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Abstract

We present a level-raising result for families of p-adic automorphic forms for a definite
quaternion algebra D over Q. The main theorem is an analogue of a theorem for classical
automorphic forms due to Diamond and Taylor. We show that certain families of forms
old at a prime l intersect with families of l-new forms (at a non-classical point). One
of the ingredients in the proof of Diamond and Taylor’s theorem (which also played
a role in earlier work of Taylor) is the definition of a suitable pairing on the space of
automorphic forms. In our situation one cannot define such a pairing on the infinite
dimensional space of p-adic automorphic forms, so instead we introduce a space defined
with respect to a dual coefficient system and work with a pairing between the usual
forms and the dual space. A key ingredient is an analogue of Ihara’s lemma which shows
an interesting asymmetry between the usual and the dual spaces.

1. Introduction

Classical level-raising results typically show that if the reduction mod p of a level N modular
form f has certain properties (depending on a prime l 6= p), then there exists a modular form g
of level Nl, new at l, with g ≡ f mod p. An example of a level-raising result for classical modular
forms is the following, due to Ribet [Rib84].

Theorem 1. Let f ∈ S2(Γ0(N)) be an eigenform, and let p|p be a finite place of Q̄ such that
p> 5 and f is not congruent to an Eisenstein series modulo p. If l -Np is a prime number such
that the following condition is satisfied,

al(f)2 ≡ (1 + l)2 (mod p),

then there exists a l-new eigenform f̃ ∈ S2(Γ0(Nl)) congruent to f modulo p.

In this paper we prove an analogous level-raising result for families of p-adic automorphic
forms. In [Buz04] and [Buz07, Part III], Buzzard defines modules of overconvergent p-adic
automorphic forms for definite quaternion algebras, and constructs from these a so-called
‘eigencurve’. The eigencurve is a rigid analytic variety whose points correspond to certain
systems of eigenvalues for Hecke algebras acting on these modules of automorphic forms.
This space p-adically interpolates the systems of eigenvalues arising from classical automorphic
forms. Emerton has constructed eigenvarieties in a cohomological framework [Eme06], but in
the following we will work with Buzzard’s more concrete construction. Since we first wrote
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the present text, we have also proved some cases of level raising for p-adic modular forms using the
completed cohomology spaces investigated by Emerton (see [New10]).

The first construction of an eigencurve was carried out for modular forms (automorphic forms
for GL2) in Coleman and Mazur’s seminal paper [CM98]. An important recent result is the
construction of a p-adic Jacquet–Langlands map between an eigencurve for a definite quaternion
algebra and the GL2 eigencurve (interpolating the usual Jacquet–Langlands correspondence), as
carried out in [Che05].

We follow the general approach of the first part of Diamond and Taylor’s paper [DT94], and
our Theorem 12 is an analogue of [DT94, Theorem 1], but several new features appear in our
work. In particular, the level-raising results in [DT94, Tay89] for definite quaternion algebras
are proved by utilising a pairing on finite-dimensional vector spaces of automorphic forms. In
our setting, the spaces of automorphic forms are Banach modules over an affinoid algebra, so
we introduce spaces of ‘dual’ automorphic forms and work with the pairing between the usual
space of automorphic forms and the dual space. We then prove suitable forms of Ihara’s lemma,
our Theorem 10 (cf. [DT94, Lemma 2]), for the usual and dual spaces of automorphic forms. An
interesting asymmetry between the two situations can be observed.

This investigation of level-raising results was motivated by a conjecture made by Paulin,
prompted by results on local–global compatibility on the eigencurve in his thesis [Pau07]. Paulin’s
conjecture was made for the GL2-eigencurve; we may apply our theorem to the image of the p-adic
Jacquet–Langlands map there to prove many cases of his conjecture. Since we have applications
to the eigencurve for GL2/Q in mind we work with definite quaternion algebras over Q in this
paper, but some of the methods of § 2 should apply to definite quaternion algebras over any
totally real number field, although we do use the fact that weight space is one-dimensional in
our arguments. We end this introduction by stating the conjecture made by Paulin.

