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Abstract

Minsky and Papert claim that, for any positive integer n , there exist predicates of order 1 whose
conjunction and disjunction have order greater than n . Their proof is amended and a stronger
result obtained of which their claim is a special case.

1991 Mathematics subject classification (Amer. Math. Soc.): 68 G 99.

1. Introduction

The perceptron is a simple parallel computing device, and its capabilities
and limitations have been studied by Minsky and Papert [2]. They claim
[2, Section 1.5] to have shown that for any positive integer n there exist
predicates y/l and y/2 of order 1 for which both y/x A y/2 and y/x V y/2 have
order greater than n . This is called the AND/OR Theorem. Their argument
[2, Chapter 4] establishes the existence of predicates y/x and y/2 of order 1
for which i//{ A y/2 has order greater than n . A similar argument establishes
the existence of predicates y/[ and y/'2 of order 1 for which y/[ V y/'2 has
order greater than n . However the arguments do not seem to guarantee that
y/x = y/[ a n d y/2 = y/'2.

We amend their proof by adapting their techniques to prove a more general
result, of which the AND/OR Theorem is a special case.
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2. Preliminaries

Let R be a finite set. A predicate on R is a function <f> of subsets of
R whose values, depending on the context, may be thought of as TRUE
and FALSE, or 1 and 0. To pass conveniently between these two kinds of
predicate values, square bracket notation is used: if 4>{X) is a statement
about X then

1 if <f>(X) is true.
0 if 4>(X) is false.

Let O be a family of predicates on R, which is finite since R is finite. A
predicate y/ is called a linear threshold function with respect to O if there
are numbers 0, and a^ for each <f> e $ such that

f

Let L(O) denote the set of linear threshold functions with respect to <J>.
The support S(<f>) of a predicate </> is the smallest subset S of R for

which

(*) (VJT c i?) < (̂X) = <£(jr n 5)

The support exists because (*) is satisfied when S = R and if any (finite)
collection of subsets S satisfies (*) then their intersection also satisfies (*).
Note however that if R is allowed to be infinite then the notion of support
need not make sense.)

The order of a predicate y/ is the smallest number k for which there is a
set O of predicates for which y/ e Z-(O) and \S(4>)\ <k for all i ^ s O .

If Ac R then the mask of A, denoted fiA , is the predicate defined by

1 if A C X

0 otherwise.

It is easy to see that S(/j.A) = A. If A — {a} denote nA also by na .

f
1

THEOREM 1 [2, 1.5.3]. A predicate y/ has order k if and only if k is the
smallest number for which there exists a set O of masks such that y/ e i (O)
and \S(4>)\ <k for all <f>e®.

Denote the (symmetric) group of all permutations of a set X by Sym(X).
Let F be a subgroup of Sym(/?). If y/ is a predicate on R and y GT , then
define the predicate y/y by

forXCR.
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Call predicates y/ and <j> T-equivalent, written y/ = <f>, if y/ — 4>y for some
y e F . The Relation = is an equivalence because F is a group. Note that,
for masks, if A, B C R then HAy — My-\A\ f ° r anY y € F so that

fiA = fiB if and only if A = By for some y e f .

Call a predicate y/ invariant under F or T-invariant if

y/ = y/y for all y e F .

THEOREM 2 (Group Invariance Theorem) [2, 2.3]. Let R be a finite set,
F a subgroup of Sym(/?) and O a set predicates on R closed under F con-
taining fi^ the mask of the empty set. Suppose that y/ e L(Q>) and that y/
is T-invariant. Then

where the coefficients (3^ depend only on the Y-equivalence class of (j), that
is, if <j> = 4> then p^ = (3^ .

Note (for when we apply this theorem later) that if O is the set of masks
of support size < k then O is closed under F and contains n^.

Let y/x,..., y/m be a sequence of predicates or formulae. Define a col-
lection AND/OR(^,, . . . , y/m) of predicates or formulae inductively:

for / — 1, . . . , m - 1.

Thus AND/OR(^ [ , . . . , y/m) contains 2m~l predicates or formulae, ob-
tained from y/x by successively conjoining or disjoining y/i 's. For example
A N D / O R ^ , , y/2) = {y/x vy/2,y/xh y/2} , and

A N D / O R ^ , , y/2, y/J = {y/yy/^y/^, (^,V^2)A^3, y/xA^2A^3 ,(y/lAy/2)\/y/i}.

