x_{i, \alpha}^{\prime}\right)_{i \in I, \alpha \in\left\{1, \ldots, \gamma_{1}^{i}\right\}}$, $\left(x_{i, \alpha}^{\prime \prime}\right)_{i \in I, \alpha \in\left\{1, \ldots, \gamma_{2}^{i}\right\}}:$

$$
f_{1}\left(\left(x_{i, \alpha}^{\prime}\right)\right) f_{2}\left(\left(x_{i, \alpha}^{\prime \prime}\right)\right) \frac{\prod_{i, j \in I} \prod_{\alpha_{1}=1}^{\gamma_{1}^{i}} \prod_{\alpha_{2}=1}^{\gamma_{2}^{j}}\left(x_{j, \alpha_{2}}^{\prime \prime}-x_{i, \alpha_{1}}^{\prime}\right)^{a_{i j}}}{\prod_{i \in I} \prod_{\alpha_{1}=1}^{\gamma_{1}^{i}} \prod_{\alpha_{2}=1}^{\gamma_{2}^{i}}\left(x_{i, \alpha_{2}}^{\prime \prime}-x_{i, \alpha_{1}}^{\prime}\right)} .
$$

Theorems 1.1 and 1.2 imply the corresponding results for the generating functions for cohomological Hall algebras, and, in particular, positivity for quantum Donaldson-Thomas invariants. The positivity result was used by Mozgovoy to prove Kac's conjecture for quivers with at least one loop at each vertex [Moz11].

The paper is organized as follows.
Section 2 is devoted to some preliminaries on cohomological Hall algebras for quivers. We follow [KS11, §2]. In § 2.1 we give a definition of the rational cohomological Hall algebra for an arbitrary finite quiver. Section 2.2 is devoted to explicit formulas for the product in cohomological Hall algebras. In $\S 2.3$ we define an additional \mathbb{Z}-grading on the COHA of a symmetric quiver, so that we get a $\left(\mathbb{Z}_{\geqslant 0}^{I} \times \mathbb{Z}\right)$-graded algebra. Then, we show how to modify the product on \mathcal{H} by a sign to get a super-commutative algebra (\mathcal{H}, \star), with parity induced by the \mathbb{Z}-grading.

Section 3 is devoted to the proofs of Theorem 1.1 (Theorem 3.1) and Theorem 1.2 (Theorem 3.10).

In $\S 4$ we discuss applications of our results to the generating function of COHA , or, in other words, to quantized Donaldson-Thomas invariants.

2. Preliminaries on cohomological Hall algebras

In this section we recall some definitions and results from $[\mathrm{KS} 11, \S 2]$.

2.1 COHA of a quiver

Let Q be a finite quiver. Denote its set of vertices by I, and let $a_{i j} \in \mathbb{Z}_{\geqslant 0}$ be the number of arrows from i to j, where $i, j \in I$. Fix a dimension vector $\gamma=\left(\gamma^{i}\right)_{i \in I} \in \mathbb{Z} \geq 0$. We have an affine variety of representations of Q in complex coordinate vector spaces $\mathbb{C}^{\gamma^{i}}$:

$$
M_{\gamma}=\prod_{i, j \in I} \mathbb{C}^{a_{i j} \gamma^{i} \gamma^{j}}
$$

The variety M_{γ} is acted on via conjugation by the complex algebraic group $G_{\gamma}=\prod_{i \in I} \mathrm{GL}\left(\gamma^{i}, \mathbb{C}\right)$.

A. I. Efimov

Recall that the infinite-dimensional Grassmannian

$$
\operatorname{Gr}(d, \infty)=\xrightarrow{\lim } \operatorname{Gr}\left(d, \mathbb{C}^{n}\right), \quad n \rightarrow+\infty,
$$

is a model for the classifying space of $\mathrm{GL}(d, \mathbb{C})$. Put

$$
\mathrm{B} G_{\gamma}:=\prod_{i \in I} \mathrm{~B} \operatorname{GL}\left(\gamma^{i}, \mathbb{C}\right)=\prod_{i \in I} \operatorname{Gr}\left(\gamma^{i}, \infty\right) .
$$

We have a standard universal G_{γ}-bundle $\mathrm{E} G_{\gamma} \rightarrow \mathrm{B} G_{\gamma}$, and the Artin stack M_{γ} / G_{γ} gives a universal family over B G_{γ} :

$$
M_{\gamma}^{\text {univ }}:=\left(\mathrm{E} G_{\gamma} \times M_{\gamma}\right) / G_{\gamma} \rightarrow \mathrm{E} G_{\gamma} / G_{\gamma}=\mathrm{B} G_{\gamma}
$$

Define a $\mathbb{Z}_{\geqslant 0}^{I}$-graded \mathbb{Q}-vector space

$$
\mathcal{H}=\bigoplus_{\gamma \in \mathbb{Z} \geqslant 0} \mathcal{H}_{\gamma},
$$

putting

$$
\mathcal{H}_{\gamma}:=H_{G_{\gamma}}^{\bullet}\left(M_{\gamma}, \mathbb{Q}\right)=\bigoplus_{n \geqslant 0} H^{n}\left(M_{\gamma}^{\text {univ }}, \mathbb{Q}\right)
$$

Now we define a multiplication on \mathcal{H} which makes it into an associative unital $\mathbb{Z}_{\geqslant 0}^{I}$-graded algebra over \mathbb{Q}. Take two vectors $\gamma_{1}, \gamma_{2} \in \mathbb{Z} \geqslant 0$, and put $\gamma:=\gamma_{1}+\gamma_{2}$. Consider the affine subspace $M_{\gamma_{1}, \gamma_{2}} \subset M_{\gamma}$, which consists of representations for which the standard subspaces $\mathbb{C}^{\gamma_{1}^{i}} \subset \mathbb{C}^{\gamma^{i}}$ form a subrepresentation. The subspace $M_{\gamma_{1}, \gamma_{2}}$ is preserved by the action of the subgroup $G_{\gamma_{1}, \gamma_{2}} \subset G_{\gamma}$ which consists of transformations preserving the subspaces $\mathbb{C}^{\gamma_{1}^{i}} \subset \mathbb{C}^{\gamma^{i}}$. We use a model for $\mathrm{B} G_{\gamma_{1}, \gamma_{2}}$ which is the total space of a bundle over $\mathrm{B} G_{\gamma}$ with fiber $G_{\gamma} / G_{\gamma_{1}, \gamma_{2}}$ (i.e. a product of infinite-dimensional partial flag varieties $\left.\operatorname{Fl}\left(\gamma_{1}^{i}, \gamma_{i}, \infty\right)\right)$. We have a natural projection $\mathrm{E} G_{\gamma} \rightarrow \mathrm{B} G_{\gamma_{1}, \gamma_{2}}$ which is a universal $G_{\gamma_{1}, \gamma_{2}}$-bundle.

Now define the morphism

$$
m_{\gamma_{1}, \gamma_{2}}: \mathcal{H}_{\gamma_{1}} \otimes \mathcal{H}_{\gamma_{2}} \rightarrow \mathcal{H}_{\gamma}
$$

as the composition of the Künneth isomorphism

$$
\otimes: H_{G_{\gamma_{1}}}^{\bullet}\left(M_{\gamma_{1}, \mathbb{Q}}\right) \otimes H_{G_{\gamma_{2}}}^{\bullet}\left(M_{2}, \mathbb{Q}\right) \xrightarrow{\cong} H_{G_{\gamma_{1} \times G_{\gamma_{2}}}^{\bullet}}\left(M_{\gamma_{1}} \times M_{\gamma_{2}}, \mathbb{Q}\right)
$$

and the following morphisms:

$$
H_{G_{\gamma_{1} \times G_{\gamma_{2}}}^{\bullet}}\left(M_{\gamma_{1}} \times M_{\gamma_{2}}, \mathbb{Q}\right) \xrightarrow{\cong} H_{G_{\gamma_{1}, G_{\gamma_{2}}}^{\bullet}}\left(M_{\gamma_{1}, \gamma_{2}}, \mathbb{Q}\right) \rightarrow H_{G_{\gamma_{1}, \gamma_{2}}^{\bullet+2 c_{1}}}^{\bullet+}\left(M_{\gamma}, \mathbb{Q}\right) \rightarrow H_{G_{\gamma}}^{\bullet+2 c_{1}+2 c_{2}}\left(M_{\gamma}\right) .
$$