1.1 A geometric level-raising conjecture
We fix two distinct primes p and l, and an integer N coprime to pl. Let E be the
cuspidal eigencurve of tame level Γ0(Nl), parametrising overconvergent cuspidal p-adic modular
eigenforms (see [Buz07] for its construction). If φ is a point of E , corresponding to an
eigenform fφ, Paulin defines an associated representation of GL2(Ql), denoted πfφ,l. We call
an irreducible connected component Z of the eigencurve generically special if the GL2(Ql)-
representations associated with the points of Z away from a discrete set are special. We define
generically unramified principal series similarly. Denote by α and β the roots of the polynomial
X2 − tlX + lsl, where tl and sl are the Tl and Sl eigenvalues of fφ. Paulin makes the following
conjecture.

Conjecture. Suppose Z is a generically unramified principal series component. Suppose
further that there is a point φ on Z where the ratio of α to β becomes l±1 and πfφ,l is special.
Then there exists a generically special component Z ′ intersecting Z at φ.

Chenevier raised the same question (in a slightly different form) in relation to the
characterisation of the Zariski closure of the l-new classical forms in the eigencurve. We address
this issue in § 3.2. Finally, in a recent preprint [Pau10] Paulin has proved versions of his
level-raising (and lowering) conjectures (even for ramified principal series). His techniques are
completely different to ours, making use of deformation theory and requiring a recent important
result of Emerton showing that the space Xfs constructed by Kisin in [Kis03] is equal to the
GL2-eigencurve (if one restricts to pieces of the two spaces where certain conditions are satisfied
by the relevant modulo p Galois representations).
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2. Modules of p-adic overconvergent automorphic forms and Ihara’s lemma

In this section we will prove the results we need about modules of p-adic overconvergent
automorphic forms for quaternion algebras.

2.1 Banach modules
Let K be a finite extension of Qp. We call a normed K-algebra A a Banach algebra if it satisfies
the following properties.

– The K-algebra A is Noetherian.

– The norm | − | is non-Archimedean.

– The K-algebra A is complete with respect to | − |.
– For any x, y in A we have |xy|6 |x||y|.

We will normally assume A is a reduced affinoid algebra with its supremum norm. A Banach
A-module is an A-module M endowed with a norm | − | such that the following hold.

– For any a ∈A, m ∈M we have |am|6 |a||m|.
– The A-module M is complete with respect to | − |.

Given a set I we define the Banach A-module cI(A) to be functions f : I →A such that
limi→∞ f(i) = 0, with norm the supremum norm. By a finite Banach A-module we mean a
Banach A-module which is finitely-generated as an abstract A-module.

Suppose M is a Banach module over a Banach algebra A. We say that M is ONable if it is
isomorphic (as a Banach module) to some cI(A). Note that this terminology differs slightly from
that of [Buz07], where ONable refers to modules isometric to some cI(A) and potentially ONable
replaces our notion of ONable. The Banach A-module P is said to satisfy the universal property
(Pr) if for every surjection f :M →N of Banach A-modules and continuous map α : P →N , α
lifts to a continuous map β : P →M such that the below diagram commutes.

M

f
����

P

∃β
>>

α // N

Note that the universal property (Pr) is not quite the same as the property of being projective
in the category of Banach A-modules, since an epimorphism of Banach modules is not necessarily
a (set-theoretic) surjection. A module P having property (Pr) is equivalent to P being a direct
summand of an ONable module. (See the end of § 2 in [Buz07]).

2.2 Some notation and definitions
Let p be a fixed prime. Let D be a definite quaternion algebra over Q with discriminant δ prime
to p. Fix a maximal order OD of D and isomorphisms OD ⊗ Zq ∼=M2(Zq) for primes q - δ. Note
that these induce isomorphisms D ⊗Qq

∼=M2(Qq) for q - δ. We define Df =D ⊗Q Af , where Af

denotes the finite adeles over Q. Write Nm for the reduced norm map from Df to A×f . Note that
if g ∈Df we can regard the p component of g, gp, as an element of M2(Qp).

