Equivalent Definitions of Infinite Positive Elements in Simple C^{*}-algebras

Xiaochun Fang and Lin Wang

Abstract. We prove the equivalence of three definitions given by different comparison relations for infiniteness of positive elements in simple C^{*}-algebras.

1 Introduction

J. Cuntz $[4,5]$ considered two comparison relations of arbitrary elements in a simple C^{*}-algebra A, which we denote by $a \lesssim b$ and $a \lesssim b$, where a and b are in A. H. Lin and S. Zhang [15] introduced a comparison relation of positive elements a and b in a simple C^{*}-algebra, which we denote by $a \approx b$. In [15], Lin-Zhang gave the definition of an infinite positive element in a simple C^{*}-algebra by the comparison relation " \lesssim ". Following the lines of Cuntz, Lin [13] defined another comparison relation of positive elements a and b in C^{*}-algebras, which we denote by $[a] \leq[b]$. The relation $[a] \leq[b]$ is a very useful tool for the classification of C^{*}-algebras, especially for the C^{*}-algebras with tracial topological rank zero. The comparison relations of elements in C^{*}-algebras have been studied and applied by many mathematicians (see $[1-3,6-12,14,16-20])$. For the positive elements in a C^{*}-algebra, all the comparison relations are not equivalent to each other. In Section 2 we establish the relationship of the four comparison relations.

Inspired by Lin-Zhang [15], we can think of several definitions for the infiniteness of positive elements in simple C^{*}-algebras. In Section 3, we show that the definitions of infinite positive elements in a simple C^{*}-algebra defined by different comparison relations are equivalent.

Throughout this paper, we denote by A_{+}the positive cone of a C^{*}-algebra A, by $\operatorname{Her}(a)$ the hereditary C^{*}-subalgebra of A generated by a, and by $A^{* *}$ the enveloping von Neumann algebra of A.

2 Comparisons of Positive Elements in C^{*}-algebras

First, we give various comparison relations of positive elements in C^{*}-algebras as follows.

[^0]Definition 2.1 (i) ([4]) For any two elements a and b in a C^{*}-algebra A, we write $a \lesssim b$ if there exist x and y in A such that $a=x b y$. Write $a \approx b$ if $a \lesssim b$ and $b \lesssim a$.
(ii) ([5]) For any two elements a and b in A, we write $a \lesssim b$ if there are sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in A such that $x_{n} b y_{n} \rightarrow a$. Write $a \sim b$ if $a \lesssim b$ and $b \lesssim a$. In particular, if $a, b \in A_{+}$, then we can choose $y_{n}=x_{n}^{*}$.
(iii) ([15]) For any two positive elements a and b in A, we write $a \approx b$ if there is $r \in A$ such that $a \leq r b r^{*}$.
(iv) ([13, Definition 3.5.2]) Let a and b be two positive elements in A. We write $[a] \leq[b]$ if there exists a partial isometry $v \in A^{* *}$ such that, for every $c \in$ $\operatorname{Her}(a), v^{*} c, c v \in A, v v^{*}=p_{a}$, where p_{a} is the range projection of a in $A^{* *}$, and $v^{*} c v \in \operatorname{Her}(b)$. We write $[a]=[b]$ if $v^{*} \operatorname{Her}(a) v=\operatorname{Her}(b)$.

Remark For the relation $[a] \leq[b]$, it would be convenient to use its equivalent definition, i.e., there is $x \in A$ such that $x^{*} x=a$ and $x x^{*} \in \operatorname{Her}(b)$.

Lemma 2.2 Let A be a C^{*}-algebra, $a, b \in A_{+}$, then the following statements hold:

$$
a \lesssim b \Rightarrow a \approx=b ; \quad a \approx \frac{\approx}{<} b \Rightarrow[a] \leq[b] ; \quad[a] \leq[b] \Rightarrow a \lesssim b
$$