Here the first map is induced by natural surjective homotopy equivalences

$$
M_{\gamma_{1}, \gamma_{2}} \xrightarrow{\sim} M_{\gamma_{1}} \times M_{\gamma_{2}}, \quad G_{\gamma_{1}, \gamma_{2}} \rightarrow G_{\gamma_{1}} \times G_{\gamma_{2}} .
$$

The other two maps are natural pushforward morphisms, with

$$
c_{1}=\operatorname{dim}_{\mathbb{C}} M_{\gamma}-\operatorname{dim}_{\mathbb{C}} M_{\gamma_{1}, \gamma_{2}}, \quad c_{2}=\operatorname{dim}_{\mathbb{C}} G_{\gamma_{1}, \gamma_{2}}-\operatorname{dim}_{\mathbb{C}} G_{\gamma} .
$$

Theorem 2.1 [KS11, Theorem 1]. The constructed product m on \mathcal{H} is associative.
Note that

$$
\begin{equation*}
c_{1}+c_{2}=-\chi_{Q}\left(\gamma_{1}, \gamma_{2}\right) \tag{2.1}
\end{equation*}
$$

where

$$
\chi_{Q}\left(\gamma_{1}, \gamma_{2}\right)=\sum_{i \in I} \gamma_{1}^{i} \gamma_{2}^{i}-\sum_{i, j \in I} a_{i j} \gamma_{1}^{i} \gamma_{2}^{j}
$$

is the Euler form of the quiver Q. That is, given two representations R_{1}, R_{2} (over any field) of the quiver Q, with dimension vectors γ_{1}, γ_{2} respectively, one has

$$
\sum_{i}(-1)^{i} \operatorname{dim} \operatorname{Ext}^{i}\left(R_{1}, R_{2}\right)=\operatorname{dim} \operatorname{Hom}\left(R_{1}, R_{2}\right)-\operatorname{dim} \operatorname{Ext}^{1}\left(R_{1}, R_{2}\right)=\chi_{Q}\left(\gamma_{1}, \gamma_{2}\right)
$$

2.2 Explicit description of the COHA of a quiver

Since the affine spaces M_{γ} are G_{γ}-equivariantly contractible, we have natural isomorphisms

$$
\mathcal{H}_{\gamma} \cong H^{\bullet}\left(\mathrm{B} G_{\gamma}, \mathbb{Q}\right)=\bigotimes_{i \in I} H^{\bullet}\left(\mathrm{B} \mathrm{GL}\left(\gamma^{i}, \mathbb{C}\right), \mathbb{Q}\right)
$$

Recall that

$$
H^{\bullet}(\mathrm{B} \mathrm{GL}(d, \mathbb{C}), \mathbb{Q}) \cong \mathbb{Q}\left[x_{1}, \ldots, x_{d}\right]^{S_{d}} .
$$

For a vector $\gamma \in \mathbb{Z}_{\geqslant 0}^{I}$, introduce variables $x_{i, \alpha}$, where $i \in I, \alpha \in\left\{1, \ldots, \gamma^{i}\right\}$. Then, we get natural isomorphisms

$$
\mathcal{H}_{\gamma} \cong \mathbb{Q}\left[\left\{x_{i, \alpha}\right\}_{i \in I, \alpha \in\left\{1, \ldots, \gamma^{i}\right\}}\right]_{i \in I} S_{\gamma^{i}} .
$$

From this moment, we identify the elements of \mathcal{H}_{γ} with the corresponding polynomials.
Definition 2.2. For non-negative integers p, q, we define a (p, q)-shuffle to be a permutation $\sigma \in S_{p+q}$ such that

$$
\sigma(1)<\cdots<\sigma(p), \quad \sigma(p+1)<\cdots<\sigma(p+q) .
$$

Further, take a pair of dimension vectors $\gamma_{1}, \gamma_{2} \in \mathbb{Z}_{\geqslant 0}^{I}$, and put $\gamma:=\gamma_{1}+\gamma_{2}$. We define a $\left(\gamma_{1}, \gamma_{2}\right)$-shuffle to be an element $\sigma \in P_{\gamma}:=\prod_{i \in I} S_{\gamma^{i}}$ such that for each $i \in I$ the component $\sigma_{i} \in S_{\gamma^{i}}$ is a $\left(\gamma_{1}^{i}, \gamma_{2}^{i}\right)$-shuffle.

Theorem 2.3 [KS11, Theorem 2]. Given two polynomials $f_{1} \in \mathcal{H}_{\gamma_{1}}, f_{2} \in \mathcal{H}_{\gamma_{2}}$, their product $f_{1} \cdot f_{2} \in \mathcal{H}_{\gamma}, \gamma=\gamma_{1}+\gamma_{2}$, equals the sum over all (γ_{1}, γ_{2})-shuffles of the following rational function in variables $\left(x_{i, \alpha}^{\prime}\right)_{i \in I, \alpha \in\left\{1, \ldots, \gamma_{1}^{i}\right\}},\left(x_{i, \alpha}^{\prime \prime}\right)_{i \in I, \alpha \in\left\{1, \ldots, \gamma_{2}^{i}\right\}}$:

$$
f_{1}\left(\left(x_{i, \alpha}^{\prime}\right)\right) f_{2}\left(\left(x_{i, \alpha}^{\prime \prime}\right)\right) \frac{\prod_{i, j \in I} \prod_{\alpha_{1}=1}^{\gamma_{1}^{i}} \prod_{\alpha_{2}=1}^{\gamma_{2}^{j}}\left(x_{j, \alpha_{2}}^{\prime \prime}-x_{i, \alpha_{1}}^{\prime}\right)^{a_{i j}}}{\prod_{i \in I} \prod_{\alpha_{1}=1}^{\gamma_{1}^{i}} \prod_{\alpha_{2}=1}^{\gamma_{2}^{i}}\left(x_{i, \alpha_{2}}^{\prime \prime}-x_{i, \alpha_{1}}^{\prime}\right)} .
$$

2.3 Additional grading in the symmetric case

Now assume that the quiver Q is symmetric, i.e. $a_{i j}=a_{j i}, i, j \in I$. Then the Euler form

$$
\chi_{Q}\left(\gamma_{1}, \gamma_{2}\right)=\sum_{i \in I} \gamma_{1}^{i} \gamma_{2}^{i}-\sum_{i, j \in I} a_{i j} \gamma_{1}^{i} \gamma_{2}^{i}
$$

is symmetric as well.
We make \mathcal{H} into a $\left(\mathbb{Z}_{\geqslant 0}^{I} \times \mathbb{Z}\right)$-graded algebra as follows. For a polynomial $f \in \mathcal{H}_{\gamma}$ of degree k we define its bigrading to be $\left(\gamma, 2 k+\chi_{Q}(\gamma, \gamma)\right)$. It follows from either (2.1) or Theorem 2.3 that the product on \mathcal{H} is compatible with this bigrading. Define the super-structure on \mathcal{H} to be induced by the \mathbb{Z}-grading.

A. I. Efimov

For two elements $a_{\gamma, k} \in \mathcal{H}_{\gamma, k}, a_{\gamma^{\prime}, k^{\prime}} \in \mathcal{H}_{\gamma^{\prime}, k^{\prime}}$, we have

$$
a_{\gamma, k} a_{\gamma^{\prime}, k^{\prime}}=(-1)^{\chi Q\left(\gamma, \gamma^{\prime}\right)} a_{\gamma^{\prime}, k^{\prime}} a_{\gamma, k}
$$

In general, this does not mean that \mathcal{H} is super-commutative. However, it is easy to twist the product by a sign, so that \mathcal{H} becomes super-commutative. This can be done as follows.

