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ON AN ANTIPLANE CRACK PROBLEM FOR
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Abstract
This paper examines an antiplane crack problem for a functionally graded anisotropic
elastic material in which the elastic moduli vary quadratically with the spatial
coordinates. A solution to the crack problem is obtained in terms of a pair of integral
equations. An iterative solution to the integral equations is used to examine the effect
of the anisotropy and varying elastic moduli on the crack tip stress intensity factors and
the crack displacement.
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1. Introduction

In recent years there has been an increasing interest in the class of inhomogeneous
materials that are now commonly called functionally graded materials (FGMs).
Typically such materials are composites that may be characterized by gradual variation
in the composition and volume fractions of the constituents that comprise the FGM
(Paulino [19], Riedel et al. [21], Hassanin and Jiang [14] and Gelbstein et al. [13]).
This gives rise to a material with a nonuniform microstructure and a continuously
graded macrostructure. Thus from a macro viewpoint FGMs have elastic moduli with
gradients that vary continuously with position. As a consequence, within the linear
theory of elasticity they are modelled by linear partial differential equations, with the
variable elastic moduli giving rise to variable coefficients with continuous gradients.

FGMs are employed in a variety of applications. They are used as coatings to
enhance desired surface properties and to reduce the residual stress and thermal stress
at the interface between the coating and the underlying material. They are also used
as interfacial layers in order to reduce the stress arising from the material property
discontinuities occurring, for example, in biomedical applications such as orthopaedic
implants for hip and knee joint replacement (Pompe et al. [20]). Applications
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involving FGMs comprising metal–ceramic combinations are advantageously
employed in coatings or interfacial layers to reduce thermal stresses in layered
materials in severe temperature environments (Zhang et al. [23], Noda [17]).

In these applications, consideration of the fracture of FGMs is of importance. In
this context, a number of authors have considered crack problems in FGMs. Some of
the earlier studies include the work of Clements et al. [8] and Erdogan [10]while other
examples include papers by Erdogan and Ozturk [11], Konda and Erdogan [16], Chen
and Erdogan [4] and Jin and Batra [15]. More recent studies include papers by Chan
et al. [3], Dag and Erdogan [9], Noda and Wang [18], Bohr [2], Clements and Ang [7]
and Chen et al. [5].

The current study is concerned with an antiplane crack problem for FGMs under
antiplane shear loading. Expressions for the antiplane displacement and stress for a
wide class of these materials are obtained in terms of a single analytic function of a
complex variable. These representations are used to consider a crack problem for an
FGM in which the elastic moduli exhibit quadratic variation with the spatial Cartesian
coordinates. The problem is solved in terms of integral equations which yield iterative
solutions for a limited range of the elastic moduli. Equations are obtained for the crack
tip stress intensity factors and crack displacement. These equations yield information
regarding the effect of the varying elastic moduli and anisotropy on the stress intensity
factors and the crack displacement.

Numerical results are presented for a particular anisotropic material in order to
provide a quantitative illustration of the use of an FGM to reduce crack tip stress
intensity factors and the crack displacement.

2. Statement of the problem

Consider an anisotropic functionally graded elastic body which, referred to a
Cartesian frame Ox1x2x3, has a geometry and elastic moduli ci jkl(x1, x2) that do
not vary in the Ox3 direction. The anisotropic material exhibits elastic symmetry
with respect to the coordinate plane x3 = 0. The material contains a crack in the
region |x1|< a on x2 = 0 and is otherwise continuous throughout the whole space
R3 (Figure 1). Over the crack faces the only nonzero stress is the specified antiplane
stress which does not vary in the Ox3 direction. The problem is to determine the
displacement and stress throughout the material and, in particular, to obtain the crack
tip stress intensity factors and the displacement over the crack faces.

In view of the geometry, the elastic symmetry and the boundary conditions, it is
appropriate to seek a solution to this problem which only involves the two Cartesian
coordinates x1 and x2, the antiplane displacement u3 and the antiplane stresses σ13
and σ23.

