THE INVERSIVE DISTANGE BETWEEN TWO GIRCLES

O. BOTTEMA

Dedicated to H. S. M. Coxeter, geometer

1. Introduction. H. S. M. Coxeter (3) has recently studied the correspondence between two geometries the isomorphism of which was well known, but to which he was able to add some remarkable consequences. The two geometries are the inversive geometry of a plane E (the Euclidean plane completed with a single point at infinity or, what is the same thing, the plane of complex numbers to which ∞ is added) on the one hand, and the hyperbolic geometry of three-dimensional space S.

Each concept and each theorem of one geometry may be translated into the other one. Points of E correspond to points at infinity (or points on the absolute quadric Ω) of S; a circle of E corresponds to a plane of S; two non-intersecting circles of E correspond to two ultraparallel planes of S. One of the interesting concepts introduced by Coxeter is the inversive distance d of two non-intersecting circles, which is the translation of the hyperbolic distance of two ultraparallel planes. In terms of elementary geometry it comes to this: if the line of centres of the two circles intersects them in A, A^{\prime} and B, B^{\prime} (Fig. 1), then

$$
\begin{equation*}
\operatorname{th}^{2} \frac{d}{2}=\left(A A^{\prime}, B B^{\prime}\right)=\frac{A^{\prime} B^{\prime} \cdot A B}{A^{\prime} B \cdot A B^{\prime}} \tag{1}
\end{equation*}
$$

Figure 1
the cross-ratio on the right-hand side being invariant for inversive transformations. If the two circles are inverted into concentric circles (which is always possible) d is seen to be the logarithm of the ratio of their radii.
2. Casey's invariants for two point pairs. As Coxeter remarks, the inversive distance "seems to have been sadly neglected." As far as we know, this is true, but it is perhaps worth while to mention that J. Casey, a century ago, in the Proceedings of the Royal Irish Academy for 1866 was not far from the idea when he showed, in an elementary way, that the two cross-ratios

$$
\begin{equation*}
\frac{A^{\prime} B^{\prime} \cdot A B}{A^{\prime} A \cdot B B^{\prime}} \text { and } \frac{A^{\prime} B \cdot A B^{\prime}}{A^{\prime} A \cdot B B^{\prime}} \tag{2}
\end{equation*}
$$

are invariant for inversion. He made use of them to give an extension of Ptolemy's theorem, dealing with four circles all touched by the same circle, and as an application he proved Feuerbach's theorem in a very elegant way. Casey's invariants are equal to the square of a common tangent of the circles, divided by the product of their radii. It must be noted that these invariants are properly related not to the configuration of two circles but to that of two cycles (or oriented circles) and therefore are concepts of the geometry of Laguerre. We want only to say here that the cross-ratio (1), which is the key to the definition of inversive distance, is equal to the ratio of the invariants (2). Casey's considerations are reproduced in his classical treatise (1) and in later books on the subject ($\mathbf{2} ; \mathbf{6}$).
3. The Jacobian of two point pairs. The object of this note is to formulate a problem on the inversive distance and to give a solution by means of the isomorphism of the two geometries.

In the plane E two pairs of points A_{1}, B_{1} and A_{2}, B_{2} are given. Consider a circle c_{1} through A_{1}, B_{1} and a circle c_{2} through A_{2}, B_{2} such that c_{1} and c_{2} do not intersect.

What can be said about the range of values of the inversive distance $d\left(c_{1}, c_{2}\right)$ if c_{1} and c_{2} vary? Obviously d does not have a minimum, for as c_{1} and c_{2} approach two mutually tangent circles d tends to zero. Is there a maximum for d and, if so, how should c_{1} and c_{2} be chosen to realize it?
A_{1} and B_{1} correspond to two points on Ω and therefore the pair $A_{1} B_{1}$ corresponds to a line l_{1} of $S, A_{2} B_{2}$ to a line l_{2}, the circles c_{1} and c_{2} to ultraparallel planes p_{1} and p_{2} through l_{1} and l_{2} respectively and their inversive distance to the distance between these planes. It is well known (4) that the latter has a maximum which is attained by the planes through l_{1} and l_{2} respectively which are both orthogonal to the common perpendicular of l_{1} and l_{2}; the value of this maximum is the length of the perpendicular.