For an integer α> 1, we let Mα denote the monoid of matrices
(
a b
c d

)
∈M2(Zp) such that pα|c,

p - d and ad− bc 6= 0. If U is an open compact subgroup of D×f and α> 1 we say that U has wild
level >pα if the projection of U to GL2(Qp) is contained in Mα.
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We will be interested in two key examples of open compact subgroups of D×f . For M any
integer prime to δ, we define U0(M) (respectively U1(M)) to be the subgroup of D×f given by the
product

∏
qUq, where Uq = (OD ⊗ Zq)× for primes q|δ, and Uq are the matrices in GL2(Zp) of

the form
(∗ ∗

0 ∗
)

(respectively
(∗ ∗

0 1

)
) mod qvalq(M) for all other q. We can see that if pα divides M ,

then U1(M) has wild level >pα.
Suppose we have α> 1, U a compact open subgroup of D×f of wild level >pα and A a

module over a commutative ring R, with an R-linear right action of Mα. We define an R-module
L(U, A) by

L(U, A) = {f :D×f →A : f(dgu) = f(g)up ∀d ∈D×, g ∈D×f , u ∈ U}

where D× is embedded diagonally in D×f . If we fix a set {di : 1 6 i6 r} of double coset
representatives for the finite double quotient D×\D×f /U , and write Γi for the finite group
d−1
i D×di ∩ U , we have an isomorphism (see [Buz04, § 4])

L(U, A)→
r⊕
i=1

AΓi ,

given by sending f to (f(d1), f(d2), . . . , f(dr)). If U ⊂ U1(N) for N > 4, then the groups Γi are
trivial (this is proved in [DT94]).

For f :D×f →A, x ∈D×f with xp ∈Mα, we define f |x :D×f →A by (f |x)(g) = f(gx−1)xp.
Note that we can now also write

L(U, A) = {f :D×\D×f →A : f |u= f ∀u ∈ U}.

We can define double coset operators on the spaces L(U, A). If U , V are two compact open
subgroups of D×f of wild level >pα, and A is as above, then for η ∈D×f with ηp ∈Mα we may
define an R-module map [UηV ] : L(U, A)→L(V, A) as follows: we decompose UηV into a finite
union of right cosets

∐
i Uxi and define

f |[UηV ] =
∑
i

f |xi.

2.3 Overconvergent automorphic forms

LetW be the rigid analytic space Hom(Z×p ,Gm), defined over Qp. The reader may consult [Buz04,
Lemma 2] for details of this space’s construction and properties. For example, W is a union of
finitely many open discs. The space W is the weight space for our automorphic forms. The
Cp-points w of W corresponding to characters κw : Z×p → C×p with κw(x) = xkεp(x) for some
positive integer k and finite order character εp are referred to as classical weights. Let X be
a reduced connected K-affinoid subspace of W, where K/Qp is finite, and denote the ring of
analytic functions on X by O(X). Such a space X corresponds to a character κ : Z×p →O(X)×

induced by the inclusion X ⊂W. If we have a real number r = p−n for some n, then we define
Br,K to be the rigid analytic subspace of affine 1-space over K with Cp-points

Br,K(Cp) = {z ∈ Cp : ∃y ∈ Zp such that |z − y|6 r}.

Similarly (for r < 1) we define B×r,K to be the rigid analytic subspace of affine 1-space over K
with Cp-points

B×r,K(Cp) = {z ∈ Cp : ∃y ∈ Z×p such that |z − y|6 r}.
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A point x ∈X(Cp) corresponds to a continuous character κx : Z×p → C×p . Such maps are analytic
when restricted to the set {z ∈ Zp : |1− z|6 r} for small enough r. If κx and r have this property
we call x an r-analytic point. A point is r-analytic if and only if its corresponding character
extends to a morphism of rigid analytic varieties

κx : B×r,K →Gm.

Let X be a K-affinoid subspace of W as before, with associated character κ : Z×p →O(X)×.
We say that κ is r-analytic if every point in X(Cp) is r-analytic. Fix a real number 0< r < 1 and
let AX,r be the O(X)-Banach algebra O(Br,K ×K X), endowed with the supremum norm. If κ
is rp−α-analytic we can define a right action of Mα on AX,r by, for f ∈ AX,r, γ =

(
a b
c d

)
∈Mα,

(f · γ)(x, z) =
κx(cz + d)
(cz + d)2

f

(
x,
az + b

cz + d

)
where x ∈X(Cp) (with κx the associated character) and z ∈ Br,K(Cp).

Definition 1. Let X be a K-affinoid subspace of W as above, with κ : Z×p →O(X)× the
induced character. If we have a real number r = p−n, some integer α> 1 such that κ is rp−α-
analytic, and U a compact open subgroup of D×f of wild level >pα, then define the space of
r-overconvergent automorphic forms of weight X and level U to be the O(X)-module

SDX(U ; r) := L(U,AX,r).