3. Basic equations

The equilibrium equation governing small antiplane deformations of a functionally
graded elastic material that exhibits elastic symmetry with respect to the coordinate
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FIGURE 1. Crack geometry.

plane x3 = 0 is given by

∂

∂x j

[
c3 j3l(x)

∂u3(x)
∂xl

]
= 0, (3.1)

where k, l = 1, 2, x= (x1, x2), u3 is the antiplane displacement, c3 j3l(x) for i, j =
1, 2 are the relevant elastic moduli and the repeated summation convention (summing
from 1 to 2) is used for repeated Latin suffices. The stress displacement relations are

σ3 j (x)= c3 j3l
∂u3

∂xl
, (3.2)

for j = 1, 2. The antiplane component of the stress vector on a boundary with outward
pointing normal n= (n1, n2) is given by

P(x)= σ3 j n j = c3 j3l
∂u3

∂xl
n j .

For all points in the elastic body, the coefficients c3 j3l(x) satisfy the usual symmetry
conditions

c3 j3l = c3 jl3 = c j33l = c3l3 j . (3.3)

Also, in order to satisfy the condition that the strain energy density be positive, the
coefficients must satisfy the inequality

c3232c3131 − c2
3231 > 0.

The variation in the coefficients in (3.1) is restricted to take the form

c3 j3l(x)= c(0)3 j3l g(x), (3.4)

where the c(0)3 j3l are constants and g(x1, x2) > 0 is a twice-differentiable function of
the variables x1 and x2. Use of (3.4) in (3.1) yields

c(0)3 j3l
∂

∂x j

(
g
∂u3

∂xl

)
= 0. (3.5)
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Following Azis and Clements [1], a new dependent variable is introduced by the
transformation

u3 = g−1/2ψ. (3.6)

Substituting (3.6) in (3.5), it follows that (3.5) will be satisfied if g and ψ are solutions
of the equations

c(0)3 j3l
∂2ψ

∂x j∂xl
= 0 (3.7)

and

c(0)3 j3l
∂2g1/2

∂x j∂xl
= 0. (3.8)

The general solution of (3.7) and (3.8) may be written in terms of an analytic function
in the form (Eshelby et al. [12], Clements [6])

g1/2
= 2<[ f (zα)],

ψ = 2<[θ(zα)],
(3.9)

where < denotes the real part of a complex number and f (zα) and θ(zα) are arbitrary
analytic functions of the complex variable zα = x1 + τ x2, with τ the root with positive
imaginary part of the quadratic

c(0)3131 + (c
(0)
3231 + c(0)3132)τ + c(0)3232τ

2
= 0. (3.10)

A solution to (3.8) which is applicable to the crack problem in Section 2 takes the
form g(x)= (βx2 + γ )

2, where β and γ are constants.
From (3.2), (3.6) and (3.9), expressions for the displacement and stress may be

written in the form

u3 = 2g−1/2
<[θ(zα)], (3.11)

σ3 j = 2<
[
−c(0)3 j3l

∂g1/2

∂xl
θ(zα)+ g1/2L3 jθ

′(zα)

]
, (3.12)

where primes denote differentiation with respect to the argument in question, and

L3 j = c(0)3 j31 + ταc(0)3 j32. (3.13)

From (3.10) and (3.3) it follows that

τα =
−c(0)3232 + i[c(0)3232c(0)3131 − (c

(0)
3231)

2
]
1/2

c(0)3232

,

and hence (3.13) yields

L32 = i[c(0)3232c(0)3131 − (c
(0)
3231)

2
]
1/2, (3.14)

showing that L32 has zero real part.
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On x2 = 0, (3.11) and (3.12) yield

u3 = g−1/2
[θ(x1)+ θ(x1)],

σ32 =−c(0)323l
∂g1/2

∂xl
[θ(x1)+ θ(x1)] + g1/2

[L32θ
′(x1)+ L32θ

′
(x1)],

where the bar denotes the complex conjugate.
An alternative representation for the displacement and stress may be obtained by

putting
L32θ(z)= χ(z), (3.15)

where χ(z) is an analytic function of the complex variable z. The constant L32 is
nonzero (see Clements [6], Stroh [22]), and hence from (3.15),

θ(z)= Mχ(z), (3.16)

where

M = L−1
32 . (3.17)

Substitution of (3.16) into (3.11) and (3.12) yields

u3 = 2g−1/2
<[Mχ(zα)], (3.18)

σ3 j = 2<
[
−c(0)3 j3l

∂g1/2

∂xl
Mχ(zα)+ g1/2L3 j Mχ ′(zα)

]
. (3.19)

In particular, on x2 = 0, (3.18) and (3.19) yield

u3 = g−1/2
[Mχ(x1)+ Mχ(x1)], (3.20)

