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ON THE DECOMPOSITION OF THE s-RADICAL OF A
NEAR-RING
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This paper concerns a Jacobson-type radical for the near-ring N. This radical, denoted by JJ[N) has an
external representation on a type-0 TV-group of a very special kind. Such Af-groups are said to be of type-s.
The main objective of this paper is to decompose JJ{N) as a sum J£N) = J 1I2(N) + A + B for N satisfying the
descending chain condition for /V-subgroups. In this decomposition J,I2{N) is nilpotent and A is the unique
minimal ideal modulo which J,(N) is nilpotent.

'980 Mathematics subject classification (1985 Revision): 16-XX.

1. Introduction

Throughout this article our near-rings will be assumed to be zero symmetric and right
distributive. If the near-ring N satisfies the descending chain condition for left ideals (TV-
subgroups) we say that JV satifies the DCCL (respectively, DCCN). Our direct sums will
always be direct sums of JV-kernels (kernels of iV-homomorphisms). Hence, Q = @jeJClj
for the N-group Q will always mean that Q, is an Af-kernel of Q for each jeJ. The
following theorem which is referred to as the Main Theorem is proved.

Let N be a near-ring which satisfies the DCCN. If the s-radical JJ(N) is not zero, then
there exists an ideal A of N contained in J£N) such that A is uniquely minimal amongst
all ideals B of N for which JS(N/B) is non-zero and nilpotent. Moreover JS(N/A) = JS(N)/A.

The main theorem is then used to decompose the s-radical as Js(N) = Ji/2(N) + A + B,
where A is the unique minimal ideal of the main theorem and B is an ideal which is
nilpotent modulo an ideal C to be defined in the sequel.

This generalises the work initiated in [5]. If the near-ring N is itself nilpotent modulo
some ideal C, then Jl/2(N/C) = J0(N/C) = Js(N/C). To avoid this trivial situation we will
assume throughout that the near-ring N is not nilpotent modulo any ideal C # N. That
is, we assume throughout that Nk£C for every positive integer k and every ideal C^N.
Also, JS(N)^N throughout this paper. We use as our main tool the nil-rigid series of a
near-ring N first defined and discussed by S. D. Scott [9]. Scott's generalized version of
his original work appears in [10]. The length of the nil-rigid series throws some light on
the manner in which the s-radical decomposes with Ji/2(JV) as a summand (not
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12 J. F. T. HARTNEY

necessarily a direct summand) but many problems remain. We refer the reader to
Meldrum [6] and Pilz [8] for the basic definitions and results used in this paper.

2. Preliminaries

The following results are of great importance in the development of the theory in
subsequent sections. Proofs of these reults can be found in [4, 6] and also in [1].

Theorem 2.1. Let N be a near-ring which satisfies the DCCL. Then the factor
N-group N — Jl/2(N) = © ? = i Q,, where fl, is an N-group of type-0for i=l,...,k.

Lemma 2.2. Let Q = Q)il.ICli be an N-group, where each il( is an N-group of type-0.
Then any N-kernel A of Q is a direct summand ofQ with a direct sum of some of the Qt as
a co-summand. That is fi = ^

Details of the theory involving the s-radical, JS(N) of a near-ring N can be found in
[2] and [6]. We give a summary of some of the results which we will require later.

An TV-group Q of type-0 is said to be of type-s if for all coeQ for which Nco^(0) we
have

(i) Nco = @ieiClh where each Q, is of type-0

and

(ii) there exists co'eNco such that Nco = Nco' and the annihilating left ideal (0:<u) is
equal to the annihilating left ideal (O.co').

An ideal A of N is said to be s-primitive if it is the annihilator of some N-group of
type-s. JS(N) is the intersection of all s-primitive ideals of N. If N has no s-primitive
ideals, we define JS(N) to be N itself. A left ideal L of N is said to be s-modular if the
factor Af-group N — L is of type-s.

We have the inclusions J 0 (N)^y 1 / 2 (N)^y s (N)^J 1 (N) . The following theorem can be
proved using Theorem 2.1 and Lemma 2.2.