If we endow SDX(U ; r) with the norm |f |= maxg∈D×f |f(g)|, then the isomorphism

SDX(U ; r)∼=
r⊕
i=1

AΓi
X,r (1)

induced by fixing double coset representatives di is norm preserving. Since the Γi are finite
groups, and AX,r is an ONable Banach O(X)-module (it is the base change to O(X) of O(Br,K),
and all Banach spaces over a discretely valued field are ONable), we see that SDX(U ; r) is a
Banach O(X)-module, and satisfies property (Pr).

Note that if m is a maximal ideal of O(X), corresponding to a point x ∈X(K ′) for K ′/K
finite, then taking the fibre of the module SDX(U ; r) at m gives the space of overconvergent forms
SDx (U ; r) corresponding to the point x of W(K ′) (note that a point of W(K ′) is a reduced
connected K ′-affinoid subspace).

These spaces of overconvergent automorphic forms were first defined in [Buz04], using ideas
from the unpublished preprint [Ste94].

2.4 Dual modules

Suppose A is a Banach algebra. Given a Banach A-module M we define the dual M∗ to be the
Banach A-module of continuous A-module morphisms from M to A, with the usual operator
norm. We denote the O(X)-module A∗X,r by DX,r.

If the map κ corresponding to X is rp−α-analytic, then Mα acts continuously on AX,r, so
DX,r has an O(X)-linear right action of the monoid M−1

α given by (f ·m−1)(x) := f(x ·m), for
f ∈ DX,r, x ∈ AX,r and m ∈Mα. If U is as in Definition 1 then its projection to GL2(Qp) is
contained in Mα ∩M−1

α , so it acts on DX,r. This allows us to make the following definition.
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Definition 2. For X, κ, r, α and U as above, we define the space of dual r-overconvergent
automorphic forms of weight X and level U to be the O(X)-module

VD
X(U ; r) := L(U,DX,r).

As in § 2.3, we have a norm-preserving isomorphism

VD
X(U ; r)∼=

r⊕
i=1

DΓi
X,r. (2)

Thus VD
X(U ; r) is a Banach O(X)-module. We note that it will not usually satisfy property (Pr),

since (unless X is a point) we expect that DX,r will not be ONable.
If U , V are two compact open subgroups of D×f of wild level >pα, then for η ∈D×f with

ηp ∈M−1
α we get double coset operators [UηV ] : VD

X(U ; r)→VD
X(V ; r).

2.5 Hecke operators

For an integer m, we define the Hecke algebra away from m, T(m), to be the free commutative
O(X)-algebra generated by symbols Tπ, Sπ for π prime not dividing m. If δp divides m then we
can define the usual action of T(m) by double coset operators on SDX(U ; r) as follows: for π -m
define $π ∈ Af to be the finite adele which is π at π and 1 at the other places. Abusing notation
slightly, we also write $π for the element of D×f which is

(
π 0
0 π

)
at π and the identity elsewhere.

Similarly set ηπ =
(
$π 0
0 1

)
to be the element of D×f which is

(
π 0
0 1

)
at π and the identity elsewhere.

On SDX(U ; r) we let Tπ act by [UηπU ] and Sπ by [U$πU ]. Similarly on VD
X(U ; r) we define Tπ

to act by [Uη−1
π U ] and Sπ by [U$−1

π U ]. As usual we also have a compact operator acting on
SDX(U ; r), namely Up := [UηpU ].

2.6 A pairing

In this section X, κ, r, α and U will be as in Definition 1. We will denote by V another compact
open subgroup of wild level >pα. We fix double coset representatives {di : 1 6 i6 r} for the
double quotient D×\D×f /U and let γi denote the order of the finite group d−1

i D×di ∩ U . We can
define an O(X)-bilinear pairing between the spaces SDX(U ; r) and VD

X(U ; r) by

〈f, λ〉 :=
r∑
i=1

γ−1
i 〈f(di), λ(di)〉,

where f ∈ SDX(U ; r), λ ∈VD
X(U ; r) and on the right-hand side of the above definition 〈·, ·〉 denotes

the pairing between AX,r and DX,r given by evaluation.
This pairing is independent of the choice of the double coset representatives di, since for every

d ∈D×, g ∈D×f , u ∈ U , f ∈ SDX(U ; r) and λ ∈VD
X(U ; r) we have

〈f(dgu), λ(dgu)〉= 〈f(g)up, λ(g)up〉= 〈f(g)upu−1
p , λ(g)〉= 〈f(g), λ(g)〉.