Define the homomorphism of abelian groups $\epsilon: \mathbb{Z}^{I} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ by the formula

$$
\epsilon(\gamma)=\chi_{Q}(\gamma, \gamma) \quad \bmod 2 .
$$

Note that the parity of the element $a_{\gamma, k}$ equals $\epsilon(\gamma)$ (by the definition). We have a bilinear form

$$
\mathbb{Z}^{I} \times \mathbb{Z}^{I} \rightarrow \mathbb{Z} / 2 \mathbb{Z}, \quad\left(\gamma_{1}, \gamma_{2}\right) \mapsto\left(\chi_{Q}\left(\gamma_{1}, \gamma_{2}\right)+\epsilon\left(\gamma_{1}\right) \epsilon\left(\gamma_{2}\right)\right) \quad \bmod 2,
$$

which induces a symmetric form β on the space $(\mathbb{Z} / 2 \mathbb{Z})^{I}$, such that $\beta(\gamma, \gamma)=0$ for all $\gamma \in(\mathbb{Z} / 2 \mathbb{Z})^{I}$. Hence, there exists a bilinear form ψ on $(\mathbb{Z} / 2 \mathbb{Z})^{I}$ such that

$$
\psi\left(\gamma_{1}, \gamma_{2}\right)+\psi\left(\gamma_{2}, \gamma_{1}\right)=\beta\left(\gamma_{1}, \gamma_{2}\right)
$$

Then the twisted product on \mathcal{H} is defined by the formula

$$
a_{\gamma, k} \star a_{\gamma^{\prime}, k^{\prime}}=(-1)^{\psi\left(\gamma, \gamma^{\prime}\right)} a_{\gamma, k} \cdot a_{\gamma^{\prime}, k^{\prime}} .
$$

It follows from the definition that the product \star is associative, and the algebra (\mathcal{H}, \star) is super-commutative. From now on, we fix the choice of bilinear form ψ, and the corresponding product \star on \mathcal{H}.

3. Freeness of the COHA of a symmetric quiver

Theorem 3.1. For any finite symmetric quiver Q, the $\left(\mathbb{Z}_{\geqslant 0}^{I} \times \mathbb{Z}\right)$-graded algebra (\mathcal{H}, \star) is a free super-commutative algebra generated by a $\left(\mathbb{Z}_{\geqslant 0}^{I} \times \mathbb{Z}\right)$-graded vector space V of the form $V=V^{\text {prim }} \otimes \mathbb{Q}[x]$, where x is a variable of bidegree $(0,2) \in \mathbb{Z}_{\geqslant 0}^{I} \times \mathbb{Z}$, and for any $\gamma \in \mathbb{Z}{ }_{\geqslant 0}^{I}$ the space $V_{\gamma, k}^{\text {prim }}$ is non-zero (and finite-dimensional) only for finitely many $k \in \mathbb{Z}$.

Before giving a proof of this theorem, we illustrate it in some examples.
Let Q_{d} be a quiver with one vertex and d loops, $d \geqslant 0$. Then $\mathcal{H}_{n, k}$ is the space of symmetric polynomials in n variables of degree $\left(k-(1-d) n^{2}\right) / 2$. In this case we do not need to modify the product by a sign.
Example 3.2. For $d=0$, the super-commutative algebra \mathcal{H} is freely generated by odd elements $\psi_{2 k+1}:=x_{1}^{k} \in \mathcal{H}_{1,2 k+1}, k \in \mathbb{Z}_{\geqslant 0}$, Thus $V=\mathcal{H}_{1} \subset \mathcal{H}$, and the space $V^{\text {prim }}=\mathcal{H}_{1,1}=\mathbb{Q} \cdot \psi_{1}$ is onedimensional.

Example 3.3. For $d=1$, the super-commutative algebra \mathcal{H} is freely generated by even elements $\phi_{2 k}:=x_{1}^{k} \in \mathcal{H}_{1,2 k}, k \in \mathbb{Z}_{\geqslant 0}$, Thus again $V=\mathcal{H}_{1} \subset \mathcal{H}$, and the space $V^{\text {prim }}=\mathcal{H}_{1,0}=\mathbb{Q} \cdot \phi_{0}$ is onedimensional.

These two cases were considered in [KS11, §2.5]. However, for $d \geqslant 2$ the picture becomes much more complicated.

Example 3.4. Consider the case $d=2$. It is not hard to see that all the spaces $V_{n}, n \geqslant 1$, have to be non-zero and contain $1 \in \mathcal{H}_{n,-n^{2}}$. We write down here V_{n} and $V_{n}^{\text {prim }}$ for $n \leqslant 3$.

We have to take the component $V_{1}=\bigoplus_{k} V_{1, k}$ to be equal to $\mathcal{H}_{1}=\bigoplus_{k \geqslant 0} \mathcal{H}_{1,2 k-1}$, and hence $V_{1}^{\text {prim }}=V_{1,-1}^{\text {prim }}=\mathbb{Q} \cdot x_{1}^{0}$. Further, the subspace of \mathcal{H}_{2} generated by \mathcal{H}_{1} consists of symmetric

Cohomological Hall algebra of a symmetric quiver

polynomials divisible by $\left(x_{1}-x_{2}\right)^{2}$. Hence, we have to take $V_{2} \subset \mathcal{H}_{2}$ to be some complementary subspace, for example, $V_{2}=\mathbb{Q}\left[x_{1}+x_{2}\right] \subset \mathcal{H}_{2}$. Then $V_{2}^{\text {prim }}=V_{2,-4}^{\text {prim }}=\mathbb{Q} \cdot\left(x_{1}+x_{2}\right)^{0}$. One can show that subspace of \mathcal{H}_{3} generated by $V_{1} \oplus V_{2}$ consists of symmetric polynomials which vanish on the line $\left\{x_{1}=x_{2}=x_{3}\right\}$. Hence, we can choose $V_{3}=\mathbb{Q}\left[x_{1}+x_{2}+x_{3}\right]$, and $V_{3}^{\text {prim }}=V_{3,-9}^{\text {prim }}=$ $\mathbb{Q} \cdot\left(x_{1}+x_{2}+x_{3}\right)^{0}$.

Proof. Our first step is to construct the space V. It will be convenient to treat \mathcal{H}_{γ} itself as a \mathbb{Z}-graded algebra (with the usual multiplication of polynomials, and the standard even grading). To distinguish between the product in \mathcal{H}_{γ} and the product in \mathcal{H}, we will always denote the latter product by ' \star '.

For convenience, we put $A_{\gamma}:=\mathbb{Q}\left[\left\{x_{i, \alpha}\right\}_{i \in I, 1 \leqslant \alpha \leqslant \gamma^{i}}\right]$ (considered as a \mathbb{Z}-graded algebra) and $P_{\gamma}:=\prod_{i \in I} S_{\gamma^{i}}$. Then we have that $\mathcal{H}_{\gamma}=A_{\gamma}^{P_{\gamma}}$. Further, put

$$
A_{\gamma}^{\text {prim }}:=\mathbb{Q}\left[\left(x_{j, \alpha_{2}}-x_{i, \alpha_{1}}\right)_{i, j \in I, 1 \leqslant \alpha_{1} \leqslant \gamma^{i}, 1 \leqslant \alpha_{2} \leqslant \gamma^{j}}\right], \quad \sigma_{\gamma}:=\sum_{\substack{i \in I, 1 \leqslant \alpha \leqslant \gamma^{i}}} x_{i, \alpha} \in A_{\gamma} .
$$

Then $A_{\gamma}=A_{\gamma}^{\text {prim }} \otimes \mathbb{Q}\left[\sigma_{\gamma}\right]$. Further, we have

$$
\mathcal{H}_{\gamma}=\mathcal{H}_{\gamma}^{\text {prim }} \otimes \mathbb{Q}\left[\sigma_{\gamma}\right], \quad \mathcal{H}_{\gamma}^{\text {prim }}:=\left(A_{\gamma}^{\text {prim }}\right)^{P_{\gamma}} .
$$