Theorem 2.3. / / N is a near-ring satisfying the DCCL, then any ideal containing
J1/2(A0 is an intersection of s-modular left ideals.

From Theorem 2.3 it follows that JS{N) is the smallest two-sided ideal containing
J1/2(/V) in the DCCL case. Indeed if N satisfies the DCCL, then JS(N) may be defined as
the smallest two-sided ideal which is an interesection of 0-modular left ideals (cf. [2]).

We now give a brief description of an ideal of N which is in some sense dual to JS(N).
For further details we refer the reader to [3].

Let J* be the collection of all ideals A of N which are of the form /l = ©ie /Afe,,
where

(i) Ne-t is of type-0 and e.-eTVc, for each is I
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and

(ii) e] = e{ and ete~0 if i>j for some ordering on the index set /.

An element of & is said to be & -decomposable or to have an ^-decomposition. .
Using Zorn's lemma one can show that if J^^O, then it possesses a unique maximal

element which we call the socle-ideal of N and which we denote by Soi(Af). If ^ " = 0 we
define Soi(iV) to be the zero ideal. If N satisfies the DCCL, then Soi(N) has an 3F-
decomposition Soi{N) = Q/i=lNeh with {eu...,ek} an orthogonal indempotent set.
Moreover we have

Theorem 2.4. [3] Let N be a near-ring wich satisfies the DCCL. Then N = Soi(N)®L
where L is a left ideal containing Jl/2{N).

Theorem 2.5. [3] Let N be a near-ring which satisfies the DCCL. Then JS(N) is the
unique smallest ideal amongst all ideals B of N for which Soi(N/B) = N/B. Moreover,
js(N) = (0) if and only if Soi(N) = N.

3. Proof of the main theorem

We begin by giving an outline of the concept of a nil-rigid series for the near-ring N.
Let nil(Af) denote the nil radical of the near-ring N. An ideal A of N is said to be

rigid if whenever B is an ideal of N contained in A, then

(i4/B)nnil(Af/B) = (0).

In [9] Scott showed that there is a unique maximal rigid ideal in N which he calls the
crux of N and which we will denote by Crux(Af). In [10], Crux(N) is arrived at via a
more general route. It emerges as a semi-simple part corresponding to the Baer lower
radical.

Definition. For the near-ring N satisfying the ascending chain condition for ideals,
let L, =nil(N) and let Cl be the ideal containing Lt such that

Further, let L2 be the ideal containing Cx such that

If a is a non-limit ordinal define Lx to be the ideal of N containing Cx_^ such that

and Cx to be the ideal containing Lx such that
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If a is a limit ordinal, define

c.= U c,
0<tx

and

K= U V

The transfinite ascending sequence of ideals.

{0},L1>C1,L2>C2,...

is called the nil-rigid series of the near-ring N.
For the near-ring N we state the following facts concerning Crux(iV) and nil-rigid

series.

(a) Soi(N)^Crux(N) and if N satisfies the DCCN, then Crux(N)-Soi(7V), [3].

(b) For near-rings N satisfying the DCCN' Soi(N) = CruxN and nil(N) = J0(N). In
this case Crux(N) and nil(N) cannot be simultaneously zero. Thus in this case nil-
rigid series are strictly ascending [10].

(c) If N satisfies the DCCN, then the nil-rigid series of N is finite and there exists a
positive integer a such that CX=N. Recall that N is not nilpotent modulo any
proper ideal; hence the series cannot stop at an Lfi for any ft.

The positive integer a is called the nil-rigid length or the nil-rigid class number of N if

Lemma 3.1. Let N be a near-ring satisfying the DCCN and let a. be its nil-rigid length.
The s-radical JS(N) is nilpotent if and only ifx= 1.

Proof. JS{N) nilpotent implies that JS(N) = JO(N) and hence by Theorem 2.5
Crux(N/J0) = Soi{N/Js) = N/Js. It follows that the nil-rigid series for N is

Conversely, <x=l implies N/J0 = C1/J0 = Soi(N/J0) and again by Theorem 2.5 we have
J0(N) = J£N). Hence JS(N) is nilpotent.

