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Equivalent Definitions of Infinite Positive
Elements in Simple C∗-algebras

Xiaochun Fang and Lin Wang

Abstract. We prove the equivalence of three definitions given by different comparison relations for

infiniteness of positive elements in simple C∗-algebras.

1 Introduction

J. Cuntz [4, 5] considered two comparison relations of arbitrary elements in a simple

C∗-algebra A, which we denote by a / b and a . b, where a and b are in A. H. Lin

and S. Zhang [15] introduced a comparison relation of positive elements a and b in a

simple C∗-algebra, which we denote by a
≈
< b. In [15], Lin–Zhang gave the definition

of an infinite positive element in a simple C∗-algebra by the comparison relation

“.”. Following the lines of Cuntz , Lin [13] defined another comparison relation

of positive elements a and b in C∗-algebras, which we denote by [a] ≤ [b]. The

relation [a] ≤ [b] is a very useful tool for the classification of C∗-algebras, especially

for the C∗-algebras with tracial topological rank zero. The comparison relations of

elements in C∗-algebras have been studied and applied by many mathematicians (see

[1–3, 6–12, 14, 16–20]). For the positive elements in a C∗-algebra, all the comparison

relations are not equivalent to each other. In Section 2 we establish the relationship

of the four comparison relations.

Inspired by Lin–Zhang [15], we can think of several definitions for the infiniteness

of positive elements in simple C∗-algebras. In Section 3, we show that the definitions

of infinite positive elements in a simple C∗-algebra defined by different comparison

relations are equivalent.

Throughout this paper, we denote by A+ the positive cone of a C∗-algebra A, by

Her(a) the hereditary C∗-subalgebra of A generated by a, and by A∗∗ the enveloping

von Neumann algebra of A.

2 Comparisons of Positive Elements in C∗-algebras

First, we give various comparison relations of positive elements in C∗-algebras as

follows.
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Definition 2.1 (i) ([4]) For any two elements a and b in a C∗-algebra A, we write

a / b if there exist x and y in A such that a = xby. Write a ≈ b if a / b and

b / a.

(ii) ([5]) For any two elements a and b in A, we write a . b if there are sequences

{xn} and {yn} in A such that xnbyn → a. Write a ∼ b if a . b and b . a. In

particular, if a, b ∈ A+, then we can choose yn = x∗n .

(iii) ([15]) For any two positive elements a and b in A, we write a
≈
< b if there is

r ∈ A such that a ≤ rbr∗.

(iv) ([13, Definition 3.5.2]) Let a and b be two positive elements in A. We write

[a] ≤ [b] if there exists a partial isometry v ∈ A∗∗ such that, for every c ∈
Her(a), v∗c, cv ∈ A, vv∗ = pa, where pa is the range projection of a in A∗∗, and

v∗cv ∈ Her(b). We write [a] = [b] if v∗ Her(a)v = Her(b).

Remark For the relation [a] ≤ [b], it would be convenient to use its equivalent

definition, i.e., there is x ∈ A such that x∗x = a and xx∗ ∈ Her(b).

Lemma 2.2 Let A be a C∗-algebra, a, b ∈ A+, then the following statements hold:

a / b ⇒ a
≈
< b ; a

≈
< b ⇒ [a] ≤ [b]; [a] ≤ [b] ⇒ a . b.

Proof (i) Since a / b, there are x, y ∈ A such that a = xby. Put r =
1√

2
(x + y∗) ∈

A; then

rbr∗ =

1

2
(x + y∗)b(x + y∗)∗ =

1

2
(xbx∗ + y∗bx∗ + xby + y∗by)

≥
1

2
(xby + y∗bx∗) =

1

2
(a + a∗) = a,

and so a
≈
< b.

(ii) Since a
≈
< b, there is an r ∈ A such that a ≤ rbr∗, therefore [a] ≤ [rbr∗] ≤ [b],

that is, [a] ≤ [b].

(iii) Since [a] ≤ [b], there is x ∈ A such that x∗x = a and xx∗ ∈ Her(b). Since

{x∗[b(b + 1
n

)−1]x}n≥1 converges to x∗x in the norm topology, we have

lim
n→∞

x∗[b(b +
1

n
)−1]x = x∗x = a,

that is, a . b.

Given any positive number ε, a continuous function fε is defined on the real line

R by

fε(t) =











0 if t ≤ 2−1ε

2ε−1(t − 2−1ε) if 2−1ε ≤ t ≤ ε

1 if ε ≤ t

Lemma 2.3 ([15, Lemma 1.3]) Let A be a C∗-algebra, a, b ∈ A+, if a . b, then for

any ε > 0, there exists δ > 0 such that fε(a)
≈
< fδ(b).
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Lemma 2.4 Let A be a C∗-algebra, a, b ∈ A+, if a . b, then for any ε > 0, fε(a)
≈
< b.