σ32 =−c(0)323l
∂g1/2

∂xl
[Mχ(x1)+ Mχ(x1)] − g1/2

[χ ′(x1)+ χ
′(x1)]. (3.21)

4. A crack in a material with modulus ci j kl = c(0)i j kl(β|x2| + γ )2

Consider an inhomogeneous elastic material with elastic modulus given by

ci jkl = c(0)i jkl(β|x2| + γ )
2, (4.1)

where the constants β and γ satisfy the inequalities β ≥ 0 and γ > 0. The material
contains a crack along x2 = 0 for |x1|< a, where a is a positive constant. Over the
crack faces the stress vector P is prescribed. The displacement and stress fields are
required throughout the material. For this problem the representation (3.18)–(3.21) is
useful with χ(z) given by

χ(z)=


1

2π

∫
∞

0
G+(p) exp(i pz) dp for x2 > 0

1
2π

∫
∞

0
G−(p) exp(−i pz) dp for x2 < 0,

(4.2)
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where G+(p) and G−(p) are functions of p which will be determined by the boundary
conditions. From (3.18) and (4.2) it follows that

u3 =
g−1/2

2π

[
M
∫
∞

0
G+(p) exp(i pzα) dp + M

∫
∞

0
G
+
(p) exp(−i pzα) dp

]
for x2 > 0, and

u3 =
g−1/2

2π

[
M
∫
∞

0
G−(p) exp(−i pzα) dp + M

∫
∞

0
G
−
(p) exp(i pzα) dp

]
for x2 < 0. Equations (3.4), (4.1) and (3.19) yield the antiplane stress in the form

σ3 j =
1

2π

[
−c(0)3 j32βM

∫
∞

0
G+(p) exp(i pzα) dp

+ g1/2L3 j M
∫
∞

0
G+(p) exp(i pzα)i p dp

− c(0)3 j32βM
∫
∞

0
G
+
(p) exp(−i pzα) dp

− g1/2L3 j M
∫
∞

0
G
+
(p) exp(−i pzα)i p dp

]
for x2 > 0, and

σ3 j =
1

2π

[
c(0)3 j32βM

∫
∞

0
G−(p) exp(−i pzα) dp

− g1/2L3 j M
∫
∞

0
G−(p) exp(−i pzα)i p dp

+ c(0)3 j32βM
∫
∞

0
G
−
(p) exp(i pzα) dp

+ g1/2L3 j M
∫
∞

0
G
−
(p) exp(i pzα)(i p) dp

]
for x2 < 0.

Since L32 has zero real part, it follows from (3.17) that M has zero real part.
Denoting the imaginary part of M by m, the antiplane stress and displacement on
the boundary x2 = 0 may be written in the form

u3(x1, 0+) =
im

2πγ

[∫
∞

0
G+(p) exp(i px1) dp

−

∫
∞

0
G
+
(p) exp(−i px1) dp

]
, (4.3)

u3(x1, 0−) =
im

2πγ

[∫
∞

0
G−(p) exp(−i px1) dp

−

∫
∞

0
G
−
(p) exp(i px1) dp

]
, (4.4)
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σ32(x1, 0+) =
1

2π

[
−c(0)3232βim

∫
∞

0
G+(p) exp(i px1) dp

+ γ

∫
∞

0
G+(p) exp(i px1)i p dp

+ c(0)3232βim
∫
∞

0
G
+
(p) exp(−i px1) dp

− γ

∫
∞

0
G
+
(p) exp(−i px1)i p dp

]
, (4.5)

σ32(x1, 0−) =
1

2π

[
c(0)3232βim

∫
∞

0
G−(p) exp(−i px1) dp

− γ

∫
∞

0
G−(p) exp(−i px1)i p dp

− c(0)3232βim
∫
∞

0
G
−
(p) exp(i px1) dp

+ γ

∫
∞

0
G
−
(p) exp(i px1)i p dp

]
. (4.6)

Define
G+ = G

−
= G. (4.7)

The difference in displacement across x2 = 0 is

1u3 =
g−1/2

π
<

[
2im

∫
∞

0
G(p) exp(i px1) dp

]
. (4.8)

In view of (4.7), it follows from (4.5) and (4.6) that the shear stress is continuous
across x2 = 0. Let σE and σO denote the even and odd parts of the stress σ32(x1, 0),
respectively, so that

σE =
σ32(x1, 0)+ σ32(−x1, 0)