Proof (i) Since $a \lesssim b$, there are $x, y \in A$ such that $a=x b y$. Put $r=\frac{1}{\sqrt{2}}\left(x+y^{*}\right) \in$ A; then

$$
\begin{aligned}
r b r^{*} & =\frac{1}{2}\left(x+y^{*}\right) b\left(x+y^{*}\right)^{*}=\frac{1}{2}\left(x b x^{*}+y^{*} b x^{*}+x b y+y^{*} b y\right) \\
& \geq \frac{1}{2}\left(x b y+y^{*} b x^{*}\right)=\frac{1}{2}\left(a+a^{*}\right)=a
\end{aligned}
$$

and so $a \underset{\approx}{\approx} b$.
(ii) Since $a \approx \underset{<}{ }$, there is an $r \in A$ such that $a \leq r b r^{*}$, therefore $[a] \leq\left[r b r^{*}\right] \leq[b]$, that is, $[a] \leq[b]$.
(iii) Since $[a] \leq[b]$, there is $x \in A$ such that $x^{*} x=a$ and $x x^{*} \in \operatorname{Her}(b)$. Since $\left\{x^{*}\left[b\left(b+\frac{1}{n}\right)^{-1}\right] x\right\}_{n \geq 1}$ converges to $x^{*} x$ in the norm topology, we have

$$
\lim _{n \rightarrow \infty} x^{*}\left[b\left(b+\frac{1}{n}\right)^{-1}\right] x=x^{*} x=a
$$

that is, $a \lesssim b$.
Given any positive number ε, a continuous function f_{ε} is defined on the real line \mathbb{R} by

$$
f_{\varepsilon}(t)= \begin{cases}0 & \text { if } t \leq 2^{-1} \varepsilon \\ 2 \varepsilon^{-1}\left(t-2^{-1} \varepsilon\right) & \text { if } 2^{-1} \varepsilon \leq t \leq \varepsilon \\ 1 & \text { if } \varepsilon \leq t\end{cases}
$$

Lemma 2.3 ([15, Lemma 1.3]) Let A be a $\underset{\approx}{\approx}$-algebra, $a, b \in A_{+}$, if $a \lesssim b$, then for any $\varepsilon>0$, there exists $\delta>0$ such that $f_{\varepsilon}(a) \underset{<}{<} f_{\delta}(b)$.

Lemma 2.4 Let A be $a C^{*}$-algebra, $a, b \in A_{+}$, if $a \lesssim b$, then for any $\varepsilon>0, f_{\varepsilon}(a) \approx b$.
Proof By Lemma 2.3, for any $\varepsilon>0$, there exists $\delta>0$ such that $f_{\varepsilon}(a) \approx f_{\delta}(b)$. So we need only to show that for the above $\delta, f_{\delta}(b) \widetilde{<}$.

In fact, for $\delta>0$, there is a non-negative continuous function g on \mathbb{R} such that $f_{\delta}(t)=(g(t))^{\frac{1}{2}} t(g(t))^{\frac{1}{2}}$. Then $f_{\delta}(b)=(g(b))^{\frac{1}{2}} b(g(b))^{\frac{1}{2}}$ by continuous functional calculus. Therefore $f_{\delta}(b) \lesssim b$, and hence $f_{\delta}(b)<b$.

Lemma 2.5 ([4, Proposition 1.3]) Let $x \in A$ with polar decomposition $x=u|x|$, where $u \in A^{* *}$. Then $u f(|x|)$ is in A for any continuous function f on \mathbb{R} that vanishes in 0 .

3 Equivalent Definitions of Infinite Positive Elements

In this section we give the main result of this paper.
For an arbitrary positive element in the Pedersen ideal $P(A)$ (minimal dense twosided ideal) of a simple C^{*}-algebra A we give the following definition of infinite positive elements.

Definition 3.1 ([15, Definition 1.1]) A positive element a in $P(A)$ is called infinite, if there are nonzero positive elements $b, c \in P(A)$ such that $b c=c b=0$, (i.e., $b \perp c), b+c \lesssim c$ and $b+c \lesssim a$. A non-positive element a in $P(A)$ is called infinite if $a^{*} a$ is infinite.

Proposition 3.2 Let A be a simple C^{*}-algebra and $P(A)$ be the Pedersen ideal of A. If $a \in P(A)$ is a positive infinite element, then $d \widetilde{<}$ a for any positive element d in $P(A)$.