Combining this observation with the isomorphisms (1) and (2) we see that our pairing identifies
VD
X(U ; r) with SDX(U ; r)∗.

The following proposition summarises a standard computation [DT94, Tay89] (although these
assume the level group is small enough that the finite groups Γi are trivial), telling us how our
pairing interacts with double coset operators. In particular, it implies that 〈Tπf, λ〉= 〈f, Tπλ〉
for π - δp when Tπ acts in the usual way.
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Proposition 3. Let f ∈ SDX(U ; r) and let λ ∈VD
X(V ; r). Let g ∈D×f with gp ∈Mα. Then

〈f |[UgV ], λ〉= 〈f, λ|[V g−1U ]〉.

Proof. For d ∈D×f set γ(d) = #(d−1D×d ∩ V ). We have

f |[UgV ] =
∑

v∈(g−1Uη)∩V \V

f |(gv),

hence

〈f |[UgV ], λ〉 =
∑

d∈D×\D×f /V

γ(d)−1〈f |[UgV ](d), λ(d)〉

=
∑

d∈D×\D×f /V

∑
v∈(g−1Ug)∩V \V

γ(d)−1〈f |(gv)(d), λ(d)〉

=
∑

d∈D×\D×f /V

∑
v∈(g−1Ug)∩V \V

γ(d)−1〈f(dv−1g−1) · gpvp, λ(d)〉

=
∑

x∈D×\D×f /(g−1Ug)∩V

〈f(xg−1), λ(x) · g−1
p 〉

=
∑

y∈D×\D×f /U∩(gV g−1)

〈f(y), λ(yg) · g−1
p 〉

= 〈f, λ|[V g−1U ]〉

where we pass from the third line to the fourth line by counting double cosets and the final line
follows by similar calculations to the first five lines. 2

By the results of [Che04, § 5] and [Buz07, § 3] we know that, for a fixed d> 0, if X is a
sufficiently small affinoid whose norm is multiplicative (with a precise bound given by [Che04,
Théorème 5.3.1]) then, since Up acts as a compact operator on SDX(U ; r), we have a Up stable
decomposition

SDX(U ; r) = SDX(U ; r)6d ⊕N,

where SDX(U ; r)6d is the space of forms of slope 6d. We need X to be small enough that the
Newton polygon of the characteristic power series for Up acting on SDX(U ; r) has the same slope
6d part when specialised to any point of X.

From now on we fix d and assume that X is such that this slope decomposition exists. The
key example of such an X is an open ball of small radius.

The space SDX(U ; r)6d is a finite Banach O(X)-module with property (Pr), i.e. a projective
finitely generated O(X)-module. In fact this decomposition must be stable under the action of
T(δp), since the Tπ and Sπ operators for π 6= p commute with Up. We define VD

X(U ; r)6d to be
the maps from SDX(U ; r) to O(X) which are 0 on N. This space is also stable under the action of
T(δp) and is naturally isomorphic to the dual of SDX(U ; r)6d. The following lemma implies that
our pairing is perfect when restricted to SDX(U ; r)6d ×VD

X(U ; r)6d.

Lemma 4. Let M be a finite Banach O(X)-module with property (Pr). Then the usual natural
map M→ (M∗)∗ is an isomorphism. In other words, the O(X)-module M is reflexive.

Proof. Since M is finite we have a surjection of Banach O(X)-modules O(X)⊕n→M for
some n. Applying the universal property (Pr) to this surjection shows that we have a Banach
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O(X)-isomorphism M⊕N∼=O(X)⊕n for some module N, so M is a projective O(X)-module.
Proposition 2.1 of [Buz07] states that the category of finite Banach O(X)-modules, with
continuousO(X)-linear maps as morphisms, is equivalent to the category of finiteO(X)-modules,
so we can just compute duals module-theoretically. We have exact sequences,

0 // M // O(X)⊕n // N // 0,

0 // N // O(X)⊕n // M // 0,

and since M, N, M∗ and N∗ are all projective as O(X)-modules we can take the dual of these
exact sequences twice to get commutative diagrams with exact rows