2
, σO =

σ32(x1, 0)− σ32(−x1, 0)
2

. (4.9)

Hence from (4.5), (4.7) and (4.9), it follows that on x2 = 0,

σE =
1

2π

[
−c(0)3232βim

∫
∞

0
(G(p)− G(p)) cos(px1) dp

+ γ

∫
∞

0
(G(p)− G(p)) cos(px1)i p dp

]
, (4.10)

σO =
1

2π

[
c(0)3232βm

∫
∞

0
(G(p)+ G(p)) sin(px1) dp

− γ

∫
∞

0
(G(p)+ G(p)) sin(px1)p dp

]
. (4.11)
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To satisfy the requirement that the difference in displacement 1u3 across x2 = 0 is
zero for |x1|> a, the function G(p) in (4.8) is chosen in the form

G(p)= G ′(p)+ iG ′′(p)=
∫ a

0
s(t)J1(pt) dt + i

∫ a

0
r(t)J0(pt) dt, (4.12)

where J0 and J1 are Bessel functions and r(t) and s(t) are to be determined.
Hence (4.10) and (4.11) yield

σE =
1
π

[
c(0)3232βm

∫
∞

0
cos(px1) dp

∫ a

0
r(t)J0(pt) dt

− γ

∫
∞

0
cos(px1)p dp

∫ a

0
r(t)J0(pt) dt

]
, (4.13)

σO =
1
π

[
c(0)3232βm

∫
∞

0
sin(px1) dp

∫ a

0
s(t)J1(pt) dt

− γ

∫
∞

0
sin(px1)p dp

∫ a

0
s(t)J1(pt) dt

]
. (4.14)

Equations (4.13) and (4.14) may be written in the form

σE =
1
π

[
c(0)3232βm

∫
∞

0
cos(px1) dp

∫ a

0
r(t)J0(pt) dt

− γ
d

dx1

∫
∞

0
sin(px1) dp

∫ a

0
r(t)J0(pt) dt

]
, (4.15)

σO =
1
π

[
c(0)3232βm

∫
∞

0
sin(px1) dp

∫ a

0
s(t)J1(pt) dt

+ γ
d

dx1

∫
∞

0
cos(px1) dp

∫ a

0
s(t)J1(pt) dt

]
. (4.16)

Interchanging the order of integration in (4.15) and (4.16) yields

σE =
1
π

[
c(0)3232βm

∫ a

0
r(t) dt

∫
∞

0
cos(px1)J0(pt) dp

− γ
d

dx1

∫ a

0
r(t) dt

∫
∞

0
sin(px1)J0(pt) dp

]
,

σO =
1
π

[
c(0)3232βm

∫ a

0
s(t) dt

∫
∞

0
sin(px1)J1(pt) dp

+ γ
d

dx1

∫ a

0
s(t) dt

∫
∞

0
cos(px1)J1(pt) dp

]
.
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Now using the results∫
∞

0
cos(px)J0(pt) dp =

{
(t2
− x2)−1/2 for 0< x < t

0 for t < x <∞,∫
∞

0
sin(px)J0(pt) dp =

{
0 for 0< x < t
(x2
− t2)−1/2 for t < x <∞,∫

∞

0
sin(px)J1(pt) dp =

{
xt−1(t2

− x2)−1/2 for 0< x < t
0 for t < x <∞,∫

∞

0
cos(px)J1(pt) dp =

{
t−1 for 0< x < t
−xt−1(x2

− t2)−1/2
+ t−1 for t < x <∞,

it follows that

σE =
1
π

[
c(0)3232βm

∫ a

x1

r(t) dt

(t2 − x2
1)

1/2

− γ
d

dx1

∫ x1

0

r(t) dt

(x2
1 − t2)1/2

]
for 0< x1 < a, (4.17)

σE =
1
π

[
−γ

d

dx1

∫ a

0

r(t) dt

(x2
1 − t2)1/2

]
for x1 > a, (4.18)

σO =
1
π

[
c(0)3232βm

∫ a

x1

s(t)x1 dt

t (t2 − x2
1)

1/2

−
γ

x1

d

dx1

∫ x1

0

ts(t) dt

(x2
1 − t2)1/2

]
for 0< x1 < a, (4.19)

σO =
1
π

[
−
γ

x1

d

dx1

∫ a

0

ts(t) dt

(x2
1 − t2)1/2

]
for x1 > a. (4.20)