Proof Since $a \in P(A)$ is an infinite positive element, there are two nonzero positive elements $b, c \in P(A)$ such that $b \perp c, b+c \lesssim c$ and $b+c \lesssim a$. Take $0<\delta_{0}<1$ such that $f_{\delta_{0}}(b) \neq 0$. We can also take $0<\delta<1$ such that $f_{\delta}\left(f_{\delta_{0}}(b)\right) \neq 0$. Since $d \in P(A)$, there are $x_{i}, y_{i} \in A(i=1,2, \ldots, n)$ such that

$$
d=\sum_{i=1}^{n} x_{i} f_{\delta}\left(f_{\delta_{0}}(b)\right) y_{i}
$$

We prove this proposition in four steps:
Step 1. Construct positive elements $b_{1}, b_{2}, \ldots, b_{n}$ in $\operatorname{Her}(c)$ such that $b_{i} \perp b_{j}$ if $i \neq j$.
Since $b+c \lesssim c$, there exists δ_{1} with $0<\delta_{1}<\delta_{0}<1$ such that $f_{\delta_{0}}(b+c) \approx \tilde{<} f_{\delta_{1}}(c)$ by Lemma 2.3. Then by Lemma2.2 $\left[f_{\delta_{0}}(b+c)\right] \leq\left[f_{\delta_{1}}(c)\right] \leq[c]$. Similarly for δ_{1}, there exists δ_{2} with $0<\delta_{2}<\delta_{1}<\delta_{0}<1$ such that $\left[f_{\delta_{1}}(b+c)\right] \leq\left[f_{\delta_{2}}(c)\right] \leq[c]$.

Repeating this argument, there are

$$
0<\delta_{n}<\delta_{n-1}<\delta_{n-2}<\cdots<\delta_{2}<\delta_{1}<\delta_{0}<1
$$

such that $\left[f_{\delta_{i}}(b+c)\right] \leq\left[f_{\delta_{i+1}}(c)\right] \leq[c](i=0,1,2, \ldots, n-1)$.
Since $\left[f_{\delta_{n-1}}(b+c)\right] \leq\left[f_{\delta_{n}}(c)\right]$, there is $x_{1} \in A$ such that $x_{1}^{*} x_{1}=f_{\delta_{n-1}}(b+c)$, $x_{1} x_{1}^{*} \in \operatorname{Her}\left(f_{\delta_{n}}(c)\right)$. Suppose that $x_{1}=v_{1}\left|x_{1}\right|$ is the polar decomposition of x_{1}, where
$v_{1} \in A^{* *}$. Then there is a $*$-isomorphism ϕ_{1} from $\operatorname{Her}\left(f_{\delta_{n-1}}(b+c)\right)$ into $\operatorname{Her}\left(f_{\delta_{n}}(c)\right)$ defined by $\phi_{1}(x)=v_{1} x v_{1}^{*}$ for any $x \in \operatorname{Her}\left(f_{\delta_{n-1}}(b+c)\right)$.

Similarly there are $*$-isomorphisms ϕ_{i} from $\operatorname{Her}\left(f_{\delta_{n-i}}(b+c)\right)$ into $\operatorname{Her}\left(f_{\delta_{n-i+1}}(c)\right)$, $x_{i} \in A$ and $v_{i} \in A^{* *}(i=2,3, \ldots, n)$ such that $\phi_{i}(x)=v_{i} x v_{i}^{*}$.

Since $b \perp c$, $f_{\delta_{0}}(b)+f_{\delta_{0}}(c)=f_{\delta_{0}}(b+c)$. Since $f_{\delta_{0}}(b) \leq f_{\delta_{0}}(b+c) \leq f_{\delta_{n-i}}(b+c)$ for each $i(1 \leq i \leq n), \phi_{i}\left(f_{\delta_{0}}(b)\right)$ is a well defined element in $\operatorname{Her}\left(f_{\delta_{n-i+1}}(c)\right)$. Since $\phi_{i}\left(f_{\delta_{0}}(b)\right) \in \operatorname{Her}\left(f_{\delta_{n-i+1}}(c)\right) \subseteq \operatorname{Her}\left(f_{\delta_{n-i+1}}(b+c)\right), \phi_{i-1} \phi_{i}\left(f_{\delta_{0}}(b)\right)$ is well defined.

