Mathematical Notes.

A Review of Elementary Mathematics and Science.

PUBLISHED BY

ГHE EDINBURGH MATHEMATICAL SOCIETY
Edited by P. PINKERTON, M.A., D.Sc.

No. 9.
January 1912.

Logarithms and the Reciprocals of Numbers.-The writer when introducing his pupils to the use of Logarithmic Tables is accustomed to give them exercise with the number $1 \cdot 00023$. This number, he tells them, without explaining how he obtains it, is such that $1.00023 \times 1.00023 \times \ldots 10,000$ times would give a number which read to the 3 rd decimal place is equal to 10 . He makes this the basis of practical exercises in approximations, and builds on it lessons in Indices, and in the use of Logarithmic Tables, with particular explanation of the Mean Difference Columns.

An instructive exercise for the more advanced pupil might be given in this form :-

$$
\begin{aligned}
& \text { Emp'oy the Table of Reciprocals of Numbers to prove that } \\
& \qquad 1.00023 \text { is approximately }=10^{\overline{10}, \frac{1}{000} .}
\end{aligned}
$$

Starting. with 1 and multiplying successively by 1.000 ± 3 we obtain $1,1 \cdot 00023,(1 \cdot 00023)^{2} \ldots$ Each power is approximately equal to an infinite number of numbers, which are all considered of equal value to a specified degree of approximation. Any number between 1 and 10 is in this sense of approximation either equal to one or other of these powers, or lies between two successive powers. Any number between 1 and 10 thus corresponds to a particular number of times for which the multiplication by $1 \cdot 00023$ has been performed to give any number equal in value to $i t$.

Let us consider to which powers correspond the numbers $1 \cdot 1$, $1 \cdot 2,1 \cdot 3 \ldots$, that is, the numbers between 1 and 10 progressing by a common Arithmetical difference of $\cdot 1$.

When 1 is multiplied by $1 \cdot 00023$, the multiplication has added to 1 the value 00023×1.

When $1 \cdot 1$ is multiplied by $1 \cdot 00023$, the multiplication adds to $1 \cdot 1$ the value $00023 \times 1 \cdot 1$.
\therefore On an average each multiplication between 1 and $1 \cdot 1$ is adding on $\cdot 00023\left(\frac{1+1 \cdot 1}{2}\right)$.
\therefore To change 1 into $1 \cdot 1$ the multiplication has to be performed $\frac{\cdot 1}{.00023\left(\frac{1+1 \cdot 1}{2}\right)}$ times.

This is approximately equal to $\frac{\cdot 1}{\cdot 00023}\left(\frac{1+\frac{1}{1 \cdot 1}}{2}\right)$.
Similarly to change $1 \cdot 1$ to $1 \cdot 2$ the multiplication has to be performed $\frac{\cdot 1}{\cdot 00023}\left(\frac{\frac{1}{1 \cdot 1}+\frac{1}{1 \cdot 2}}{2}\right)$ times, and so on till 10 is reached.
\therefore The number of times for which the multiplication has to be performed to reach 10

$$
=\frac{\cdot 1}{\cdot 00023}\left(\frac{1+\frac{1}{1 \cdot 1}}{2}+\frac{\frac{1}{1 \cdot 1}+\frac{1}{1 \cdot 2}}{2}+\frac{\frac{1}{1 \cdot 2}+\frac{1}{1 \cdot 3}}{2}+\ldots+\frac{\frac{1}{9 \cdot 9}+\frac{1}{10}}{2}\right)
$$

The part within the Bracket may be found by Simple Addition from any Table of Reciprocals to be equal to 23.004 to 3 places.
\therefore The number of times the multiplication has to be performed to change 1 to $10=\frac{\cdot 1}{.00023} \times 23.004$

$$
=10,000 \text { approximately }
$$

If 1.0001 be taken as the multiplier instead of $1 \cdot 00023$, then $(1.0001)^{23004}$ is approximately $=10$, or $\quad\left\{(1 \cdot 0001)^{10,000}\right\}^{2 \cdot 3004}=10$. $(1 \cdot 0001)^{10,000}$ is an approximate value for the Napierian base e.

It will be noticed that in thus treating the series $1,1+r,(1+r)^{2} \ldots(1+r)^{n-1}$ where $r=\cdot 00023$ and $(1+r)^{n-1}=1 \cdot 1$ we have employed approximations. Thus we have taken $n-1$ to $b e=\frac{\cdot 1}{.00023}\left(\frac{2}{2 \cdot 1}\right)$ which is $=414$ to the nearest integer.

Let us test the approximation by finding the value of $(1+r)^{n-1}$ when $\overline{n-1}$ is taken $=414$.