If, on x2 = 0,
σ32(x1, 0)= p(x1) for |x1|< a,

then (4.17) and (4.19) yield

p(x1)+ p(−x1)

2
=

1
π

[
c(0)3232βm

∫ a

x1

r(t) dt

(t2 − x2
1)

1/2

− γ
d

dx1

∫ x1

0

r(t) dt

(x2
1 − t2)1/2

]
for 0< x1 < a, (4.21)

p(x1)− p(−x1)

2
=

1
π

[
c(0)3232βm

∫ a

x1

s(t)x1 dt

t (t2 − x2
1)

1/2

−
γ

x1

d

dx1

∫ x1

0

ts(t) dt

(x2
1 − t2)1/2

]
for 0< x1 < a. (4.22)
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Equations (4.21) and (4.22) are of the Abel type and may be inverted to yield

r(t) =
c(0)3232βm

γ

2t

π

∫ t

0

du

(t2 − u2)1/2

∫ a

u

r(q) dq

(q2 − u2)1/2

−
t

γ

∫ t

−t

p(u) du

(t2 − u2)1/2
for 0< t < a, (4.23)

s(t) =
c(0)3232βm

γ

2
π

∫ t

0

u2 du

(t2 − u2)1/2

∫ a

u

s(q) dq

q(q2 − u2)1/2

−
1
γ

∫ t

−t

up(u) du

(t2 − u2)1/2
for 0< t < a. (4.24)

Provided the ratio β/γ is sufficiently small, the integral equations (4.23) and (4.24)
are suitable for solution by iteration. If

p(x1)=−p0 − x1 p1,

where p0 and p1 are constants, then the first approximations to r(t) and s(t) are given
by

r(t) = −
t

γ

∫ t

−t

p(u) du

(t2 − u2)1/2
=
πp0t

γ
for 0< t < a,

s(t) = −
1
γ

∫ t

−t

up(u) du

(t2 − u2)1/2
=
πp1t2

2γ
for 0< t < a,

while the first iteration yields

r(t)=
πp0t

γ
+

2p0c(0)3232βm

γ 2 t
∫ π/2

0
(a2
− t2sin2θ)1/2 dθ for 0< t < a,

s(t)=
πp1t2

2γ
+

p1c(0)3232βm

2γ 2 t2
∫ π/2

0
sin2θ(a2

− t2sin2θ)1/2 dθ for 0< t < a.

(4.25)

5. Crack tip stress intensity factors

The stress σ32 near the crack tip on x2 = 0 for x2 > a may be obtained from (4.18)
and (4.20) in the form

σ32(x1, 0)=−
γ

π

d

dx1

∫ a

0

r(t) dt

(x2
1 − t2)1/2

−
γ

πx1

d

dx1

∫ a

0

ts(t) dt

(x2
1 − t2)1/2

for x1 > a.

Integration by parts yields the stress intensity factor K:

K = lim
x1→a+

(x1 − a)1/2σ32(x1, 0)=
γ [r(a)+ s(a)]

π(2a)1/2
. (5.1)
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For β/γ sufficiently small, (5.1) together with (4.25) provides an approximate stress
intensity factor Ka in the form

Ka = p0

(
a

2

)1/2[
1+

2c(0)3232βma

γπ

]
+ p1

(
a

2

)3/2[
1+

c(0)3232βma

3γπ

]
. (5.2)

Now since m denotes the imaginary part of M , it follows from (3.14) and (3.17) that

m =−[c(0)3232c(0)3131 − (c
(0)
3231)

2
]
−1/2. (5.3)

Use of (5.3) in (5.2) yields

Ka = p0

(
a

2

)1/2[
1−

2c(0)3232βa

γπ [c(0)3232c(0)3131 − (c
(0)
3231)

2]1/2

]

+ p1

(
a

2

)3/2[
1−

c(0)3232βa

3γπ [c(0)3232c(0)3131 − (c
(0)
3231)

2]1/2

]
. (5.4)

For an isotropic material, c3231 = 0 and c3232 = c3131 = µ= µ
(0)(β|x2| + γ )

2,
where µ is the shear modulus. In this case c(0)3232 = c(0)3131 = µ

(0) and c(0)3231 = 0, and
hence (5.4) provides the approximate stress intensity factor in the form

Ka = p0

(
a

2

)1/2[
1−

2βa

γπ

]
+ p1

(
a

2

)3/2[
1−

βa

3γπ

]
.