The following is a trivial but important observation: if y/t{X) = {g for all
i=l,...,m then y/{X) = {l

0 for all y/ in AND/OR( y/{, ... ,y/m).

The last result we shall need is an adaptation of [2, Lemma 1].

THEOREM 3 (Compactness). Let Qx{xx, ... , xm), Q2{xx, ... ,xm), ...
be an infinite sequence of nonzero polynomials of m variables of degree at
most N, and let nx, n2, ... be an infinite increasing sequence of positive
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integers. Suppose (f>: Zm -> {0, 1} is a function (predicate) such that for each
i = 1,2, ... we have for all integers xt, ..., xm between - n ( and ni

Then there exists a nonzero polynomial Q(x{, . . . , xm) of degree < N such
that for all integers x{, ... , xm

f 1 r > o
4 > ( x l , . . . , x m ) = l implies Q { x x , . . . , x m ) j < Q

PROOF. Let x be a vector of coordinates ranging over all products of
powers of xx,... , xm in which for each product the sum of the exponents
is at most N. Polynomials in xx, ... , xm of degree < N are then dot
products x • c where c is a vector of constant coefficients. Thus for each i

Qi(xl, ... , xm) = x • c, for some c,.

But the set {c( = Cj/UcJI \i = 1,2,...} lies on the surface of the unit hyper-
sphere which is compact [1], so has a limit point c of length 1. In particular
c ^ O . Let Q{xx, ... , xm) = x • c , so Q is nonzero of degree < N. Let
xx, ..., xm be any integers. Choose nt larger than each of |JC, | , . . . , |jcm|.
Suppose <j)(xx,... , xm) — 1, so by our hypothesis Qj(xl,..., xm) > 0 for
j > i. Thus x • c > 0 , so x • c > 0 for j > i. If x • c < 0 then choose j > i
such that

IIA nil ^ IC ' *"l

and so

X • Cj = X • C + X • (tj - C) < X • C + \\ • (Cj - C)|

< x • c + ||x|| ||c. - c|| (by the Cauchy-Schwarz inequality)

|x • cl x • c

a contradiction. Hence x • c > 0.
Similarly, if <^(x, ,...,xm) = 0 then Q.(xx, ... , xm) < 0 for j > i,

and in the same way one shows that x • c < 0. This completes the proof of
Theorem 3.
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3. The main theorem

The purpose of this section is to prove

THEOREM 4. Let N and m be any positive integers, m > 2. There exist
predicates y/x, ... , y/m of order 1 such that every predicate in

has order greater than N.

Then Minsky and Papert's claim follows.

COROLLARY 5 (the AND/OR theorem). Let N be any positive integer.
There exist predicates y/x and i//2 of order 1 such that both y/x A iy2

 and
y/{ V y/2 have order greater than N.

PROOF OF THEOREM 4. To prove Theorem 4, let n be a positive integer
and R any set containing 2nm elements. Express R as the disjoint union

R = Ax u • • • U Am where \At\ = In for each / .

Define the predicate y/t, for / = 1 to m , by

y/t(X) = [\XnAf\ >n] forXcR.

Note that each y/t has order 1 because

a€A,

Thus for each n we have defined a sequence y/x,... , y/m of order 1 predi-
cates. We will show that for some n each member of AND/OR(^ , . . . , y/m)
has order larger than N.

Suppose to the contrary that for each n there is a predicate in

AND/OR(y, , . . . , y/J

of order < N. There are infinitely many n and only 2m~l formulae in
AND/OR(y/,, . . . , y/m), so there exists at least one formula y/ in

AND/OR(^, , . . . , y/J

such that for some infinite sequence of positive integers nl < n2 < ••• the
predicates y/ for n = « , , n2, ... have order < N.
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For the time being fix n — rtj . Let O be the set of masks of support size
< TV. Then y/ e i (O) by Theorem 1. Consider the group

y(At) = At for i = 1 , . . . , m).