By the Binomial Theorem

$$
\begin{aligned}
& \begin{aligned}
&(1 \cdot 00023)^{414}=1+414(\cdot 00023)+\text { etc. }=1 \cdot 0999 \text { to } 4 \text { places. } \\
&=1 \cdot 1 \text { to } 3 \text { places. } \\
& \text { We also substituted } \frac{1+\frac{1}{1 \cdot 1}}{2} \text { for } \frac{1}{\frac{1+1 \cdot 1}{2}} \\
& \text { i.e. } \frac{2 \cdot 1}{2 \cdot 2} \text { for } \frac{2}{2 \cdot 1} \\
& \text { i.e. } 4 \cdot 41 \text { for } 4 \cdot 4 .
\end{aligned}
\end{aligned}
$$

The other parts may be tested in a similar manner, when it will be observed that the approximation is as close as that obtainable in Four-figure Logarithmic Tables.

In changing 1 into any value N of the series $1,1 \cdot 1,1 \cdot 2 \ldots$ the corresponding power $=\frac{\cdot 1}{\cdot 00023}\left(\frac{1}{2}+\frac{1}{1 \cdot 1}+\frac{1}{1 \cdot 2}+\ldots+\frac{\frac{1}{N}}{2}\right)$.

In changing 1 into 10 the power is 10,000 .

$$
\therefore \quad \log _{10} \mathrm{~N}=\left(\frac{1}{2}+\frac{1}{1 \cdot 1}+\ldots \frac{\frac{1}{\mathrm{~N}}}{2}\right) \div 23 .
$$

It follows that if M and N are two terms of the series, then

$$
\begin{aligned}
\frac{1}{\mathbf{M}}+\ldots+\frac{1}{\mathbf{N}} & =\left(\frac{1}{2}+\frac{1}{1 \cdot 1}+\ldots+\frac{\frac{1}{\mathbf{N}}}{2}\right)-\left(\frac{1}{2}+\frac{1}{1 \cdot 1}+\ldots+\frac{\frac{1}{\mathbf{M}}}{2}\right)+\frac{\frac{1}{\mathbf{M}}+\frac{1}{\mathbf{N}}}{2} \\
& =23\left(\log _{10} \mathbf{N}-\log _{10} \mathbf{M}\right)+\frac{\frac{1}{\mathbf{M}}+\frac{1}{\mathbf{N}}}{2}
\end{aligned}
$$

By means of this equation the sum of a number of terms in Harmonical Progression may be approximately obtained in certain cases.

Thus $\frac{1}{1 \cdot 04}+\frac{1}{1 \cdot 08}+\frac{1}{1 \cdot 12}+\ldots+\frac{1}{1 \cdot 32}$

$$
\begin{gathered}
=\frac{(\log 1 \cdot 32-\log 1 \cdot 04) \times 23}{\frac{\cdot 04}{\cdot 1}}+\frac{\frac{1}{1 \cdot 04}+-\frac{1}{1 \cdot 32}}{2} \\
=\tilde{5} \cdot 957+\cdot 4807+\cdot 3787=6.8164
\end{gathered}
$$

The result correct to 3 places obtained from Tables $=6 \cdot 822$.
We may find the sum of

$$
1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\ldots+\frac{1}{10,000}
$$

It is $=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{10}+\frac{1}{10}\left(\frac{1}{1 \cdot 1}+\frac{1}{1 \cdot 2}+\frac{1}{1 \cdot 3}+\ldots+\frac{1}{1000}\right)$.
But $1+\frac{1}{2}+\ldots+\frac{1}{10}$ from Table of Reciprocals $=2.92897$, and the remaining part $=\frac{1}{10}\left\{23 \log 1000-23 \log 1 \cdot 1+\frac{1}{2}\left(\frac{1}{1 \cdot 1}+\frac{1}{1000}\right)\right\}$

$$
=\frac{1}{10}(68 \cdot 5028)=6 \cdot 85028 .
$$

\therefore The sum of the series $=3.92897+6 \cdot 85028=9 \cdot 77925$.
This exceeds $\log _{e} 10000$ or $9 \cdot 21$ by 57 .
(Euler's constant or $1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}-\log _{e} n$
when n is infinite $=577 \because 1 \ldots$).
C. M•Leod.

Certain Processes in the Theory of Equations illustrated Geometrically.-

The Derived Function: In what follows by $f(x)$ is meant a rational integral function of x of degree n with the coetticient of x^{n} unity. By the " roots of $f(x)$ " is meant the roots of $f(x)=0$; by $f^{\prime}(x)$ is meant $d f(x) / d x$.

If

$$
f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n}\right),
$$

then

$$
f^{\prime}(x)=\frac{f(x)}{x-\alpha_{1}}+\frac{f(x)}{x-a_{2}}+\ldots+\frac{f(x)}{x-a_{n}}
$$

which may be written shortly

$$
\begin{gathered}
\prod_{s=1}^{s=n}\left(x-\alpha_{s}\right)\left\{\sum_{r=1}^{r=n} \frac{1}{x-\alpha_{r}}\right\} . \\
(100)
\end{gathered}
$$