0 // M //

��

O(X)⊕n //

��

N //

��

0

0 // M∗∗ // O(X)⊕n // N∗∗ // 0

0 // N //

��

O(X)⊕n //

��

M //

��

0

0 // N∗∗ // O(X)⊕n // M∗∗ // 0

where the vertical maps are the natural maps from a module to its double dual. Since the central
maps are isomorphisms, we conclude that the outer maps are too. 2

2.6.1 Direct limits and Fréchet spaces. We should remark here that our use of the dual
Banach modules VD

X(U ; r) is slightly unsatisfactory. For example, the modules do not satisfy
property (Pr), and we must restrict to ‘slope 6d’ subspaces to get a perfect pairing. One could
alternatively work with modules of all overconvergent automorphic forms, rather than imposing
r-overconvergence for a particular r. One defines

SDX(U)† := lim−→
r

SDX(U ; r),

where the (compact) transition maps in the direct system are induced by the inclusions
Bs,K ⊂ Br,K for s < r. If X is a point (so O(X) is a field) then it is a standard result that
the vector space SDX(U)† is reflexive (see [Sch02, Proposition 16.10]). Using this fact it is fairly
straightforward to show that for any X, SDX(U)† is a reflexive O(X)-module, with dual the
Fréchet space

VD
X(U)† := lim←−

r

VD
X(U ; r).

2.7 Old and new

Fix an integer N > 1 (the tame level) coprime to p and fix an auxiliary prime l -Npδ. Let X
be an affinoid subspace of weight space with associated character κ which is rp−α analytic, for
some integer α> 1. Set U = U1(Npα), V = U1(Npα) ∩ U0(l). To simplify notation we set

L := SDX(U ; r)6d, L∗ := VD
X(U ; r)6d,

M := SDX(V ; r)6d, M∗ := VD
X(V ; r)6d.
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We define a map i : L× L→M by

i(f, g) := f |[U1V ] + g|[UηlV ].

Since the map i is defined by double coset operators with trivial component at p it commutes
with Up and thus gives a well-defined map between these spaces of bounded slope forms.
A simple calculation shows that these double coset operators act very simply. Regarding f
and g as functions on D×f we have f |[U1V ] = f , g|[UηlV ] = g|ηl. The image of i inside M will
be referred to as the space of oldforms.

We also define a map i† :M → L× L by

i†(f) := (f |[V 1U ], f |[V η−1
l U ]).

The kernel of i† is the space of newforms. The maps i and i† commute with Hecke operators
Tq, Sq, where q -Nplδ.

The same double coset operators give maps,

j : L∗ × L∗→M∗,

j† :M∗→ L∗ × L∗.

Using Proposition 3 we have

〈i(f, g), λ〉= 〈(f, g), j†λ〉

for f, g ∈ L, λ ∈M∗. Similarly

〈f, j(λ, µ)〉= 〈i†f, (λ, µ)〉
for f ∈M , λ, µ ∈ L∗.

An easy calculation shows that i†i acts on the product L× L= L2 by the matrix (acting on
the right) (

l + 1 [U$−1
l U ][UηlU ]

[UηlU ] l + 1

)
=
(
l + 1 S−1

l Tl
Tl l + 1

)
.

We have exactly the same double coset operator formula for the action of j†j on the product
L∗ × L∗ = L∗2. Since the Hecke operators Sl, Tl act by [U$−1

l U ], [Uη−1
l U ] respectively on L∗ we

deduce that, in terms of Hecke operators, j†j acts on L∗ × L∗ by the matrix (again acting on
the right) (

l + 1 Tl
S−1
l Tl l + 1

)
.

If the affinoid X is sufficiently nice, then we can show that the map i†i is injective. Before
we prove this, we note that, in our setting, a family of p-adic automorphic eigenforms over an
affinoid X ⊂W is just a Hecke eigenform f in SDX(U ; r).

Proposition 5. If X is a one-dimensional irreducible connected smooth affinoid, then the map
i†i is injective.