Now, for each $\gamma \in \mathbb{Z}_{\geqslant 0}^{I}$, denote by J_{γ} the smallest P_{γ}-stable $A_{\gamma}^{\text {prim }}$-submodule of the localization $A_{\gamma}^{\text {prim }}\left[\left(x_{i, \alpha_{2}}-x_{i, \alpha_{1}}\right)_{i \in I, 1 \leqslant \alpha_{1}<\alpha_{2} \leqslant \gamma^{i}}^{-1}\right]$, such that for all decompositions $\gamma=\gamma_{1}+\gamma_{2}$, $\gamma_{1}, \gamma_{2} \in \mathbb{Z}_{\geqslant 0}^{I} \backslash\{0\}$, we have that

$$
\frac{\prod_{i, j \in I} \prod_{\alpha_{1}=1}^{\gamma_{i}^{i}} \prod_{\alpha_{2}=\gamma_{1}^{j}+1}^{\gamma^{j}}\left(x_{j, \alpha_{2}}-x_{i, \alpha_{1}}\right)^{a_{i j}}}{\prod_{i \in I} \prod_{\alpha_{1}=1}^{\gamma_{1}^{i}} \prod_{\alpha_{2}=\gamma_{1}^{i}+1}^{\gamma_{1}^{i}}\left(x_{i, \alpha_{2}}-x_{i, \alpha_{1}}\right)} \in J_{\gamma} .
$$

Remark 3.5. Some arguments below become simpler in the case when the quiver Q has at least one loop at each vertex, i.e. $a_{i i} \geqslant 1, i \in I$. The reason is that in this case $J_{\gamma} \subset A_{\gamma}^{\text {prim }}$, and we do not need to take the localization.

It is not hard to see that $J_{\gamma}^{P_{\gamma}} \subset \mathcal{H}_{\gamma}^{\text {prim }}$. Namely, we have that

$$
J_{\gamma} \subset A_{\gamma}^{\text {prim }} \cdot M^{-1}, \quad M=\prod_{i \in I} \prod_{1 \leqslant \alpha<\beta \leqslant \gamma^{i}}\left(x_{i, \beta}-x_{i, \alpha}\right),
$$

and

$$
\left(A_{\gamma}^{\text {prim }} \cdot M^{-1}\right)^{P_{\gamma}} \subset\left(A_{\gamma} \cdot M^{-1}\right)^{P_{\gamma}}=\mathcal{H}_{\gamma} .
$$

Define $V_{\gamma}^{\text {prim }} \subset \mathcal{H}_{\gamma}^{\text {prim }}$ to be a graded subspace such that

$$
\mathcal{H}_{\gamma}^{\text {prim }}=V_{\gamma}^{\text {prim }} \oplus J_{\gamma}^{P_{\gamma}} .
$$

Further, put

$$
V_{\gamma}:=V_{\gamma}^{\text {prim }} \otimes \mathbb{Q}\left[\sigma_{\gamma}\right] \subset \mathcal{H}_{\gamma}, \quad V:=\bigoplus_{\gamma \in \mathbb{Z} \geqslant 0} V_{\gamma}
$$

We will prove that V freely generates \mathcal{H}, and that all the spaces $V_{\gamma}^{\text {prim }}$ are finite-dimensional (this would imply the theorem).

A. I. Efimov

Lemma 3.6. The subspace $V \subset \mathcal{H}$ generates \mathcal{H} as an algebra.
Proof. Note that for each $\gamma \in \mathbb{Z} \mathbb{Z}_{\geqslant 0}^{I}$, the image of the multiplication map

$$
\bigoplus_{\substack{\gamma_{1}+\gamma_{1}=\gamma, \gamma_{1}, \gamma_{2} \in \mathbb{Z} \geqslant 0 \backslash\{0\}}} \mathcal{H}_{\gamma_{1}} \otimes \mathcal{H}_{\gamma_{2}} \rightarrow \mathcal{H}_{\gamma}
$$

is precisely $J_{\gamma}^{P_{\gamma}} \otimes \mathbb{Q}\left[\sigma_{\gamma}\right]$. Indeed, this image clearly is contained in $\left(J_{\gamma} \otimes \mathbb{Q}\left[\sigma_{\gamma}\right]\right)^{P_{\gamma}}=J_{\gamma}^{P_{\gamma}} \otimes \mathbb{Q}\left[\sigma_{\gamma}\right]$. On the other hand, the latter space is linearly spanned by P_{γ}-symmetrizations of expressions of the form

$$
\begin{equation*}
f_{1}\left(x_{i, \alpha}, 1 \leqslant \alpha \leqslant \gamma_{1}^{i}\right) f_{2}\left(x_{i, \beta+\gamma_{1}^{i}}, 1 \leqslant \beta \leqslant \gamma_{2}^{i}\right) \cdot \frac{\prod_{i, j \in I} \prod_{\alpha_{1}=1}^{\gamma_{1}^{i}} \prod_{\alpha_{2}=\gamma_{1}^{j}+1}^{\gamma^{j}}\left(x_{j, \alpha_{2}}-x_{i, \alpha_{1}}\right)^{a_{i j}}}{\prod_{i \in I} \prod_{\alpha_{1}=1}^{\gamma_{1}^{i}} \prod_{\alpha_{2}=\gamma_{1}^{i}+1}^{i^{i}}\left(x_{i, \alpha_{2}}-x_{i, \alpha_{1}}\right)}, \tag{3.1}
\end{equation*}
$$

where $\gamma_{1}+\gamma_{2}=\gamma$. Taking first symmetrization with respect to $P_{\gamma_{1}} \times P_{\gamma_{2}} \subset P_{\gamma}$, we may consider only expressions (3.1) with $f_{1} \in \mathcal{H}_{\gamma_{1}}, f_{2} \in \mathcal{H}_{\gamma_{2}}$. The P_{γ}-symmetrization of such an expression is, up to a constant, just a product $f_{1} \star f_{2}$.

Hence, it follows by induction on $\sum_{i \in I} \gamma^{i}$ that the subspace \mathcal{H}_{γ} is contained in the subalgebra generated by V. This proves the lemma.

Remark 3.7. The proof of the above lemma shows that, for any possible choice of a free generating subspace V, we have that $V_{\gamma} \oplus\left(J_{\gamma}^{P_{\gamma}} \otimes \mathbb{Q}\left[\sigma_{\gamma}\right]\right)=\mathcal{H}_{\gamma}$. Our choice just reflects the fact that $V \cong V^{\text {prim }} \otimes \mathbb{Q}[x]$ as a graded vector space, with $\operatorname{deg} x=(0,2)$.

Now we will show that the spaces $V_{\gamma}^{\text {prim }}$ are finite-dimensional.
Lemma 3.8. For each $\gamma \in \mathbb{Z} \geqslant 0$, the space $V_{\gamma}^{\text {prim }}$ is finite-dimensional.
Proof. In other words, we need to show that the ideal $J_{\gamma}^{P_{\gamma}} \subset \mathcal{H}_{\gamma}^{\text {prim }}$ has finite codimension. First note that if we replace $a_{i i}$ by $a_{i i}+1$, then the fractional ideal J_{γ} would become smaller or equal. Hence, we may and will assume that $a_{i i}>0$ for $i \in I$, and so $J_{\gamma} \subset A_{\gamma}^{\text {prim }}$.

Since we have natural injective morphisms

$$
\mathcal{H}_{\gamma}^{\text {prim }} / J_{\gamma}^{P_{\gamma}} \hookrightarrow A_{\gamma}^{\text {prim }} / J_{\gamma},
$$

it suffices to show that the ideal $J_{\gamma} \subset A_{\gamma}^{\text {prim }}$ has finite codimension. It will be convenient to treat the algebra $A_{\gamma}^{\text {prim }}$ as the algebra of functions on the hyperplane $W \subset \mathbb{A}_{\mathbb{Q}}^{\sum_{i \in I} \gamma^{i}}$, given by equation $\sigma_{\gamma}(x)=0$.