We note that if N has nil-rigid length a = l and Js(Af)#(O), then the main theorem is
true for N. We need only prove the main theorem for a > l . For such cases Js(N)^(0)
by Lemma 3.1.

Lemma 3.2. Let N be a near-ring which satisfies the DCCL. For any ideal A of N,
JS(N/A) = (JS(N) + A)/A. Moreover, JS(N/A) is nilpotent if and only if {Js(N))m^A for
some positive integer m, depending on A.
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Proof. By Theorem 2.3 JS(N) + A is an intersection of s-modular left ideals of N and
hence (JS{N) + A)/A is an intersection of s-modular left ideals of N/A. Thus
(JS{N) + A)/A^JS(N/A). On the other hand, the intersection of all s-modular left ideals
of N containing A also contains JS(N) + A and it follows that JS(N/A)^.(JS(N) + A)/A.

Hence we have equality

Lemma 3.3. Let N be a near-ring satisfying the DCCN. If in the nil-rigid series of N
we have LX<CX = N and <x>\, then J^N/C^,) is non-zero and nilpotent. Moreover,

i /0 r some positive integer m.

Proof. Ca = N implies that Soi{N/Lx) = N/Lx. Hence by Theorem 2.5, LX^JS(N) and
we have

JO(N/CX. J = LJC.-X ^(JS(N) + C«_0/C.., =JS(N/CX.1).

Thus Js(N/Cx_l) = J0(N/Cx-1) is nilpotent.
Since the nil-rigid series of N is strictly ascending L ^ C ^ - i and we have that

./.(JV/C. _,

Lemma 3.4. Let N be a near-ring which satisfies the DCCN. Suppose that in the
nil-rigid series for N we have LX<CX = N and a > l . Then there exists an ideal A of N
such that A is uniquely minimal amongst all ideals B of N for which JS(N/B) is non-zero
and nilpotent. Moreover,

A^JJiffinC.-i and JS(N/A) = JS(N)/A.

Proof. Let £ = {B:B an ideal of N, JS{N/B) is nilpotent}. By Theorem 3.3 £#0. Also,
if Bet, put C = Js(N)nB. Then since {Js(N))m^B for some positive integer m (Lemma
3.2), it follows that (Js(N))r^C for some positive integer r and hence Ce£. Since N
satisfies the DCCN, ^ has a minimal element A, say. By the above observation we may
assume that A is contained in JS{N). If De£, then by the above DnAe£ so that A^D
by the minimality of A. Thus the ideal A is uniquely minimal in £. Clearly, by Lemmas
3.2 and 3.3 JS{N/A) = (JS(N))/A and we see that A^JJi^nC^^ Finally, we show that

), that is JS{N)^A. If JS(N) = A, then from the proof of Lemma 3.3, we have

This contradicts the fact that the nil-rigid series for N is strictly ascending. Thus
N)* A.

Corollary. //JS(AT)#(O), then it cannot be idempotent; that is (JS(N))2^JS(N).
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16 J. F. T. HARTNEY

We remark that Lemma 3.4 is false in the case of the radicals Ji(N) and J2(N). For
suppose N is a near-ring which satisfies the DCCN and let JS(N) = (O). Then JV = Soi(JV)
is idempotent and hence if J1(N)#(0), it is idempotent.

The main theorem, stated in the introduction, can now immediately be deduced from
Lemmas 3.1 and 3.4.

Definition. The unique minimal ideal A of the main theorem will be called the
s-socle.

We conclude this section by discussing some of the properties of the s-socle.

Theorem 3.5. Let N be a near-ring with DCCN and suppose that in the nil-rigid series
for N we have L3<CX = N with <x> 1. Then the s-socle is not contained in Lx_l.

Proof. Let A be the s-socle of JV. If a = 2, then Lx_i=Ll =J0(JV) and A?LLl =J0(N)
implies that JS(N) is nilpotent.