Set $b_{1}=\phi_{1}\left(f_{\delta_{0}}(b)\right) \in \operatorname{Her}\left(f_{\delta_{n}}(c)\right)$. Then $b \perp b_{1}$. Set $b_{2}=\phi_{1} \phi_{2}\left(f_{\delta_{0}}(b)\right) \in$ $\operatorname{Her}\left(f_{\delta_{n}}(c)\right) \subseteq \operatorname{Her}(c)$. Since $\phi_{2}\left(f_{\delta_{0}}(b)\right) \in \operatorname{Her}\left(f_{\delta_{n-1}}(c)\right)$ and $f_{\delta_{0}}(b) \perp \operatorname{Her}\left(f_{\delta_{n-1}}(c)\right)$, $\phi_{2}\left(f_{\delta_{0}}(b)\right) \perp f_{\delta_{0}}(b)$. Hence $\phi_{1} \phi_{2}\left(f_{\delta_{0}}(b)\right) \perp \phi_{1}\left(f_{\delta_{0}}(b)\right)$, that is $b_{2} \perp b_{1}$. Since

$$
b_{2}=\phi_{1} \phi_{2}\left(f_{\delta_{0}}(b)\right) \in \operatorname{Her}(c), \quad b_{2} \perp b
$$

Proceeding recursively, we obtain positive elements

$$
b_{i}=\phi_{1} \phi_{2} \phi_{3} \cdots \phi_{i}\left(f_{\delta_{0}}(b)\right) \in \operatorname{Her}\left(f_{\delta_{n}}(c)\right) \subseteq \operatorname{Her}(c), i=1,2,3, \ldots, n
$$

then $b \perp b_{i}, b_{i} \perp b_{j}(i \neq j)$.
Step 2. For all the $b_{i} \in \operatorname{Her}(c)$ defined as above and $\delta>0$, we have $f_{\delta}\left(f_{\delta_{0}}(b)\right)=$ $V_{i}^{*} f_{\delta}\left(b_{i}\right) V_{i}$, where $V_{i}=v_{1} v_{2} \cdots v_{i-1} v_{i}, i=1,2, \ldots, n$.

In fact, for any $i(1 \leq i \leq n), b_{i}=\phi_{1} \phi_{2} \phi_{3} \cdots \phi_{i}\left(f_{\delta_{0}}(b)\right)=V_{i} f_{\delta_{0}}(b) V_{i}^{*}$. Since

$$
v_{i}^{*} v_{i}=P_{\left|x_{i}\right|}=P_{\left(x_{i}^{*} x_{i}\right)^{\frac{1}{2}}}=P_{\left(f_{\delta_{n-i}}(b+c)\right)^{\frac{1}{2}}}=P_{f_{\delta_{n-i}}(b+c)} \geq P_{f_{\delta_{0}}(b)}
$$

where $P_{|x|}$ denote the range projection of $|x|$ in $A^{* *}, v_{i}^{*} v_{i} f_{\delta_{0}}(b)=f_{\delta_{0}}(b)$. Since

$$
v_{i} v_{i}^{*}=P_{\left|x_{i}^{*}\right|}=P_{\left(x_{i} x_{i}^{*}\right)^{\frac{1}{2}}} \leq P_{\left(f_{\delta_{n-i+1}}(c)\right)^{\frac{1}{2}}} \leq P_{f_{\delta_{n-i+1}}(b+c)}=v_{i-1}^{*} v_{i-1}
$$

$v_{i} v_{i}^{*} v_{i-1}^{*} v_{i-1}=v_{i} v_{i}^{*}$.
Since v_{i} is a partial isometry,

$$
\begin{aligned}
V_{i}^{*} V_{i} & =v_{i}^{*} v_{i-1}^{*} \cdots v_{2}^{*} v_{1}^{*} v_{1} v_{2} \cdots v_{i-1} v_{i} \\
& =v_{i}^{*} v_{i-1}^{*} \cdots v_{3}^{*} v_{2}^{*} v_{2} v_{2}^{*} v_{1}^{*} v_{1} v_{2} v_{3} \cdots v_{i-1} v_{i} \\
& =v_{i}^{*} v_{i-1}^{*} \cdots v_{3}^{*} v_{2}^{*} v_{2} v_{3} \cdots v_{i-1} v_{i} \\
& \vdots \\
& =v_{i}^{*} v_{i}
\end{aligned}
$$