It suffices to show that

$$
\operatorname{Supp}\left(A_{\gamma}^{\text {prim }} / J_{\gamma}\right)=\{0\} \subset W .
$$

Assume the converse is true. Then there exists a point $y \in W_{\overline{\mathbb{Q}}}, y \neq 0$, such that all the functions from J_{γ} vanish at y. Since $\sigma_{\gamma}(y)=0$, we have that not all of the coordinates $y_{i, \alpha}$ are equal to each other. Since the ideal J_{γ} is P_{γ}-stable, we may assume that there exists a decomposition $\gamma=\gamma_{1}+\gamma_{2}, \gamma_{1}, \gamma_{2} \in \mathbb{Z}_{\geqslant 0}^{I} \backslash\{0\}$, such that

$$
y_{i, \alpha_{1}} \neq y_{j, \alpha_{2}} \quad \text { for } 1 \leqslant \alpha_{1} \leqslant \gamma_{1}^{i}, \gamma_{1}^{j}+1 \leqslant \alpha_{2} \leqslant \gamma^{j} .
$$

Cohomological Hall algebra of a symmetric quiver

Then, however, the function

$$
\frac{\prod_{i, j \in I} \prod_{\alpha_{1}=1}^{\gamma_{1}^{i}} \prod_{\alpha_{2}=\gamma_{1}^{j}+1}^{\gamma^{j}}\left(x_{j, \alpha_{2}}-x_{i, \alpha_{1}}\right)^{a_{i j}}}{\prod_{i \in I} \prod_{\alpha_{1}=1}^{\gamma_{1}^{i}} \prod_{\alpha_{2}=\gamma_{1}+1}^{\gamma^{i}}\left(x_{i, \alpha_{2}}-x_{i, \alpha_{1}}\right)} \in J_{\gamma}
$$

does not vanish at y, a contradiction.
The lemma is proved.
It remains to prove the freeness.
Lemma 3.9. The subspace $V \subset \mathcal{H}$ freely generates \mathcal{H}.
Proof. We have already shown the generation. So we need to show freeness.
Choose an order on I, and fix the corresponding lexicographical order on $\mathbb{Z}_{\geqslant 0}^{I}$ (denoted by $\left.\gamma \succeq \gamma^{\prime}\right)$. Further, denote by $e_{\gamma, \beta}, 1 \leqslant \beta \leqslant \operatorname{dim} V_{\gamma}^{\text {prim }}$, a homogeneous basis of $V_{\gamma}^{\text {prim }}$. We have the lexicographical order on all of the elements $e_{\gamma, \beta}$ (for all γ and β). Further, the elements $e_{\gamma, \beta} \sigma_{\gamma}^{m}$ (for all γ, β, m) form a basis of V, and again we have a lexicographical order on them, which we denote by \succeq.

Fix some $\gamma \in \mathbb{Z} \underset{\geqslant 0}{I}$. Consider the set Seq $_{\gamma}$ of all non-increasing sequences $\left(e_{\gamma_{1}, \beta_{1}} \sigma_{\gamma_{1}}^{m_{1}}, \ldots\right.$, $\left.e_{\gamma_{d}, \beta_{d}} \sigma_{\gamma_{d}}^{m_{d}}\right)$ such that:
(1) $\gamma_{1}+\cdots+\gamma_{d}=\gamma$;
(2) an equality $\left(\gamma_{i}, \beta_{i}, m_{i}\right)=\left(\gamma_{i+1}, \beta_{i+1}, m_{i+1}\right)$ implies $\epsilon\left(\gamma_{i}\right)=0$.

Clearly, we have a natural lexicographical order on Seq_{γ} (which we again denote by \succeq). For a sequence $t \in \mathrm{Seq}_{\gamma}$, we denote by $M_{t} \in \mathcal{H}_{\gamma}$ the corresponding product.

What we need to show is non-vanishing of each non-trivial linear combination:

$$
\begin{equation*}
T=\sum_{i=1}^{n} \lambda_{i} M_{t_{i}} \neq 0, \quad t_{1}, \ldots, t_{n} \in \mathrm{Seq}_{\gamma}, \quad t_{1} \succ \cdots \succ t_{n}, \quad \lambda_{1} \ldots \lambda_{n} \neq 0 . \tag{3.2}
\end{equation*}
$$

Fix some t_{1}, \ldots, t_{n} and $\lambda_{1}, \ldots, \lambda_{n}$ as in (3.2). Denote by $\left(\gamma_{1}, \ldots, \gamma_{k}\right)$ the underlying sequence of elements in $\mathbb{Z}_{\geqslant 0}^{I}$ for the sequence $t_{1} \in \operatorname{Seq}_{\gamma}$. Then $\gamma_{1}+\cdots+\gamma_{k}=\gamma$, and $\gamma_{i} \neq 0,1 \leqslant i \leqslant k$. We have a natural isomorphism

$$
A_{\gamma} \cong A_{\gamma_{1}} \otimes \cdots \otimes A_{\gamma_{k}}=: \widetilde{A_{\gamma}},
$$

which induces an inclusion

$$
\iota: \mathcal{H}_{\gamma} \hookrightarrow \mathcal{H}_{\gamma_{1}} \otimes \cdots \otimes \mathcal{H}_{\gamma_{k}}=: \widetilde{\mathcal{H}_{\gamma}} .
$$

Put $\widetilde{P_{\gamma}}:=P_{\gamma_{1}} \times \cdots \times P_{\gamma_{k}}$. Then we have $\widetilde{\mathcal{H}_{\gamma}}=\widetilde{A_{\gamma}} \widetilde{P_{\gamma}}$. Further, take the ideal

$$
\left(J_{\gamma_{1}} \cap A_{\gamma_{1}}^{\text {prim }}\right) \widetilde{A_{\gamma}}+\cdots+\left(J_{\gamma_{k}} \cap A_{\gamma_{k}}^{\text {prim }}\right) \widetilde{A_{\gamma}}=: \widetilde{J_{\gamma}} \subset \widetilde{A_{\gamma}} .
$$

We will write $x_{i, \alpha}^{(p)} \in \widetilde{A_{\gamma}}$ for variables from the p th factor $A_{\gamma_{p}} \subset \widetilde{A_{\gamma}}$.
Claim. The elements $\left(x_{j, \alpha_{2}}^{(q)}-x_{i, \alpha_{1}}^{(p)}\right) \in \widetilde{A_{\gamma}}, 1 \leqslant p<q \leqslant k$, are not zero divisors in the quotient ring

$$
\widetilde{A_{\gamma}} / \widetilde{J_{\gamma}} .
$$

A. I. Efimov

Proof. For convenience, we may assume that the sequence $\gamma_{1}, \ldots, \gamma_{k}$ is not necessarily nonincreasing, and $q=k$. Any element $g \in \widetilde{A_{\gamma}}$ can be written (in a unique way) as a sum

$$
g=\sum_{\nu=0}^{N} g_{\nu} \sigma_{\gamma_{k}}^{\nu}, \quad g_{\nu} \in A_{\gamma_{1}} \otimes \cdots \otimes A_{\gamma_{k-1}} \otimes A_{\gamma_{k}}^{\text {prim }}
$$

The following are obviously equivalent:
(i) $g \notin \widetilde{J_{\gamma}}$;
(ii) for some $\nu \in\{0, \ldots, N\}, g_{\nu} \notin \widetilde{J_{\gamma}}$.