But by Lemma 3.1 JS(N) is nilpotent if and only if a = l. Thus A is not contained in
Lj and the theorem is true for a = 2. Now suppose that a>2. If A^La_u then since
(Js(N))m^A for some positive integer m and LX_JCX_2) is a nilpotent ideal of
we have that (Js(N))r^Cx_2 for some positive integer r. Thus

It follows that Cx-1/Lx_1=Soi(N/Lx_1) so that N = CX_U contradicting the strict
ascendency of the nil-rigid series of N. This proves the theorem.

Now Jo(N)nSoi(N) = (0) for otherwise J0(N) would contain an idempotent e#0,
appearing in the J^-decomposition of Soi(iV). In fact, in [3] it is shown that
J1/2{N)nSoi(N) = (0). Clearly, Soi(N)®Jo(N) has an ^-decomposition modulo JO(N).
Thus Soi(N)@J0(N)^C1, where Ct is the ideal in the nil-rigid series of N such that
Soi(N/J0(N)) = Ci/J0(N). Consequently we have the following theorem which follows
immediately from Theorem 3.5.

Theorem 3.6. Let N be a near-ring with DCCN such that in the nil-rigid series for
N,Lll<CaL = N with <x>2. Then the s-socle is not contained in Soi(AT).

Thus Theorem 3.6 tells us that, in order to find examples of near-rings for which the
s-socle is contained in Soi(A )̂ we need look no further than near-rings with nil-rigid
class number equal to 2. Indeed, from Theorem 3.5 and the fact that the s-socle is
contained in Ca_t we can immediately deduce the following theorem.

Theorem 3.7. Let N be a near-ring which satisfies the DCCN and suppose that in the
nil-rigid series for N we have LX<CX = N. Then the s-socle A of N is contained in Ct if
and only if a = 2.
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The following theorem provides us with a class of near-rings in which the s-socle is
always contained in Soi(N).

Theorem 3.8. Let N be a near-ring with DCCN and let the nil-rigid length of N be 2.
//Soi(N)© J0(N) = Cl> then the s-socle, A of N is contained in Soi(N).

Proof. Since Cx-i = C1 we have A^Cl = Soi(N) @J0(N). But J0(N) is a nilpotent
ideal of N; hence Soi(N) © J0(N) is nilpotent modulo Soi(N). It follows that 4 + Soi(N)
is nilpotent modulo Soi(N) and that /4h^Soi(N) for some positive integer h. Thus
(Js(/V))*^Soi(N). But A is uniquely minimal amongst all ideals B of N with the
property that (Js(N))r^B for some positive integer r. It follows that / l ^

We remark that the equality Ct = Soi(N) © Jo{N) does not always hold in the case of
near-rings N with nil-rigid class number equal to 2. We give the following example by
way of illustration in which we use the representation theory developed in [5]. We note
that, in the case of d.g. near-rings, with DCCN the critical ideal, Crit(N) of [5] is
precisely the socle ideal, Soi(N).

Example. Let V be a reduced free group on m generators whose laws are precisely
the universal laws of S5, the symmetric group on 5 symbols. Take m at least as great as
the minimum number of generators for S5. Let N be the Neumann d.g. near-ring [7]
associated with V; N is finite with an identity. Now V—K^SS for some normal
subgroup K of V and so there is a left ideal L such that N — L is a faithful N-group.
Moreover, every N-subgroup of N — L is monogenic and there is a one-one lattice
correspondence between the subgroups of S5 and the TV-subgroups of N — L. Under this
correspondence the /V-kernels of N — L correspond to the normal subgroups of S5. Now
Ss does not have a simple subgroup as a direct summand so that N — L cannot have an
/V-group of type-0 as a direct summand. By the theory in [5] Crit(/V) = Soi(/V)
annihilates N — L and Soi(N)=(0) because N — L is faithful. We note that the only
simple groups which are homomorphic images of subgroups of S5 and As are A5 itself
and groups of prime order. Let fl be the subgroup of N-L which corresponds to A5.
Then N = N/J0{N) is O-primitive with Q a faithful N-group. Also, Soi(N) = CJJ0{N) is
idempotent and consists of a direct sum of copies of fi. Hence it does not annihilate Q.
Now the N-subgroups of fl corresponding to subgroups of As isomorphic to AA do not
have N-subgroups of type-0 as direct summands and hence they are annihilated by
Soi(N). Let A be a faithful N-group, where N = N/Cl. Further, let T be any type-0
N-group which is a homomorphic image of an N-subgroup of A. Then by the above F
is of type-2 and we have JS(N) = J2(N) = JO{N).