Proof By Lemma 2.3, for any ε > 0, there exists δ > 0 such that fε(a)
≈
< fδ(b). So

we need only to show that for the above δ, fδ(b)
≈
< b.

In fact, for δ > 0, there is a non-negative continuous function g on R such that

fδ(t) = (g(t))
1
2 t(g(t))

1
2 . Then fδ(b) = (g(b))

1
2 b(g(b))

1
2 by continuous functional

calculus. Therefore fδ(b) / b, and hence fδ(b)
≈
< b.

Lemma 2.5 ([4, Proposition 1.3]) Let x ∈ A with polar decomposition x = u |x|,
where u ∈ A∗∗. Then u f (|x|) is in A for any continuous function f on R that vanishes

in 0.

3 Equivalent Definitions of Infinite Positive Elements

In this section we give the main result of this paper.

For an arbitrary positive element in the Pedersen ideal P(A) (minimal dense two-

sided ideal) of a simple C∗-algebra A we give the following definition of infinite pos-

itive elements.

Definition 3.1 ([15, Definition 1.1]) A positive element a in P(A) is called infinite,

if there are nonzero positive elements b, c ∈ P(A) such that bc = cb = 0, (i.e.,

b⊥ c), b + c . c and b + c . a. A non-positive element a in P(A) is called infinite if

a∗a is infinite.

Proposition 3.2 Let A be a simple C∗-algebra and P(A) be the Pedersen ideal of A. If

a ∈ P(A) is a positive infinite element, then d
≈
< a for any positive element d in P(A).

Proof Since a ∈ P(A) is an infinite positive element, there are two nonzero positive

elements b, c ∈ P(A) such that b ⊥ c, b + c . c and b + c . a. Take 0 < δ0 < 1 such

that fδ0
(b) 6= 0. We can also take 0 < δ < 1 such that fδ( fδ0

(b)) 6= 0. Since d ∈ P(A),

there are xi , yi ∈ A(i = 1, 2, . . . , n) such that

d =

n
∑

i=1

xi fδ( fδ0
(b))yi .

We prove this proposition in four steps:

Step 1. Construct positive elements b1, b2, . . . , bn in Her(c) such that bi ⊥ b j if i 6= j.

Since b + c . c, there exists δ1 with 0 < δ1 < δ0 < 1 such that fδ0
(b + c)

≈
< fδ1

(c) by

Lemma 2.3. Then by Lemma 2.2 [ fδ0
(b + c)] ≤ [ fδ1

(c)] ≤ [c]. Similarly for δ1, there

exists δ2 with 0 < δ2 < δ1 < δ0 < 1 such that [ fδ1
(b + c)] ≤ [ fδ2

(c)] ≤ [c].

Repeating this argument, there are

0 < δn < δn−1 < δn−2 < · · · < δ2 < δ1 < δ0 < 1

such that [ fδi
(b + c)] ≤ [ fδi+1

(c)] ≤ [c](i = 0, 1, 2, . . . , n − 1).

Since [ fδn−1
(b + c)] ≤ [ fδn

(c)], there is x1 ∈ A such that x∗1 x1 = fδn−1
(b + c),

x1x∗1 ∈ Her( fδn
(c)). Suppose that x1 = v1| x1| is the polar decomposition of x1, where
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v1 ∈ A∗∗. Then there is a ∗-isomorphism φ1 from Her( fδn−1
(b + c)) into Her( fδn

(c))

defined by φ1(x) = v1xv∗1 for any x ∈ Her( fδn−1
(b + c)).

Similarly there are ∗-isomorphisms φi from Her( fδn−i
(b + c)) into Her( fδn−i+1

(c)),

xi ∈ A and vi ∈ A∗∗ (i = 2, 3, . . . , n) such that φi(x) = vixv∗i .

Since b ⊥ c, fδ0
(b) + fδ0

(c) = fδ0
(b + c). Since fδ0

(b) ≤ fδ0
(b + c) ≤ fδn−i

(b + c)

for each i(1 ≤ i ≤ n), φi( fδ0
(b)) is a well defined element in Her( fδn−i+1

(c)). Since

φi( fδ0
(b)) ∈ Her( fδn−i+1

(c)) ⊆ Her( fδn−i+1
(b + c)), φi−1φi( fδ0

(b)) is well defined.

Set b1 = φ1( fδ0
(b)) ∈ Her( fδn

(c)). Then b⊥ b1. Set b2 = φ1φ2( fδ0
(b)) ∈

Her( fδn
(c)) ⊆ Her(c). Since φ2( fδ0

(b)) ∈ Her( fδn−1
(c)) and fδ0

(b)⊥ Her( fδn−1
(c)),

φ2( fδ0
(b))⊥ fδ0

(b). Hence φ1φ2( fδ0
(b))⊥φ1( fδ0

(b)), that is b2 ⊥ b1. Since

b2 = φ1φ2( fδ0
(b)) ∈ Her(c), b2⊥b.