Then $b_{i}^{2}=V_{i} f_{\delta_{0}}(b) V_{i}^{*} V_{i} f_{\delta_{0}}(b) V_{i}^{*}=V_{i} f_{\delta_{0}}(b) v_{i}^{*} v_{i} f_{\delta_{0}}(b) V_{i}^{*}=V_{i} f_{\delta_{0}}^{2}(b) V_{i}^{*}$.
In this way we have $b_{i}^{m}=V_{i} f_{\delta_{0}}^{m}(b) V_{i}^{*}$ for any positive integer $m \geq 2$. Since $f_{\delta}(t)=\lim _{M \rightarrow \infty} \sum_{m=1}^{M} c_{m} t^{m}$, where $c_{m} \in \mathbb{R}$,

$$
f_{\delta}\left(b_{i}\right)=\lim _{M \rightarrow \infty} \sum_{m=1}^{M} c_{m}\left(b_{i}\right)^{m}=V_{i}\left(\lim _{M \rightarrow \infty} \sum_{m=1}^{M} c_{m}\left(f_{\delta_{0}}(b)\right)^{m}\right) V_{i}^{*}=V_{i} f_{\delta}\left(f_{\delta_{0}}(b)\right) V_{i}^{*}
$$

by functional calculus. And so $f_{\delta}\left(f_{\delta_{0}}(b)\right)=V_{i}^{*} V_{i} f_{\delta}\left(f_{\delta_{0}}(b)\right) V_{i}^{*} V_{i}=V_{i}^{*} f_{\delta}\left(b_{i}\right) V_{i}$.

Step 3. For $b_{i} \in \operatorname{Her}(c)$ and $\delta>0$ defined as above, $d \underset{\approx}{\approx}\left(\sum_{i=1}^{n} f_{\delta}\left(b_{i}\right)\right)^{\frac{1}{2}}$, where $d \in P(A)_{+}, i=1,2, \ldots, n$.

By Step 2, we have already proved

$$
\begin{aligned}
d & =\sum_{i=1}^{n} x_{i} f_{\delta}\left(f_{\delta_{0}}(b)\right) y_{i}=\sum_{i=1}^{n} x_{i} V_{i}^{*} f_{\delta}\left(b_{i}\right) V_{i} y_{i} \\
& =\left(\sum_{i=1}^{n} x_{i} V_{i}^{*} f_{\delta}^{\frac{1}{4}}\left(b_{i}\right)\right)\left(\sum_{i=1}^{n} f_{\delta}\left(b_{i}\right)\right)^{\frac{1}{2}}\left(\sum_{i=1}^{n} f_{\delta}^{\frac{1}{4}}\left(b_{i}\right) V_{i} y_{i}\right) .
\end{aligned}
$$

Set $x_{0}=\sum_{i=1}^{n} x_{i} V_{i}^{*} f_{\delta}^{1 / 4}\left(b_{i}\right)$ and $y_{0}=\sum_{i=1}^{n} f_{\delta}^{1 / 4}\left(b_{i}\right) V_{i} y_{i}$. So it suffices to prove $x_{0}, y_{0} \in A$. Therefore we need only to show $f_{\delta}^{1 / 4}\left(b_{i}\right) V_{i} \in A$ for each $i=1,2, \ldots, n$, and hence to show $b_{i} V_{i} \in A$ since $f_{\delta}^{1 / 4}(0)=0$.

Since $b_{i}=V_{i} f_{\delta_{0}}(b) V_{i}^{*}, b_{i} V_{i}=V_{i} f_{\delta_{0}}(b) V_{i}^{*} V_{i}=V_{i} f_{\delta_{0}}(b) v_{i}^{*} v_{i}=V_{i} f_{\delta_{0}}(b)$. So it suffices to prove $V_{i} f_{\delta_{0}}(b) \in A(i=1,2, \ldots, n)$.

For this purpose, we first prove $v_{i} \operatorname{Her}\left(f_{\delta_{n-i}}(b+c)\right) \subseteq \overline{\operatorname{Her}\left(f_{\delta_{n-i+1}}(b+c)\right) A}$ for each $i=1,2, \ldots, n$.