Thus the nil-rigid series for N is

where L2/Cl=J0(N). We see that Soi<N)© J0(N) = J0(N)#C,.
The following theorem is immediate.
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18 J. F. T. HARTNEY

Theorem 3.9. / / N is a near-ring which satisfies the DCCN, then the s-socle A is
nilpotent, if and only if JS(N) is nilpotent.

Corollary 1. The s-socle A is contained in J0(N) if and only if the nil-rigid class
number of N is 1.

Corollary 2. / / the s-socle of a near-ring is not zero, then it cannot be nilpotent.

Theorem 3.10. Let N be a near-ring which satisfies the DCCN. Then J1/2(N) is
contained in the s-socle A if and only if Ji/2(N) = (0).

Proof. If Jll2(N)=(0), then certainly Jl/2(N)^A. In fact, J1/2(N) = JS(N) by Theorem
2.3 so that A=Jl/2(N)=(0). Conversely, if Jll2(N)£A, then by the remark following
Theorem 2.3, JS(N)^A. Hence JS(N) = A which is not possible if JS(N)^(O) by the main
theorem. This proves the result.

Theorem 3.11. Let N be a near-ring which satisfies the DCCN. Then the s-socle A is
contained in Jl/2(N) if and only if the nil-rigid class number a of N is 1.

Proof. If A^Jl/2(N), then JS{N) is nilpotent so that a = 1 by Lemma 3.1, conversely,
<x= 1 implies JS(N) is nilpotent so that A=(0)^Jl/2(N).

4. A decomposition for J£N)

We begin by characterizing the left ideals of the near-ring N which contain Ji/2(N).
This will enable us to express Jl/2(N/B), in terms of J1/2(N), where B is any ideal of N.

Lemma 4.1. Let N be a near-ring which satisfies the DCCL. Any left ideal L of N
which contains Ji/2(N) is an intersection ofQ-modular left ideals.

Proof. Since L—J1,2(N) is an Af-kernel of N — Jl/2(N) from Theorem 2.1 and Lemma
2.2 we have N-L= 0 - = 1 A j , where A, is an N-group of type-0 for i= l , . . . , / c . Since L
contains Jl/2(N) it is a modular left ideal [2, 8]. That is, there exists eeN such that
ne — neL for all neN. Now the coset e + L has a unique expression of the form

Putting e, = e,-l-L, i=l,...,k we have for any neN

n + L=ne + L=n(el+e2 + --- +ek)

= net + ne2 + — I - nek,

because of the validity of left distribution over a direct sum of Af-kernels. Thus we have
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=(net + L) + (ne2 + L) + • • • +(nek + L).

It is clear that A, is monogenic by e, + L for i = l,...,k and hence the annihilating left
ideal (0:e.) is 0-modular. It follows readily that L=f^=l(O:e,).

Theorem 4.2. Let N be a near-ring satisfying the DCCL and B any ideal of N. Then
Jm(N/B)=(Jll2(

Proof. Clearly, Jll2(N/B)^{Jll2(N) + B)/B. On the other hand, JU2(N) + B is a left
ideal containing Ji/2(N) and hence it is an intersection of 0-modular left ideals of N, by
Lemma 4.1.

Consequently, (Jl/2(N) + B)/B is an intersection of 0-modular left-ideals of the factor
near-ring N/B and hence must contain Jl/2{N/B). The equality follows.

For the remainder of this section we will assume that the near-ring N satisfies the
DCCN and has nil-rigid length a > l . We note that Soi(AT/Ltt_1) = Crux(7V/La_1) =
Cx-l/Llx_l. Also, A will denote the s-socle throughout.