Proceeding recursively, we obtain positive elements

bi = φ1φ2φ3 · · ·φi( fδ0
(b)) ∈ Her( fδn

(c)) ⊆ Her(c), i = 1, 2, 3, . . . , n,

then b⊥ bi , bi ⊥ b j(i 6= j).

Step 2. For all the bi ∈ Her(c) defined as above and δ > 0, we have fδ( fδ0
(b)) =

V ∗
i fδ(bi)Vi , where Vi = v1v2 · · · vi−1vi , i = 1, 2, . . . , n.

In fact, for any i(1 ≤ i ≤ n), bi = φ1φ2φ3 · · ·φi( fδ0
(b)) = Vi fδ0

(b)V ∗
i . Since

v∗i vi = P|xi | = P
(x∗i xi )

1
2

= P
( fδn−i

(b+c))
1
2

= P fδn−i
(b+c) ≥ P fδ0

(b),

where P|x| denote the range projection of |x| in A∗∗, v∗i vi fδ0
(b) = fδ0

(b). Since

viv
∗
i = P|x∗i | = P

(xi x
∗

i )
1
2
≤ P

( fδn−i+1
(c))

1
2
≤ P fδn−i+1

(b+c) = v∗i−1vi−1,

viv
∗
i v∗i−1vi−1 = viv

∗
i .

Since vi is a partial isometry,

V ∗
i Vi = v∗i v∗i−1 · · · v∗2 v∗1 v1v2 · · · vi−1vi

= v∗i v∗i−1 · · · v∗3 v∗2 v2v∗2 v∗1 v1v2v3 · · · vi−1vi

= v∗i v∗i−1 · · · v∗3 v∗2 v2v3 · · · vi−1vi

...

= v∗i vi .

Then b2
i = Vi fδ0

(b)V ∗
i Vi fδ0

(b)V ∗
i = Vi fδ0

(b)v∗i vi fδ0
(b)V ∗

i = Vi f 2
δ0

(b)V ∗
i .

In this way we have bm
i = Vi f m

δ0
(b)V ∗

i for any positive integer m ≥ 2. Since

fδ(t) = limM→∞
∑M

m=1 cmtm, where cm ∈ R,

fδ(bi) = lim
M→∞

M
∑

m=1

cm(bi)
m

= Vi

(

lim
M→∞

M
∑

m=1

cm( fδ0
(b))m

)

V ∗
i = Vi fδ( fδ0

(b))V ∗
i

by functional calculus. And so fδ( fδ0
(b)) = V ∗

i Vi fδ( fδ0
(b))V ∗

i Vi = V ∗
i fδ(bi)Vi .
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Step 3. For bi ∈ Her(c) and δ > 0 defined as above, d
≈
< (

∑n
i=1 fδ(bi))

1
2 , where

d ∈ P(A)+, i = 1, 2, . . . , n.

By Step 2, we have already proved

d =

n
∑

i=1

xi fδ( fδ0
(b))yi =

n
∑

i=1

xiV
∗
i fδ(bi)Vi yi

= (
n

∑

i=1

xiV
∗
i f

1
4

δ (bi))(
n

∑

i=1

fδ(bi))
1
2 (

n
∑

i=1

f
1
4

δ (bi)Vi yi).

Set x0 =

∑n
i=1 xiV

∗
i f

1/4
δ (bi) and y0 =

∑n
i=1 f

1/4
δ (bi)Vi yi . So it suffices to prove

x0, y0 ∈ A. Therefore we need only to show f
1/4
δ (bi)Vi ∈ A for each i = 1, 2, . . . , n,

and hence to show biVi ∈ A since f
1/4
δ (0) = 0.

Since bi = Vi fδ0
(b)V ∗

i , biVi = Vi fδ0
(b)V ∗

i Vi = Vi fδ0
(b)v∗i vi = Vi fδ0

(b). So it

suffices to prove Vi fδ0
(b) ∈ A(i = 1, 2, . . . , n).

For this purpose, we first prove vi Her( fδn−i
(b+c)) ⊆ Her( fδn−i+1

(b + c))A for each

i = 1, 2, . . . , n.

Since vi f
1
2

δn−i
(b + c) ∈ A and

vi f
1
2

δn−i
(b + c)v∗i = Hi( f

1
2

δn−i
(b + c)) ∈ Her( fδn−i+1

(c)) ⊆ Her( fδn−i+1
(b + c)),

we have

vi fδn−i
(b + c) =

vi f
1
2

δn−i
(b + c)v∗i vi f

1
2

δn−i
(b + c) ∈ Her( fδn−i+1

(b + c))A ⊆ Her( fδn−i+1
(b + c))A.