Since $v_{i} f_{\delta_{n-i}}^{\frac{1}{2}}(b+c) \in A$ and

$$
v_{i} f_{\delta_{n-i}}^{\frac{1}{2}}(b+c) v_{i}^{*}=H_{i}\left(f_{\delta_{n-i}}^{\frac{1}{2}}(b+c)\right) \in \operatorname{Her}\left(f_{\delta_{n-i+1}}(c)\right) \subseteq \operatorname{Her}\left(f_{\delta_{n-i+1}}(b+c)\right)
$$

we have

$$
\begin{aligned}
& v_{i} f_{\delta_{n-i}}(b+c)= \\
& \quad v_{i} f_{\delta_{n-i}}^{\frac{1}{2}}(b+c) v_{i}^{*} v_{i} f_{\delta_{n-i}}^{\frac{1}{2}}(b+c) \in \operatorname{Her}\left(f_{\delta_{n-i+1}}(b+c)\right) A \subseteq \overline{\operatorname{Her}\left(f_{\delta_{n-i+1}}(b+c)\right) A} .
\end{aligned}
$$

Then there are $\left\{x_{k}\right\}_{k \geq 1} \subseteq A$ and $\left\{a_{k}\right\}_{k \geq 1} \subseteq A$ such that

$$
v_{i} f_{\delta_{n-i}}(b+c)=\lim _{k \rightarrow \infty} f_{\delta_{n-i+1}}(b+c) x_{k} f_{\delta_{n-i+1}}(b+c) a_{k}
$$

Since $v_{i-1} f_{\delta_{n-i+1}}(b+c) \in \operatorname{Her}\left(f_{\delta_{n-i+2}}(b+c)\right) A$ and $x_{k} f_{\delta_{n-i+1}}(b+c) a_{k} \in A$,

$$
v_{i-1} v_{i} f_{\delta_{n-i}}(b+c)=\lim _{k \rightarrow \infty} v_{i-1} f_{\delta_{n-i+1}}(b+c) x_{k} f_{\delta_{n-i+1}}(b+c) a_{k} \in \overline{\operatorname{Her}\left(f_{\delta_{n-i+2}}(b+c)\right) A} .
$$

Proceeding recursively, we obtain

$$
V_{i} f_{\delta_{n-i}}(b+c)=v_{1} v_{2} \cdots v_{i-1} v_{i} f_{\delta_{n-i}}(b+c) \in \overline{\operatorname{Her}\left(f_{\delta_{n}}(b+c)\right) A}
$$

Then for any $y \in V_{i} \operatorname{Her}\left(f_{\delta_{n-i}}(b+c)\right)$, there are $\left\{y_{k}\right\}_{k \geq 1} \subseteq A$ such that

$$
y=\lim _{k \rightarrow \infty} V_{i} f_{\delta_{n-i}}(b+c) y_{k} f_{\delta_{n-i}}(b+c) \in \overline{\operatorname{Her}\left(f_{\delta_{n}}(b+c)\right) A} \subseteq A
$$

Thus $V_{i} \operatorname{Her}\left(f_{\delta_{n-i}}(b+c)\right) \subseteq \overline{\operatorname{Her}\left(f_{\delta_{n}}(b+c)\right) A} \subseteq A$. Since $f_{\delta_{0}}(b) \in \operatorname{Her}\left(f_{\delta_{n-i}}(b+c)\right)$, $V_{i} f_{\delta_{0}}(b) \in A$.

Step 4. At last, we prove that for $b_{i} \in \operatorname{Her}(c)$ defined as above and $\delta>0$,

$$
\sum_{i=1}^{n} f_{\frac{\delta}{2}}\left(b_{i}\right) \approx a, i=1,2, \ldots, n
$$

Since $\sum_{i=1}^{n} b_{i} \in \operatorname{Her}(c)$, there is a sequence $\left\{z_{m}\right\}_{m \geq 1} \subseteq A$ such that

$$
\left(\sum_{i=1}^{n} b_{i}\right)^{2}=\lim _{m \rightarrow \infty} c z_{m} c^{2} z_{m} c .
$$

Then $\sum_{i=1}^{n} b_{i} \sim\left(\sum_{i=1}^{n} b_{i}\right)^{2} \lesssim c^{2} \sim c$. Since $c \lesssim b+c \lesssim a, \sum_{i=1}^{n} b_{i} \lesssim a$. By Lemma 2.4) for the above $\delta>0, \sum_{i=1}^{n} f_{\frac{\delta}{2}}\left(b_{i}\right)=f_{\frac{\delta}{2}}\left(\sum_{i=1}^{n} b_{i}\right) \stackrel{\approx}{<} a$.