Now suppose that $g \notin \widetilde{J_{\gamma}}$. We need to show that

$$
\begin{equation*}
\left(x_{j, \alpha_{2}}^{(k)}-x_{i, \alpha_{1}}^{(p)}\right) g \notin \widetilde{J_{\gamma}} . \tag{3.3}
\end{equation*}
$$

We may assume that $g_{N} \notin \widetilde{J_{\gamma}}$. Put

$$
x_{a v}^{(k)}:=\frac{1}{\sum_{i \in I} \gamma_{k}^{i}} \sum_{i, \alpha} x_{i, \alpha}^{(k)}=\frac{1}{\sum_{i \in I} \gamma_{k}^{i}} \sigma_{\gamma_{k}} .
$$

Then $x_{j, \alpha_{2}}^{(k)}-x_{a v}^{(k)} \in A_{\gamma_{k}}^{\text {prim }}$, and we have

$$
\left(x_{j, \alpha_{2}}^{(k)}-x_{i, \alpha_{1}}^{(p)}\right) g=\left(x_{j, \alpha_{2}}^{(k)}-x_{a v}^{(k)}-x_{i, \alpha_{1}}^{(p)}\right) g+x_{a v}^{(k)} g=\frac{1}{\sum_{i \in I} \gamma_{k}^{i}} g_{N} \sigma_{\gamma_{k}}^{N+1}+\sum_{\nu=0}^{N} g_{\nu}^{\prime} \sigma_{\gamma_{k}}^{\nu}
$$

for some $g_{\nu}^{\prime} \in A_{\gamma_{1}} \otimes \cdots \otimes A_{\gamma_{k-1}} \otimes A_{\gamma_{k}}^{\text {prim }}$. Since $\left(1 / \sum_{i \in I} \gamma_{k}^{i}\right) g_{N} \notin \widetilde{J_{\gamma}}$ by our assumption, this implies (3.3). The claim is proved.

We put

$$
{\widetilde{A_{\gamma}}}^{\prime}:=\widetilde{A_{\gamma}}\left[\left(x_{j, \alpha_{2}}^{(q)}-x_{i, \alpha_{1}}^{(p)}\right)_{1 \leqslant p<q \leqslant k}^{-1}\right], \quad \widetilde{\mathcal{H}}_{\gamma}^{\prime}:=\left(\widetilde{A_{\gamma}}\right)^{\prime} \widetilde{P_{\gamma}} .
$$

We denote by the same letter L the localization maps $L: \widetilde{A_{\gamma}} \rightarrow \widetilde{A_{\gamma}}{ }^{\prime}, L: \widetilde{\mathcal{H}_{\gamma}} \rightarrow \widetilde{\mathcal{H}_{\gamma}}{ }^{\prime}$. Also put ${\widetilde{J_{\gamma}}}^{\prime}:=\widetilde{A_{\gamma}}{ }^{\prime} L\left(\widetilde{J_{\gamma}}\right)$. It follows directly from the claim that the induced maps

$$
\begin{equation*}
L: \widetilde{A_{\gamma}} / \widetilde{J_{\gamma}} \rightarrow{\widetilde{A_{\gamma}}}_{\gamma}^{\prime} /{\widetilde{J_{\gamma}}}^{\prime}, \quad L: \widetilde{\mathcal{H}_{\gamma}} /\left(\widetilde{J_{\gamma}}\right)^{\widetilde{P_{\gamma}}} \rightarrow \widetilde{\mathcal{H}}_{\gamma}^{\prime} /\left({\left.\widetilde{J_{\gamma}}\right)^{\prime}}^{P}\right. \tag{3.4}
\end{equation*}
$$

are injective.
Now, let $r \in\{1, \ldots, n\}$ be the maximal number such that the underlying sequence of elements in $\mathbb{Z}_{\geqslant 0}^{I}$ for t_{r} coincides with $\left(\gamma_{1}, \ldots, \gamma_{k}\right)$. Then it is straightforward to check that

$$
L \iota\left(M_{t_{l}}\right) \in\left(\widetilde{J_{\gamma}^{\prime}}\right)^{\widetilde{P_{\gamma}}} \quad \text { for } r+1 \leqslant l \leqslant n .
$$

Thus, it suffices to show that

$$
\begin{equation*}
L \iota\left(\sum_{i=1}^{r} \lambda_{i} M_{t_{i}}\right) \notin\left(\widetilde{J_{\gamma}}\right)^{\widetilde{P_{\gamma}}} . \tag{3.5}
\end{equation*}
$$

For all relevant β_{i}, m_{i} we have the following comparison:

$$
\begin{align*}
& L \iota\left(e_{\gamma_{1}, \beta_{1}} \sigma_{\gamma_{1}}^{m_{1}} \star \cdots \star e_{\gamma_{k}, \beta_{k}} \sigma_{\gamma_{k}}^{m_{k}}\right) \\
& \quad \equiv F_{\gamma_{1}, \ldots, \gamma_{k}} \cdot \sum_{\tau} s(\tau) e_{\gamma_{1}, \beta_{\tau(1)}} \sigma_{\gamma_{1}}^{m_{\tau(1)}} \otimes \cdots \otimes e_{\gamma_{k}, \beta_{\tau(k)}} \sigma_{\gamma_{k}}^{m_{\tau(k)}} \bmod \left(\widetilde{J}_{\gamma}^{\prime}\right)^{\prime}{\widetilde{P_{\gamma}}} \tag{3.6}
\end{align*}
$$

where the sum is taken over all permutations $\tau \in S_{k}$ such that $\gamma_{p}=\gamma_{\tau(p)}$ for all $p \in\{1, \ldots, k\}$, and $s(\tau)$ is the Koszul sign (recall that the parity of $e_{\gamma, \beta} \sigma_{\gamma}^{k}$ equals $\epsilon(\gamma)$), and $F_{\gamma_{1}, \ldots, \gamma_{k}} \in \widetilde{\mathcal{H}}_{\gamma}{ }^{\prime}$ is (up to sign) the product of some powers (positive and (-1)st) of the differences

$$
\left(x_{j, \alpha_{2}}^{(q)}-x_{i, \alpha_{1}}^{(p)}\right) \in \widetilde{A_{\gamma}}, \quad 1 \leqslant p<q \leqslant k .
$$

Thus, $F_{\gamma_{1}, \ldots, \gamma_{k}}$ is invertible, and, according to (3.6) and injectivity of the maps (3.4), we are left to check that

$$
\sum_{\tau} s(\tau) e_{\gamma_{1}, \beta_{\tau(1)}} \sigma_{\gamma_{1}}^{m_{\tau(1)}} \otimes \cdots \otimes e_{\gamma_{k}, \beta_{\tau(k)}} \sigma_{\gamma_{k}}^{m_{\tau(k)}} \notin \widetilde{J_{\gamma}} \widetilde{P_{\gamma}} .
$$

However, this follows from the condition (2) in the above definition of the set of sequences Seq_{γ}, and from the definition of $e_{\gamma_{i}, \beta}$. This proves (3.3), hence the desired linear independence (3.2), and hence free generation. The lemma is proved.

The theorem is proved.
It is clear that if $V_{\gamma, k}^{\text {prim }} \neq 0$ in the notation of the above theorem, then $k \equiv \chi_{Q}(\gamma, \gamma) \bmod 2$ and $k \geqslant \chi_{Q}(\gamma, \gamma)$. Our next result is an upper bound on k (depending on γ) for which $V_{\gamma, k} \neq 0$.

For a given symmetric quiver Q and $\gamma \in \mathbb{Z}_{\geqslant 0}^{I} \backslash\{0\}$, we put

$$
N_{\gamma}(Q):=\frac{1}{2}\left(\sum_{\substack{i, j \in I, i \neq j}} a_{i j} \gamma^{i} \gamma^{j}+\sum_{i \in I} \max \left(a_{i i}-1,0\right) \gamma^{i}\left(\gamma^{i}-1\right)\right)-\sum_{i \in I} \gamma^{i}+2 .
$$

Theorem 3.10. In the notation of Theorem 3.1, if $V_{\gamma, k}^{\text {prim }} \neq 0$, then $\gamma \neq 0$,

$$
k \equiv \chi_{Q}(\gamma, \gamma) \bmod 2 \quad \text { and } \quad \chi_{Q}(\gamma, \gamma) \leqslant k<\chi_{Q}(\gamma, \gamma)+2 N_{\gamma}(Q) .
$$

Proof. According to the proof of Theorem 3.1, we have

$$
\begin{equation*}
\operatorname{dim} V_{\gamma, k}^{\text {prim }}=\operatorname{dim}\left(\mathcal{H}_{\gamma}^{\text {prim }} / J_{\gamma}^{P_{\gamma}}\right)^{k-\chi_{Q}(\gamma, \gamma)} . \tag{3.7}
\end{equation*}
$$