Then each predicate y/t is F-invariant since

\X n At\ = \y{X n At)\ = \y{X) n y(^.)| = \y{X) n A(\

for each y e F and X C.R. By a simple induction all members of

are F-invariant. Hence y/ is F-invariant, so by Theorem 2,

¥ =

for some coefficients /?. which depend only on the F-equivalence class of
<t>. Let

V = {v=(vl,...,vm)eZm\0<vi <2n

for / = 1 to m and v{ H h vm < A^}.

Then

where OT = {masks fiA\Ar\A{\ = vt for i = 1 to m} . Since F|^ = Sym(/4(),
the OT are the equivalence classes of <I> under F as v ranges over V. Hence

where y?¥ = ^ for any <j> e O¥ and A^C^) is the number of masks in
whose support is contained in X. But then

where (™) is by definition w ( w - 1) • • • (m - r + l ) / r ! so that (7) = 0 if
AW < r.

Hence each Nv(X) is a polynomial in the m variables yx — \XnAx\, ...,
ym = \X n Am\ of degree v, + • • • + vm < N. But a linear combination of
polynomials of degree < N is also a polynomial of degree < N, so
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for some polynomial P(yl, ... , ym) of degree < N. Note that 0 <yi < In
since \A^ — In for each i. Put x;- = yt: — n , so that —n < xi < n for each
/ . Now put

Qj(xt , . . . , x j = P(x , +n,...,xm + n)

which is a polynomial in xx, ... ,xm of degree < N. The subscript j is to
remind us that n — ni. Thus

where -n y < x , , ... , xm < nj .

Define functions </>,: Zm - • {0, 1} for i = 1 to m by

1 if z > 0

Then V'(X) = (j>j(xl, ... , xm) where as before xt — \Xn At\ - n for / = 1
to m. Let 4> e A N D / O R ^ j , . . . , 4>m) be built using A and V in exactly
the same way as y. Then <j&: Zm —> {0, 1} and for the x( defined above
<Kxl,...,xm) = yr{X). Thus

where - « < x , , . . . , xm < n .
This holds for each j , so by Theorem 3 there exists a nonzero polynomial

Q(x{, ... ,xm) of degree < N such that

Q implies Q(x, ,...,xm) j < Q

for all integers x , , . . . , xm .

Put < 2 ( x , , . . . , x m ) = xd
mq(xx, ... , x m _ , ) + r ( x , , . . . , xj where

q(x{, ... , xm_1) is a nonzero polynomial in x , , . . . , x m _ 1 and
r{xx, ... , xm) is either the zero polynomial or a nonzero polynomial such
that the highest power of xm appearing is less than d. Note that 4> — 4> A (f>m

or <f> = <f>' V<f>m for some 4>' e A N D / O R ^ , , . . . , (j>m_1), and that for all x m

If (j) = <j>' A <f>m choose x , , . . . , x m _ 1 > 0 , whilst if </> = </>' V (j>m choose
x , , . . . , xOT_1 < 0 for which q(x{, ... , xm_l) / 0 . In both cases

if xm > o

so that
> 0 if x m > 0
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If d is even

0 <
3

then

lim
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, ,...,xm)= l i m x * 0 ( x , ,-..,xm_1
m

x «(*! ' • • • ' xm-\) = x ^ o o <2(*1 . • • • » Xm) < 0
tn m

so that lim^ ^ ^ Q(xx, ... ,xm) = 0, which contradicts that q{xx, ... ,xm_{)
m

Hence d is odd. Now, if <f> = <j> A<f>m choose x{, ... , xm_x < 0 , whilst
if (f> = (f> V <f>m choose xr, ... , xm_t > 0 for which q(xi, ... , xm_l) / 0 .
In the first case (j>(xx,... , xm) = 0 so that Q{x{,... , xm) < 0 for all xm ,
whilst in the second case (/>(xl, ... , xm) = 1 so that Q{xx, ... , xm) > 0 for
all xm . But, since d is odd,

l i m Q{xx ,.-.,xJ = - l i m Q(xx ,...,xm)
tn tn

so that in both cases lim^ ^ ^ Q ( x { , ... , xm) = 0, which again contradicts
that q{xx,... , xm_l) / 0. This completes the proof of Theorem 4.
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