In this way the problem is solved in the isomorphic geometry S; the translation backwards into E will give us the answer we require. We shall bring the data (the two pairs A_{1}, B_{1} and A_{2}, B_{2}) into such a form that the translation may be read easily. Accordingly, we remark that by a suitable inversion of E the two pairs can be transformed into the vertices of a parallelogram. This well-known theorem, which is given by Johnson (5), for example, may be
proved as follows. Two point pairs $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$ in E have their Jacobian, that is the unique pair $\left(J_{1}, J_{2}\right)$ which is harmonic with both. Consider an inversion with J_{2} as its centre and denote the transforms by a prime. $J^{\prime}{ }_{2}$ is the point at infinity and, as the harmonic property is invariant for an inversion, $J^{\prime}{ }_{1}$ is the mid-point of $A^{\prime}{ }_{1}, B^{\prime}{ }_{1}$ and of $A^{\prime}{ }_{2}, B^{\prime}{ }_{2}$; hence $A^{\prime}{ }_{1} A^{\prime}{ }_{2} B^{\prime}{ }_{1} B^{\prime}{ }_{2}$ is a parallelogram, and thus a representative of the general configuration of four points. It is given in Figure 2, with the primes omitted and $J^{\prime}{ }_{1}=0$. If the four points are concyclic, the vertices of the parallelogram are concylic, which means that they are either on a line through $J^{\prime}{ }_{1}$ or they are the vertices of a rectangle.

Figure 2
4. Maximizing the inversive distance between circles through two point pairs. The images in S of the two pairs of points are l_{1} and l_{2}, which are in general skew lines. Let h be their common perpendicular. We know that a line that intersects a line l orthogonally corresponds to a point pair in E that is harmonic with the pair corresponding to l. The conclusion is: The image of h is the Jacobian of A_{1}, B_{1} and A_{2}, B_{2}, i.e. in our case the pair ($0, \infty$). Hence a plane through h corresponds to a straight line through O and a plane orthogonal to h corresponds to a circle having its centre at O. It follows from this that the two circles asked for are the circles $O\left(B_{1}\right)$ and $O\left(B_{2}\right)$. Therefore Figure 2 is a portrait of the configuration of two lines l_{1} and l_{2} of S, giving all the particulars. The distance between the lines is $\left|\log A_{1} B_{1} / A_{2} B_{2}\right| ;$ moreover, the angle α between $A_{1} B_{1}$ and $A_{2} B_{2}$ is equal to the angle between l_{1} and l_{2}, for it is the angle between the planes $l_{1} h$ and $l_{2} h$.

There are two special cases. If the parallelogram is a rectangle, c_{1} and c_{2} coincide, the distance is zero, l_{1} and l_{2} are intersecting lines; if $A_{1} B_{1}, A_{2} B_{2}$ are on a line through O, we have $\alpha=0, l_{1}$ and l_{2} are ultraparallel lines, and the distance is still the length of the common perpendicular.

We may, of course, describe Figure 2 by means of inversive concepts without making use of the chosen special position of the points. The circles $A_{1} B_{1} A_{2}$ and $A_{1} B_{1} B_{2}$, being intersecting circles, have two mid-circles, which are easily
seen to be the straight line $A_{1} B_{1}$ and the circle c_{1}. Of these two mid-circles, only the former separates the points A_{2} and B_{2}.

In the same way $A_{2} B_{2}$ and c_{2} are the mid-circles of $A_{2} B_{2} A_{1}$ and $A_{2} B_{2} B_{1}$. Therefore we have reached the following conclusion. Let $A_{1} B_{1}$ and $A_{2} B_{2}$ be arbitrary point pairs of E, c_{1} and $c^{\prime}{ }^{\prime}$ the mid-circles of $A_{1} B_{1} A_{2}$ and $A_{1} B_{1} B_{2}$ (c_{1} not separating A_{2} and B_{2}), c_{2} and $c^{\prime}{ }_{2}$ the mid-circles of $A_{2} B_{2} A_{1}$ and $A_{2} B_{2} B_{1}$ (c_{2} not separating A_{1} and B_{1}): then the maximum inversive distance of any circle through $A_{1} B_{1}$ and any (non-intersecting) circle through $A_{2} B_{2}$ is the inversive distance of c_{1} and c_{2}; it may be called "the inversive distance of the pairs $A_{1} B_{1}$ and $A_{2} B_{2}$." The angle "between $A_{1} B_{1}$ and $A_{2} B_{2}$ " is the angle between $c^{\prime}{ }_{1}$ and $c^{\prime}{ }_{2}$; the points of intersection of $c^{\prime}{ }_{1}$ and $c^{\prime}{ }_{2}$ stand for the common perpendicular of $A_{1} B_{1}$ and $A_{2} B_{2}$.

References

1. J. Casey, A sequel to the first six books of the elements of Euclid, 5th ed. (Dublin and London, 1888), pp. 101-105.
2. J. L. Coolidge, A treatise on the circle and the sphere (Oxford, 1916), pp. 36-38.
3. H. S. M. Coxeter, The inversive plane and hyperbolic space, Abh. Math. Sem. Univ. Hamburg, 29 (1966), 217-242.
4. - Non-Euclidean geometry, 5th ed. (Toronto, 1965), p. 266.
5. R. A. Johnson, Advanced Euclidean geometry (New York, 1960), p. 99.
6. F. and F. V. Morley, Inversive geometry (London, 1933).

Technological University, Delft, Netherlands