Recall that $P_{\gamma}=\prod_{i \in I} S_{\gamma^{i}}$,

$$
A_{\gamma}^{\text {prim }}:=\mathbb{Q}\left[\left(x_{j, \alpha_{2}}-x_{i, \alpha_{1}}\right)_{i, j \in I, 1 \leqslant \alpha_{1} \leqslant \gamma^{i}, 1 \leqslant \alpha_{2} \leqslant \gamma^{j}}\right], \quad \mathcal{H}_{\gamma}^{\text {prim }}:=\left(A_{\gamma}^{\text {prim }}\right)^{P_{\gamma}},
$$

and J_{γ} is the smallest P_{γ}-stable $A_{\gamma}^{\text {prim }}$-submodule of the localization

$$
A_{\gamma}^{\operatorname{prim}}\left[\left(x_{i, \alpha_{2}}-x_{i, \alpha_{1}}\right)_{i \in I, 1 \leqslant \alpha_{1}<\alpha_{2} \leqslant \gamma^{i}}^{-1}\right],
$$

such that for all decompositions $\gamma=\gamma_{1}+\gamma_{2}, \gamma_{1}, \gamma_{2} \in \mathbb{Z}_{\geqslant 0}^{I} \backslash\{0\}$, we have that

$$
\begin{equation*}
\frac{\prod_{i, j \in I} \prod_{\alpha_{1}=1}^{\gamma_{i}^{i}} \prod_{\alpha_{2}=\gamma_{1}^{j}+1}^{\gamma^{j}}\left(x_{j, \alpha_{2}}-x_{i, \alpha_{1}}\right)^{a_{i j}}}{\prod_{i \in I} \prod_{\alpha_{1}=1}^{\gamma_{1}^{i}} \prod_{\alpha_{2}=\gamma_{1}^{i}+1}^{\gamma_{1}^{i}}\left(x_{i, \alpha_{2}}-x_{i, \alpha_{1}}\right)} \in J_{\gamma} . \tag{3.8}
\end{equation*}
$$

Recall that we take the standard even grading on $A_{\gamma}^{\text {prim }}$ with $\operatorname{deg}\left(x_{j, \alpha_{2}}-x_{i, \alpha_{1}}\right)=2$, and the induced grading on $\mathcal{H}_{\gamma}^{\text {prim }}$.

According to (3.7), it suffices to prove inclusions

$$
\begin{equation*}
\left(A_{\gamma}^{\text {prim }}\right)^{d} \subset J_{\gamma} \quad \text { for } d \geqslant 2 N(Q) . \tag{3.9}
\end{equation*}
$$

A. I. Efimov

For any $i, j \in I$, put

$$
a_{i j}^{\prime}:= \begin{cases}a_{i j} & \text { if } i \neq j, \\ \max \left(1, a_{i i}\right) & \text { if } i=j\end{cases}
$$

Take the quiver $Q^{\prime}:=\left(I, a_{i j}^{\prime}\right)$. Note that $N_{\gamma}(Q)=N_{\gamma}\left(Q^{\prime}\right)$, and if we replace Q by Q^{\prime} then the new fractional J_{γ} will be contained in the initial one. Hence, in order to prove inclusions (3.9), we may and will assume that $a_{i i} \geqslant 1$ for $i \in I$, and so $J_{\gamma} \subset A_{\gamma}^{\text {prim }}$. We will deduce (3.9) from the following more general result.
Lemma 3.11. Let k be an arbitrary field, and consider the graded algebra of polynomials $B=\mathrm{k}\left[z_{1}, \ldots, z_{n}\right], n \geqslant 1$, with grading $\operatorname{deg}\left(z_{i}\right)=1$. Suppose that $l_{1}, \ldots, l_{s} \in B^{1}$ are pairwise linearly independent non-zero linear forms in z_{i}. Take some non-empty set of polynomials $\left\{P_{1}, \ldots, P_{r}\right\} \subset B$ of the form

$$
P_{i}=l_{1}^{d_{i 1}} \cdots l_{s}^{d_{i s}},
$$

where $d_{i j} \in \mathbb{Z}_{\geqslant 0}$. Put $d_{j}:=\max _{1 \leqslant i \leqslant r} d_{i j}, 1 \leqslant j \leqslant s$. Then the following are equivalent.
(i) $B^{d} \subset\left(P_{1}, \ldots, P_{r}\right)$ for $d \geqslant d_{1}+\cdots+d_{s}-n+1$.
(ii) The ideal $\left(P_{1}, \ldots, P_{r}\right) \subset B$ has finite codimension.
(iii) For any sequence p_{1}, \ldots, p_{r} of numbers in $\{1, \ldots, s\}$, such that $d_{i, p_{i}}>0$ for $1 \leqslant i \leqslant r$, the linear forms $l_{p_{1}}, \ldots, l_{p_{r}}$ generate the space B^{1}.
Proof. Both implications (i) \Rightarrow (ii) and (ii) \Rightarrow (iii) are evident. So we are left to prove implication (iii) \Rightarrow (i).

Put $D:=d_{1}+\cdots+d_{s}-n+1$. If $D \leqslant 0$, then one of the polynomials P_{i} is constant, and there is nothing to prove. So, we assume that $D>0$.

We proceed by induction on $D+n$. If $D+n=2$, then $n=s=d_{1}=D=1$, hence $\left(P_{1}, \ldots, P_{r}\right) \supset\left(z_{1}\right)$, and the statement is proved.

Assume that the implication holds for $D+n<k_{0}>2$. We will prove that it holds for $D+n=k_{0}$. Consider the following cases.
Case 0 . One of P_{i} is constant. Then, there is nothing to prove.
Case 1. We have $P_{i}=l_{j}$ for some i, j. Then it suffices to show that the images of $P_{i^{\prime}}$ with $d_{i^{\prime} j}=0$ in $B /\left(l_{j}\right)$ generate $\left(B /\left(l_{j}\right)\right)^{d}$ for $d \geqslant D$. If $n=1$ then this is clear, and if $n>1$ then this follows from the induction hypothesis.
Case 2. All P_{i} have degree at least 2 . Take $d \geqslant D$, and $f \in B^{d}$. Choose some sequence p_{1}, \ldots, p_{r} of numbers in $\{1, \ldots, s\}$, such that $d_{i, p_{i}}>0$ for $1 \leqslant i \leqslant r$. Then by statement (iii) we can write

$$
f=\sum_{i=1}^{r} l_{p_{i}} g_{i}, \quad g_{i} \in B^{d-1} .
$$

It suffices to show that for each $1 \leqslant i \leqslant r$, the polynomial g_{i} belongs to an ideal generated by $P_{i^{\prime}}$ with $l_{p_{i}} \nmid P_{i^{\prime}}$, and $P_{i^{\prime \prime}} / l_{p_{i}}$ with $l_{p_{i}} \mid P_{i^{\prime \prime}}$. However, this follows from the induction hypothesis.

In each case, we have proved the desired implication. The induction statement is proved. The lemma is proved.

Now, consider the cases. If $\sum_{i} \gamma^{i}=1$, then $N_{\gamma}(Q)=1$, and $A_{\gamma}^{\text {prim }}=\mathbb{Q}$, and hence inclusions (3.9) hold. Further, if $\sum_{i} \gamma^{i} \geqslant 2$, then we apply Lemma 3.11 to $B=A_{\gamma}^{\text {prim }}$, the linear forms ($x_{j, \alpha_{2}}-x_{i, \alpha_{1}}$) (defined up to sign), and polynomials which are in the P_{γ}-orbit of the expressions (3.8). They generate precisely the ideal $J_{\gamma} \subset A_{\gamma}^{\text {prim }}$. We have already shown in the
proof of Theorem 3.1 that the ideal $J_{\gamma} \subset A_{\gamma}^{\text {prim }}$ has finite codimension. Therefore, the implication (ii) \Rightarrow (i) from Lemma 3.11 gives the desired inclusions (3.9). Indeed, we have that

$$
d_{1}+\cdots+d_{s}=\frac{1}{2}\left(\sum_{\substack{i, j \in I, i \neq j}} a_{i j} \gamma^{i} \gamma^{j}+\sum_{i \in I}\left(a_{i i}-1\right) \gamma^{i}\left(\gamma^{i}-1\right)\right), \quad n=\sum_{i \in I} \gamma^{i}-1,
$$

and hence $N_{\gamma}(Q)=d_{1}+\cdots+d_{s}-n+1$. The inclusions (3.9) and the theorem are proved.