Since $f_{\delta}^{\frac{1}{2}}\left(b_{i}\right)=f_{\delta}^{\frac{1}{4}}\left(b_{i}\right) f_{\frac{\delta}{2}}\left(b_{i}\right) f_{\delta}^{\frac{1}{4}}\left(b_{i}\right)$ for each $i=1,2, \ldots, n$ and $b_{i} \perp b_{j}(i \neq j)$,

$$
\begin{aligned}
\left(\sum_{i=1}^{n} f_{\delta}\left(b_{i}\right)\right)^{\frac{1}{2}} & =\sum_{i=1}^{n} f_{\delta}^{\frac{1}{2}}\left(b_{i}\right)=\sum_{i=1}^{n} f_{\delta}^{\frac{1}{4}}\left(b_{i}\right) f_{\frac{\delta}{2}}\left(b_{i}\right) f_{\delta}^{\frac{1}{4}}\left(b_{i}\right) \\
& =\left(\sum_{i=1}^{n} f_{\delta}^{\frac{1}{4}}\left(b_{i}\right)\right)\left(\sum_{i=1}^{n} f_{\frac{\delta}{2}}\left(b_{i}\right)\right)\left(\sum_{i=1}^{n} f_{\delta}^{\frac{1}{4}}\left(b_{i}\right)\right) \\
& =f_{\delta}^{\frac{1}{4}}\left(\sum_{i=1}^{n} b_{i}\right)\left(\sum_{i=1}^{n} f_{\frac{\delta}{2}}\left(b_{i}\right)\right) f_{\delta}^{\frac{1}{4}}\left(\sum_{i=1}^{n} b_{i}\right) .
\end{aligned}
$$

Then $\left(\sum_{i=1}^{n} f_{\frac{\delta}{2}}\left(b_{i}\right)\right)^{\frac{1}{2}} \underset{ }{\approx} \sum_{i=1}^{n} f_{\frac{\delta}{2}}\left(b_{i}\right)$. Therefore

$$
d \underset{<}{ }\left(\sum_{i=1}^{n} f_{\delta}\left(b_{i}\right)\right)^{\frac{1}{2}} \approx \sum_{i=1}^{n} f_{\frac{\delta}{2}}\left(b_{i}\right)=f_{\frac{\delta}{2}}\left(\sum_{i=1}^{n} b_{i}\right) \approx
$$

and so $d \approx$
Theorem 3.3 Let A be a simple C^{*}-algebra and $P(A)$ be the Pedersen ideal of A, then the following definitions of the infinite positive element $a \in P(A)$ are equivalent:
(i) There are nonzero positive elements b and c in $P(A)$ such that $b c=c b=0$ (i.e., $b \perp c), b+c \lesssim c$ and $b+c \lesssim a$.
(ii) There are nonzero positive elements b and c in $P(A)$ such that $b c=c b=0$ (i.e., $b \perp c), b+c \approx=c$ and $b+c \approx=$
(iii) There are nonzero positive elements b and c in $P(A)$ such that $b c=c b=0$ (i.e., $b \perp c),[b+c] \leq[c]$ and $[b+c] \leq[a]$.

Proof (i) \Rightarrow (ii) If a is an infinite positive element, then there are nonzero positive elements b and c in $P(A)$ such that $b c=c b=0, b+c \lesssim c$ and $b+c \lesssim a$. Clearly, c is also an infinite element. Then it follows from Proposition 3.2, $b+c \approx c$ and $b+c \widetilde{<} a$ since $b+c \in P(A)_{+}$.
(ii) \Rightarrow (iii) This is obvious by Lemma 2.2
(iii) \Rightarrow (i) This is also obvious by Lemma 2.2 ,

Remark The authors were told by the referee that by using [18, Proposition 2.4(iv)] one can similarly provide a slightly shorter proof of the Proposition 3.2 for the comparison " "", and so the equivalence of the infiniteness with the comparison " " to the other comparisons in Theorem 3.3.