Then there are {xk}k≥1 ⊆ A and {ak}k≥1 ⊆ A such that

vi fδn−i
(b + c) = lim

k→∞
fδn−i+1

(b + c)xk fδn−i+1
(b + c)ak.

Since vi−1 fδn−i+1
(b + c) ∈ Her( fδn−i+2

(b + c))A and xk fδn−i+1
(b + c)ak ∈ A,

vi−1vi fδn−i
(b + c) = lim

k→∞
vi−1 fδn−i+1

(b + c)xk fδn−i+1
(b + c)ak ∈ Her( fδn−i+2

(b + c))A.

Proceeding recursively, we obtain

Vi fδn−i
(b + c) = v1v2 · · · vi−1vi fδn−i

(b + c) ∈ Her( fδn
(b + c))A.

Then for any y ∈ Vi Her( fδn−i
(b + c)), there are {yk}k≥1 ⊆ A such that

y = lim
k→∞

Vi fδn−i
(b + c)yk fδn−i

(b + c) ∈ Her( fδn
(b + c))A ⊆ A.

Thus Vi Her( fδn−i
(b + c)) ⊆ Her( fδn

(b + c))A ⊆ A. Since fδ0
(b) ∈ Her( fδn−i

(b + c)),

Vi fδ0
(b) ∈ A.
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Step 4. At last, we prove that for bi ∈ Her(c) defined as above and δ > 0,

n
∑

i=1

f δ
2
(bi)

≈
< a, i = 1, 2, . . . , n.

Since
∑n

i=1 bi ∈ Her(c), there is a sequence {zm}m≥1 ⊆ A such that

( n
∑

i=1

bi

) 2

= lim
m→∞

czmc2zmc.

Then
∑n

i=1 bi ∼ (
∑n

i=1 bi)
2 . c2

∼ c. Since c . b + c . a,
∑n

i=1 bi . a. By Lemma

2.4, for the above δ > 0,
∑n

i=1 f δ
2
(bi) = f δ

2
(
∑n

i=1 bi)
≈
< a.

Since f
1
2

δ (bi) = f
1
4

δ (bi) f δ
2
(bi) f

1
4

δ (bi) for each i = 1, 2, . . . , n and bi⊥b j (i 6= j),

( n
∑

i=1

fδ(bi)
)

1
2

=

n
∑

i=1

f
1
2

δ (bi) =

n
∑

i=1

f
1
4

δ (bi) f δ
2
(bi) f

1
4

δ (bi)

=

( n
∑

i=1

f
1
4

δ (bi)
)( n

∑

i=1

f δ
2
(bi)

)( n
∑

i=1

f
1
4

δ (bi)
)

= f
1
4

δ

( n
∑

i=1

bi

)( n
∑

i=1

f δ
2
(bi)

)

f
1
4

δ

( n
∑

i=1

bi

)

.

Then (
∑n

i=1 f δ
2
(bi))

1
2

≈
<

∑n
i=1 f δ

2
(bi). Therefore

d
≈
<

( n
∑

i=1

fδ(bi)
)

1
2 ≈

<
n

∑

i=1

f δ
2
(bi) = f δ

2

( n
∑

i=1

bi

) ≈
< a,

and so d
≈
< a.

Theorem 3.3 Let A be a simple C∗-algebra and P(A) be the Pedersen ideal of A, then

the following definitions of the infinite positive element a ∈ P(A) are equivalent:

(i) There are nonzero positive elements b and c in P(A) such that bc = cb = 0 (i.e.,

b⊥ c), b + c . c and b + c . a.

(ii) There are nonzero positive elements b and c in P(A) such that bc = cb = 0 (i.e.,

b⊥ c), b + c
≈
< c and b + c

≈
< a.

(iii) There are nonzero positive elements b and c in P(A) such that bc = cb = 0 (i.e.,

b⊥ c), [b + c] ≤ [c] and [b + c] ≤ [a].

Proof (i) ⇒ (ii) If a is an infinite positive element, then there are nonzero positive

elements b and c in P(A) such that bc = cb = 0, b + c . c and b + c . a. Clearly,

c is also an infinite element. Then it follows from Proposition 3.2, b + c
≈
< c and

b + c
≈
< a since b + c ∈ P(A)+.

(ii) ⇒ (iii) This is obvious by Lemma 2.2.

(iii) ⇒ (i) This is also obvious by Lemma 2.2.

https://doi.org/10.4153/CMB-2010-042-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-042-x


262 X. Fang and L. Wang

Remark The authors were told by the referee that by using [18, Proposition 2.4(iv)]

one can similarly provide a slightly shorter proof of the Proposition 3.2 for the com-

parison “/”, and so the equivalence of the infiniteness with the comparison “/” to

the other comparisons in Theorem 3.3.
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