Formula (5.4) facilitates an examination of the effect of anisotropy and the
inhomogeneity on the crack tip stress intensity factor. For a fixed c(0)3232 and c(0)3131,

an increase in the modulus c(0)3231 causes a decrease in the stress intensity factor. For a

fixed positive c(0)3232 and a fixed c(0)3231 ≥ 0, an increase in the modulus c(0)3131 causes an

increase in the stress intensity factor. Also, for fixed c(0)3232, c(0)3131 and c(0)3231, an increase
in the ratio β/γ causes a decrease in the stress intensity factor. Thus, for a fixed γ , an
increase in the parameter β in the inhomogeneous modulus causes a reduction in the
stress intensity factor.

6. The displacement over the crack faces

From (4.4), (4.7) and (4.12) the displacement on the crack faces is given by

u3(x1, 0−) =
1
πγ
<

[
im
∫
∞

0
G(p) exp(−i px1) dp

]
=

1
πγ
<im

[∫
∞

0
exp(−i px1) dp

∫ a

0
s(t)J1(pt) dt

− i
∫
∞

0
exp(−i px1) dp

∫ a

0
r(t)J0(pt) dt

]
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=
m

πγ

[∫ a

0
s(t) dt

∫
∞

0
sin(px1)J1(pt) dp

+

∫ a

0
r(t) dt

∫
∞

0
cos(px1)J0(pt) dp

]
=

m

πγ

[∫ a

x1

x1s(t)

t (t2 − x1
2)1/2

dt +
∫ a

x1

r(t) dt

(t2 − x1
2)1/2

]
for 0< x1 < a, (6.1)

and similarly, from (4.3), (4.7) and (4.12),

u3(x1, 0+) =
1
πγ
<

[
im
∫
∞

0
G(p) exp(i px1) dp

]
= −

m

πγ

[∫ a

x1

x1s(t)

t (t2 − x1
2)1/2

dt +
∫ a

x1

r(t) dt

(t2 − x1
2)1/2

]
= −u3(x1, 0−) for 0< x1 < a, (6.2)

where

lim
x2→0+

u3(x1, x2)= u3(x1, 0+), lim
x2→0−

u3(x1, x2)= u3(x1, 0−).

Substitution of (4.25) in (6.2) provides an approximate expression for the crack
displacement in the form

u3(x1, 0+)

=−
m

πγ

[
x1πp1

2γ
(a2
− x1

2)1/2 +
πp0

γ
(a2
− x1

2)1/2

+
x1c(0)3232βmp1

2γ 2

∫ a

x1

t

(t2 − x1
2)1/2

dt
∫ π/2

0
sin2θ(a2

− t2sin2θ)1/2 dθ

+
2c(0)3232βmp0

γ 2

∫ a

x1

t

(t2 − x1
2)1/2

dt
∫ π/2

0
(a2
− t2sin2θ)1/2 dθ

]
. (6.3)

In particular, the displacement in the middle of the crack where x1 = 0 is

u3(0, 0+) = −
mp0

γ 2

[
a +

2c(0)3232mβ

πγ

∫ a

0
dt
∫ π/2

0
(a2
− t2sin2θ)1/2 dθ

]
= −

mp0

γ 2

[
a +

2c(0)3232mβ

πγ

∫ π/2

0
dθ
∫ a

0
(a2
− t2sin2θ)1/2 dt

]
= −

mp0a

γ 2

[
1+

c(0)3232mβa

πγ

∫ π/2

0

(
cos θ +

θ

sin θ

)
dθ

]
= −

mp0a

γ 2

[
1+

c(0)3232mβa

πγ
I

]
, (6.4)
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where

I = 1+
∫ π/2

0

θ

sin θ
dθ ' 2.832 06.

Use of (5.3) to substitute for m in (6.4) yields

u3(0, 0+) =
p0a

γ 2[c(0)3232c(0)3131 − (c
(0)
3231)

2]1/2

×

[
1−

c(0)3232βaI

πγ [c(0)3232c(0)3131 − (c
(0)
3231)

2]1/2

]
. (6.5)

In the isotropic case this reduces to

u3(0, 0+)=
p0a

γ 2µ(0)

[
1−

βaI

πγ

]
.