Acknowledgments The authors would like to express their hearty thanks to the referee for his/her very helpful comments and suggestions.

References

[1] B. Blackadar, K-theory for operator algebras. Mathematical Sciences Research Institute Publications, 5, Springer-Verlag, New York, 1986.
[2] B. Blackadar and J. Cuntz, The structure of stable algebraically simple C*-algebras. Amer. J. Math. 104(1982), no. 4, 813-822. doi:10.2307/2374206
[3] J. Cuntz, Simple C ${ }^{*}$-algebras generated by isometries. Comm. Math. Phys. 57(1977), no. 2, 173-185. doi:10.1007/BF01625776
[4] , The structure of multiplication and addition in simple C*-algebras. Math. Scand. 40(1977), no. 2, 215-233.
[5] ,Dimension functions on simple C^{*}-algebras. Math. Ann. 233(1978), no. 2, 145-153. doi:10.1007/BF01421922
[6] \longrightarrow-theory for certain C^{*}-algebras. Ann. of Math. 113(1981), no. 1, 181-197. doi:10.2307/1971137
[7] G. A. Elliott and X. Fang, Simple inductive limits of C^{*}-algebras with building blocks from spheres of odd dimension. In: Operator algebra and operator theory, Contemp. Math., 228, American Mathematical Society, Providence, RI, 1998, pp. 79-86.
[8] X. Fang, The invariant continuous-trace C^{*}-algebras by the actions of compact abelian groups. Chinese Ann. of Math.(B) 19(1998), no. 4, 489-498.
[9] , The simplicity and real rank zero property of the inductive limit of continuous trace C^{*}-algebras. Analysis 19(1999), no. 4, 377-389.
[10] \qquad , Graph C ${ }^{*}$-algebras and their ideals defined by Cuntz-Krieger family of possibly row-infinite directed graphs. Integral Equations Operator Theory 54(2006), no. 3, 301-316. doi:10.1007/s00020-004-1363-z
[11] , The real rank zero property of crossed product. Proc. Amer. Math. Soc. 134(2006), no. 10, 3015-3024. doi:10.1090/S0002-9939-06-08357-2
[12] E. Kirchberg and M. Rørdam, Infinite non-simple C ${ }^{*}$-algebras: absorbing the Cuntz algebra \mathcal{O}_{∞}. Adv. Math. 167(2002), no. 2, 195-264. doi:10.1006/aima.2001.2041
[13] H. Lin, An introduction to the classification of amenable C^{*}-algebras. World Scientific Publishing Co., Inc., River Edge, NJ, 2001.
[14] ,Classification of simple C^{*}-algebras and higher dimensional noncommutative tori. Ann. of Math. 157(2003), no. 2, 521-544. doi:10.4007/annals.2003.157.521
[15] H. Lin and S. Zhang, On infinite simple C^{*}-algebras. J. Funct. Anal. 100(1991), no. 1, 221-231. doi:10.1016/0022-1236(91)90109-1
[16] G. K. Pedersen, C^{*}-algebras and their automorphism groups. London Mathematical Society Monographs, 14, Academic Press, London-New York, 1979.
[17] M. Rørdam, Ideals in the multiplier algebra of a stable C^{*}-algebra. J. Operator Theory 25(1991), no. 2, 283-298.
[18] \longrightarrow On the structure of simple C^{*}-algebras tensored with a UHF-algebra. II. J. Funct. Anal. 107(1992), no. 2, 255-269. doi:10.1016/0022-1236(92)90106-S
[19] \longrightarrow A simple C^{*}-algebra with a finite and an infinite projection. Acta Math. 191(2003), no. 1, 109-142. doi:10.1007/BF02392697
[20] A. S. Toms, On the classification problem for nuclear C C^{*}-algebras. Ann. of Math. 167(2008), no. 3, 1029-1044. doi:10.4007/annals.2008.167.1029

Department of Mathematics, Tongji University, Shanghai, China, 200092
e-mail: xfang@tongji.edu.cn
wlzwl@163.com

[^0]: Received by the editors August 28, 2007.
 Published electronically April 6, 2010.
 This article is supported by the National Natural Science Foundation of China (10771161).
 AMS subject classification: 46L99.
 Keywords: Infinite positive element, Comparison relation.