Now Theorem 2.4 tells us that

1, where Lt_JCa.2 =

if a>2, Li=J0(N) and L/Lat.l is a left ideal of N/La_t containing Jm[NILa-{). By
Theorem 4.2 we have J1/2(N/La_1) = (y1/2(N) + La_1)/L(I_1. From Lemma 2.2 we deduce
that the factor near-ring N/Lx^i has the decomposition

because (i4 + La_1)/La_1 is an Af-kernel of C^^L^_X. Using the modular law we obtain
the decomposition

,)/!.._,] 0 l(Js(N) + L..ML.. ^(UILa., © L/La_ t)].

Since the sum on the right is direct and (JJiN))r ̂  A for some positive integer r it follows
that

(Js(N) + Lx_l)/La.ln(L/La_l@L/La.l) (1)

is a nilpotent left ideal of N/Lx-t and hence is contained in 71/2(yv"/La_1). But
Jll2(N/Lx-i)^L/L3_i therefore the intersection (1) above is precisely JU2(^/La_1). We
have shown that the following decomposition of JS(N/La_,) occurs.
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Thus we have proved the following theorem.

Theorem 4.3. Let N be a near-ring which satisfies the DCCN and such that N has
nil-rigid class number a > 1. Then the s-radical JS{N) decomposes as

where A is the s-socle of N and B = Js(N)nLa_l.

Corollary. / / the near-ring N has nil-rigid length a = 2, then

Proof. This follows immediately from

Whether B = Js(N)nLll-1^A + Jl/2(N) always implies that a = 2 is an open question.
For <x>l the equality B = A + J1/2(N) cannot hold for otherwise we would have a
contradiction to Theorem 3.5.

Since Soi(N) is contained in Cl for any near-ring N, from Theorem 3.7 we must have
a ^ 2 in order that the s-socle be contained in Soi(iV). By Theorem 2.7 of [3] an ideal is
contained in Soi(N) if and only if its intersection with Ji/2(N) is the zero ideal. From
this it is easy to see that if Af^Soi(N), then Js{N) = A®Jl/2(N). Thus we see that the
decomposition given in Section 4 of [3] occurs in a relatively small class of near-rings.

We have seen that if N is a near-ring with DCCN and with nil-rigid class number
<x> 1, then A^Js(N)nCa-i. We now investigate this relationship further.

Suppose C is an ideal of N with an ^-decomposition C= ©;=i Net. Let B^O be an
ideal of N contained in C. Then any beB has a unique expression of the form
b = nlei-\ +nses. Since the eh i=\,...,s form an orthogonal idempotent set we have
that be, = n,e1 and hence b = bet + ••• +bes. But B is an ideal so tht each component bet

is in B and B = Be{ ® ••• © Bes. Now each Bet is an N-kernel of Net and hence
re-indexing if necessary, we have

B = Nel®---®Ner, for r^s

because each Ate, is of type-0.
Thus we see that B has an .^"-decomposition with components from the summands

in C.
Now let N be a near-ring which satisfies the DCCN and having nil-rigid class number

a > l . We have that Ca_, has an J2"-decomposition modulo La_!, that is Ca_1/La_1 =
@f=i A(, where A,- is an (N/L^.J-group of type-0 and A1 = AT/La_1(e1) with {eu...,em}
an orthogonal idempotent set, ei = ei + Lx-l, i=\,...,m.

By the previous discussion ((JJ(iV)nC,.1 + LIt + 1)/La.1 is J*-decomposable. Also
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ei + La_16[(J5(Af)nC«_1) + La_1]/La_1 implies that <?,- + La_1=jc + La_1, where

We have that ei + Lx_l = eT + Lx_l=xm + Lx-1 for any positive integer m and since
Js{N)k^A, where /I is the s-socle and k some positive integer, it follows that

Thus we have proved the following theorem.

Theorem 4.4. Let N be a near-ring satisfying the DCCN and having nil-rigid class
number equal to a > l . Then Js(N)nCx-l = A+(Js(N)nLx_l), where A is the s-socle of
N.

Corollary 1. If a = 2, then J s (N)nC a _ 1 =J J (Ar)nC 1 =,4 + ./o(A0.

Proof. La _ i = J0(N) and Js(N) n J0(N) = J0(N).

Corollary 2. If a = 2 and A ^Soi(N), then Js(N)nSoi(N) = A.
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