Formula (6.5) facilitates an examination of the effect of anisotropy and the
inhomogeneity on the crack displacement. In particular, for a fixed γ > 0 and β = 0,
a change in any of the constants c(0)3232, c(0)3131 and c(0)3231 which causes an increase in the

term c(0)3232c(0)3131 − (c
(0)
3231)

2 will decrease the crack displacement at x1 = 0. In the case

of an inhomogeneous material with fixed γ , c(0)3232, c(0)3131 and c(0)3231, an increase in β/γ
causes a reduction in the crack displacement at x1 = 0.

7. Numerical results

The analysis of the previous sections is used to obtain some numerical results for a
crack in a functionally graded transversely isotropic material with the elastic moduli
varying according to (4.1). For such materials, the c(0)i jkl in (4.1) may be conveniently
expressed in terms of five constants A, N , F , C and L (see Clements [6]). If the x3

axis is normal to the transverse planes then the nonzero c(0)i jkl are related to the constants
A, N , F , C and L by the equations

c(0)1111 = c(0)2222 = A, c(0)1122 = N , c(0)1133 = c(0)2233 = F,

c(0)1313 = c(0)2323 = L , c(0)1212 =
A − N

2
, c(0)3333 = C.

(7.1)

In this case, the c(0)i jkl of interest in the antiplane crack problem are given in terms of
the constants A, N , F , C and L by the equations

c(0)1313 = c(0)2323 = L , c(0)1323 = 0.

Expressions for the c(0)i jkl referred to any Cartesian frame of reference in terms of the
five constants A, N , F , C and L may be readily obtained from (7.1) by employing the
transformation law for fourth-order Cartesian tensors (see Clements [6]). Thus, if the
orientation of the Cartesian coordinate frame within the material is such that the x2
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axis is normal to the transverse plane, then the constants c(0)1313, c(0)2323 and c(0)1323 are
given in terms of the constants A, N , F , C and L by the equations

c(0)1313 =
A − N

2
, c(0)2323 = L , c(0)1323 = 0.

If the x3 axis lies in the transverse plane and the x1 and x2 axes are at an angle of π/4
to the transverse plane, then the equations relating the c(0)3 j3l to the constants A, N , F ,
C and L take the form

c(0)1313 = c(0)3232 =
1
2

[
A − N

2
+ L

]
, c(0)3132 =

1
2

[
A − N

2
− L

]
.

It is convenient at this point to introduce the nondimensional variables

x =
x1

a
, Ci jkl =

c(0)i jkl

C
, P0 =

p0

C
, P1 =

ap1

C
,

β ′ = βa, u′3 =
u3

a
and K′a =

Ka
√

aC
,

where C is a reference stress.
In nondimensional form, equations (6.5) for the displacement in the middle of the

crack and (5.4) for the stress intensity factor become

u′3(0, 0+)

P0
=

1

γ 2[C3232C3131 − C2
3231]

1/2

×

[
1−

C3232β
′ I

πγ [C3232C3131 − C2
3231]

1/2

]
, (7.2)

K′a
P0
=

1
√

2

[
1−

2C3232β
′

γπ [C3232C3131 − C2
3231]

1/2

]

+
P1

2
√

2P0

[
1−

C (0)
3232β

′

3γπ [C3232C3131 − C2
3231]

1/2

]
. (7.3)

For the purposes of obtaining numerical values for the stress intensity factor and
the crack displacement, sample values of the material constants A, N , F , C and L
are chosen to be A/C = 16.5, N/C = 3.1, F/C = 5, C/C = 6.2 and L/C = 3.92. For
a suitably defined value of the reference stress C, these are the constants for a crystal
of titanium and are used here for illustrative purposes.

Hence, if the x3 axis is normal to the transverse plane, then

C1313 = C2323 =
L

C
= 3.92, C1323 = 0. (7.4)

If the x2 axis is normal to the transverse plane then

C1313 =
A − N

2C
= 6.7, C2323 =

L

C
= 3.92, C1323 = 0. (7.5)
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TABLE 1. The values of K′a/P0 for γ = 1, C3131 = 3.92, C3232 = 3.92, C3132 = 0 with various values of
β ′ and P1/P0.

β ′ K′a/P0 K′a/P0 K′a/P0
P1/P0 = 0 P1/P0 = 0.5 P1/P0 = 1

0 0.707 0.884 1.061
0.02 0.698 0.875 1.051
0.04 0.689 0.865 1.041
0.06 0.680 0.856 1.031
0.08 0.671 0.846 1.022
0.10 0.662 0.837 1.012

TABLE 2. The values of K′a/P0 for γ = 1, C3131 = 6.7, C3232 = 3.92, C3132 = 0 with various values of
β ′ and P1/P0.