4. Applications to quantum DT invariants

Define the generating function for the COHA \mathcal{H} of a symmetric quiver Q by the following formula:

$$
H_{Q}\left(\left\{t_{i}\right\}_{i \in I}, q\right):=\sum_{\gamma \in \mathbb{Z}_{\geqslant 0}^{I}, k \in \mathbb{Z}}(-1)^{k} \operatorname{dim}\left(\mathcal{H}_{\gamma, k}\right) t^{\gamma} q^{k / 2} \in \mathbb{Z}\left(\left(q^{\frac{1}{2}}\right)\right)\left[\left[\left\{t_{i}\right\}_{i \in I}\right]\right],
$$

where $t^{\gamma}:=\prod_{i \in I} t_{i}^{\gamma^{i}}$. Note that we have an equality

$$
\begin{equation*}
H_{Q}=\sum_{\gamma \in \mathbb{Z} \geqslant 0} \frac{\left(-q^{\frac{1}{2}}\right)^{\chi_{Q}(\gamma, \gamma)}}{\prod_{i \in I}(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{\gamma^{i}}\right)} t^{\gamma} . \tag{4.1}
\end{equation*}
$$

Recall the notation

$$
(z ; q)_{\infty}:=\prod_{n \in \mathbb{Z} \geqslant 0}\left(1-q^{n} z\right)
$$

(the so-called q-Pochhammer symbol).
Corollary 4.1. Let Q be a symmetric quiver. Then we have a decomposition

$$
H_{Q}\left(\left\{t_{i}\right\}_{i \in I}, q\right)=\prod_{\gamma \in \mathbb{Z}_{\geqslant 0}^{I}, k \in \mathbb{Z}}\left(q^{k / 2} x^{\gamma} ; q\right)_{\infty}^{(-1)^{k-1} c_{\gamma, k}}
$$

where $c_{\gamma, k}$ are non-negative integer numbers. Moreover, if $c_{\gamma, k} \neq 0$, then $\gamma \neq 0$,

$$
k \equiv \chi_{Q}(\gamma, \gamma) \bmod 2 \quad \text { and } \quad \chi_{Q}(\gamma, \gamma) \leqslant k<\chi_{Q}(\gamma, \gamma)+2 N_{\gamma}(Q)
$$

In particular, for a fixed γ only finitely many of $c_{\gamma, k}$ are non-zero.
Proof. The corollary follows immediately from Theorems 3.1 and 3.10 if we put $c_{\gamma, k}=\operatorname{dim} V_{\gamma, k}^{\text {prim }}$. Indeed, the generating function of the free super-commutative subalgebra generated by one element of bidegree (γ, k) equals

$$
\left(1-q^{k / 2} t^{\gamma}\right)^{(-1)^{k-1}}
$$

The resulting decomposition follows from free generation of \mathcal{H} by V, and from Theorem 3.10.
In the notation of Corollary 4.1 and the terminology of [KS11], the polynomials

$$
\Omega(\gamma)(q):=\sum_{k \in \mathbb{Z}} c_{\gamma, k} q^{k / 2} \in \mathbb{Z}\left[q^{ \pm \frac{1}{2}}\right]
$$

are quantum Donaldson-Thomas invariants of the quiver Q with trivial potential, trivial stability, and the dimension vector γ. It follows from Corollary 4.1 that for $\gamma \neq 0$ we have

$$
\Omega(\gamma)(q)=q^{\frac{1}{2} \chi_{Q}(\gamma, \gamma)} \tilde{\Omega}(\gamma)(q),
$$

where $\tilde{\Omega}(\gamma)(q)$ is a polynomial with non-negative coefficients, $\tilde{\Omega}(\gamma)(0)=1$, and $\operatorname{deg}(\tilde{\Omega}(\gamma)(q))<$ $N_{\gamma}(Q)$.

A. I. Efimov

We would like to mention a connection with the paper of Reineke [Rei11]. In that paper, for each integer $m \geqslant 1$, the following q-hypergeometric series is considered:

$$
H(q, t)=H_{m}(q, t):=\sum_{n \geqslant 0} \frac{q^{(m-1)\binom{n}{2}}}{\left(1-q^{-1}\right)\left(1-q^{-2}\right) \cdots\left(1-q^{-n}\right)} t^{n} \in \mathbb{Z}(q)[[t]] .
$$

Denote by Q_{m} the m-loop quiver (a quiver with one vertex and m loops). Since $\chi_{Q_{m}}\left(n_{1}, n_{2}\right)=$ $(1-m) n_{1} n_{2}$, the formula (4.1) implies

$$
H_{m}(q, t)=H_{Q_{m}}\left((-1)^{m-1} t q^{(1-m) / 2}, q^{-1}\right)
$$

Also, we have $N_{n}\left(Q_{m}\right)=(m-1)\binom{n}{2}-n+2$. Therefore, Corollary 4.1 implies the following corollary.

Corollary 4.2.

$$
H_{m}\left(q,(-1)^{m-1} t\right)=\prod_{n \geqslant 1, k \in \mathbb{Z}}\left(q^{k} t^{n} ; q^{-1}\right)^{-(-1)^{(m-1) n} d_{n, k}},
$$

where $d_{n, k}$ are non-negative integers, and the inequality $d_{n, k}>0$ implies

$$
n-1 \leqslant k \leqslant(m-1)\binom{n}{2} .
$$

In particular, for a fixed n only finitely many of $d_{n, k}$ are non-zero.
This corollary is stronger than Conjecture 3.3 in [Rei11]. According to the notation of [Rei11], the quantized Donaldson-Thomas type invariant $D T_{n}^{(m)}(q)$ equals $\sum_{k \in \mathbb{Z}} d_{n, k} q^{k}$. Thus, Corollary 4.2 implies that $D T_{n}^{(m)}(q)$ is a monic polynomial of degree $(m-1)\binom{n}{2}$, divisible by q^{n-1}, with non-negative coefficients.

With the above said, the numbers $d_{n, k}$ are the dimensions of graded components of the finitedimensional graded algebras $\mathcal{H}_{n}^{\text {prim }} / J_{n}^{S_{n}}$. It would be interesting to compare this interpretation with the explicit formulas for $D T_{n}^{(m)}(q)$ in [Rei11, Theorem 6.8].

Acknowledgements

I am grateful to Maxim Kontsevich and Yan Soibelman for useful discussions. I am also grateful to Sergey Mozgovoy for pointing my attention to his paper on Kac's conjecture [Moz11].

References

KS11 M. Kontsevich and Y. Soibelman, Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants, Preprint (2011), arXiv:1006.2706v2[math.AG].
Moz11 S. Mozgovoy, Motivic Donaldson-Thomas invariants and Kac conjecture, Preprint (2011), arXiv:1103.2100v2[math.AG].
Rei11 M. Reineke, Degenerate cohomological Hall algebra and quantized Donaldson-Thomas invariants for m-loop quivers, Preprint (2011), arXiv:1102.3978v1[math.RT].

Alexander I. Efimov efimov@mccme.ru
Steklov Mathematical Institute of RAS, Gubkin str. 8, GSP-1, Moscow 119991, Russia
and
Independent University of Moscow, Moscow, Russia

[^0]: Received 13 May 2011, accepted in final form 10 October 2011, published online 15 May 2012. 2010 Mathematics Subject Classification 14F25, 14N35, 16G20 (primary).
 Keywords: Donaldson-Thomas invariants, cohomological Hall algebra, Kac's conjecture.
 The author was partially supported by 'Dynasty' Foundation, Simons Foundation, and by AG Laboratory HSE, RF government grant, ag. 11.G34.31.0023.
 This journal is © Foundation Compositio Mathematica 2012.