β ′ K′a/P0 K′a/P0 K′a/P0
P1/P0 = 0 P1/P0 = 0.5 P1/P0 = 1

0 0.707 0.884 1.061
0.02 0.700 0.877 1.053
0.04 0.693 0.870 1.046
0.06 0.686 0.862 1.038
0.08 0.680 0.855 1.031
0.10 0.673 0.848 1.023

If the x3 axis lies in the transverse plane and the x1 and x2 axes are at an angle of π/4
to the transverse plane, then

C1313 = C3232 =
1

2C

[
A − N

2
+ L

]
= 5.31, (7.6)

C3132 =
1

2C

[
A − N

2
− L

]
= 1.39. (7.7)

In Tables 1, 2 and 3 and Figure 2, numerical results obtained using (7.2) and (7.3)
and the sample material constants (7.4)–(7.7) provide some quantitative information
regarding the effect of anisotropy and inhomogeneity on the stress intensity factor and
the crack displacement. The values of the stress intensity factors in the tables are
correct to three decimal places.

Tables 1, 2 and 3 illustrate that for fixed values of the constants C3 j3l and γ , an
increase in β ′ and thus the gradient of the elastic moduli c3 j3l/C = C3 j3l(β

′
|x2| + γ )

2

causes a decrease in the stress intensity factors.
If the orientation of the Cartesian frame within the sample transversely isotropic

material is such that the x3 axis is normal to the transverse plane, then the constants
Ci jkl are given by (7.4), the stress intensity factors are given in Table 1 and the mid-
crack displacement is given in Figure 2.
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FIGURE 2. Displacement u′3(0, 0+)/P0 for various values of β ′.

TABLE 3. The values of K′a/P0 for γ = 1, C3131 = 5.31, C3232 = 5.31, C3132 = 1.39 with various values
of β ′ and P1/P0.

β ′ K′a/P0 K′a/P0 K′a/P0
P1/P0 = 0 P1/P0 = 0.5 P1/P0 = 1

0 0.707 0.884 1.061
0.02 0.698 0.874 1.051
0.04 0.688 0.864 1.040
0.06 0.679 0.855 1.030
0.08 0.670 0.845 1.020
0.10 0.660 0.835 1.010

If the Cartesian frame is reoriented within the material so that the x2 axis is
normal to the transverse plane, then, from (7.4) and (7.5), the constants C3232 = 3.92
and C3231 = 0 remain unchanged while C3131 increases from 3.92 to 6.7. Also
C3232C3131 − C2

3231 = 26.264. As a result, for a fixed value of β ′ > 0, there is
an increase in the stress intensity factor but a substantial decrease in the antiplane
displacement at the crack centre (see Figure 2).

If the Cartesian frame is reoriented within the material so that the x3 axis lies in
the transverse plane and the x1 and x2 axes are at an angle of π/4 to the transverse
plane, then, from (7.6) and (7.7), C2323 = C3131 = 5.31 and C3231 = 1.39. Note that
C3232C3131 − C2

3231 = 26.264, which is the same as the corresponding value in the
previous case, and as a consequence the displacement when β ′ = 0 calculated from
(7.2) is identical to the corresponding displacement for the previous orientation of the

https://doi.org/10.1017/S1446181111000551 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181111000551


[17] On an antiplane crack problem 85

Cartesian frame (see Figure 2). Also from Figure 2, due to the larger value of C3232
the displacement for β ′ > 0 is less than the corresponding displacement in the previous
case. The stress intensity factors are given in Table 3. These values are less than the
corresponding values in Tables 1 and 2, showing that this orientation of the Cartesian
frame within the transversely isotropic material gives rise to lower stress intensity
factors than the two previous orientations.

8. Final remarks

An antiplane crack problem has been considered for an anisotropic FGM in which
the elastic moduli increase quadratically with distance in the direction perpendicular
to the plane crack faces. Formulae for the crack tip stress intensity factors and the
displacement over the crack faces are given in terms of solutions to Fredholm integral
equations. These equations yield an approximate analytical solution for a restricted
class of inhomogeneous elastic materials. The solutions obtained provide qualitative
and quantitative information regarding the reduction in the stress intensity factors and
the crack face displacement as the gradient of the quadratic variation in the elastic
moduli increases.
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