Proof. Let L0 be the projective (since O(X) is a Dedekind domain) finite Banach O(X)-module
ker(i†i), and note that L0 ⊂ L2 is stable under the action of all the Hecke operators, since they
all commute with i†i. Suppose L0 is not zero. For (f, g) in L0 we have (l + 1)f + S−1

l Tlg =
Tlf + (l + 1)g = 0. Eliminating g we get T 2

l f − (l + 1)2Slf = 0, so projecting L0 down to L
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(taking either the first or the second factor) we see that the Hecke operator T 2
l − (l + 1)2Sl

acts as 0 on a non-zero projective submodule of L. This (applying the local eigenvariety
construction as described in [Che04, § 6.2]) implies that there is a family of eigenforms over
some one-dimensional sub-affinoid of X, all with the eigenvalue of T 2

l − (l + 1)2Sl equal to 0.
Now the Hecke algebra element T 2

l − (l + 1)2Sl induces a rigid analytic function on the tame
level N eigencurve for D (by taking the appropriate eigenvalue associated to a point), so this
function must vanish on the whole irreducible component containing the one-dimensional family
constructed above. However, every irreducible component contains a classical point, and these
cannot be contained in the kernel of T 2

l − (l + 1)2Sl since this would contradict the Hecke
eigenvalue bounds given by the Ramanujan–Petersson conjecture. 2

Note that the injectivity of i†i implies the injectivity of i. The above shows that if X is as
in the statement of Proposition 5, we have ker(i†) ∩ im(i) = 0 so our families in M are not both
old and new at l. However, if X is just a point, then i†i may have a kernel; this corresponds to
p-adic automorphic forms which are both old and new at l.

2.8 Some modules

We denote the fraction field of O(X) by F . If A is an O(X)-module we write AF for the F -vector
space A⊗O(X) F .

We begin this section by noting that the injectivity of i†i implies the injectivity of j†j.

Suppose j†j(λ, µ) = 0. Then 〈(f, g), j†j(λ, µ)〉= 0 for all (f, g) ∈ LF , so (by Proposition 3)
〈i†i(f, g), (λ, µ)〉= 0 for all (f, g) ∈ LF . Now since i†i : LF → LF is an injective endomorphism
of a finite dimensional vector space, it is an isomorphism, so we see that λ= µ= 0. Hence j†j
(thus, a fortiori, j) is injective.

We now define two chains of modules which will prove useful:

Λ0 := L2 Λ∗0 := L∗2

Λ1 := i†M Λ∗1 := j†M∗

Λ2 := i†(M ∩ i(L2
F )) Λ∗2 := j†(M∗ ∩ j((L∗F )2))

Λ3 := i†iL2 Λ∗3 := j†jL∗2.

We note that Λ0 ⊃ Λ1 ⊃ Λ2 ⊃ Λ3, and that Λ2/Λ3 = i†(M ∩ i(L2
F )/iL2) = i†((M/iL2)tors), with

analogous statements for the starred modules.

We fix the usual action of T(Nδpl) on all these modules. We can now describe some pairings
between them which will be equivariant under the T(Nδpl) action. They will not all be equivariant
with respect to the action of Tl.

We have a (perfect) pairing 〈 , 〉 : L2
F × (L∗F )2→ F which, since j is injective, induces a pairing

Λ0 × (M∗ ∩ j((L∗F )2))→ F/O(X),

which in turn induces a pairing

P1 : Λ0/Λ1 × (M∗ ∩ j((L∗F )2)/j(L∗2))→ F/O(X).

The fact that this pairing is perfect follows from the following lemma.

Lemma 6. The pairing on L2
F × (L∗F )2 induces isomorphisms

HomO(X)(Λ1,O(X))∼=M∗ ∩ j((L∗F )2)
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and

HomO(X)(Λ0,O(X))∼= j(L∗2).

Proof. For the first isomorphism, the module HomO(X)(Λ1,O(X)) correspond to l ∈ (L∗F )2 such
that 〈i†m, l〉 ∈ O(X) for all m ∈M . We have 〈i†m, l〉= 〈m, jl〉 so 〈i†m, l〉 ∈ O(X) for all m ∈M
if and only if 〈m, jl〉 ∈ O(X) for all m ∈M , i.e. if and only if jl ∈M∗.

The second isomorphism is obvious, since j is injective. 2

In exactly the same way, we have a perfect pairing

P2 : (M ∩ i(L2
F ))/i(L2)× Λ∗0/Λ

∗
1→ F/O(X).

The final pairing we will need is induced by the pairing between M and M∗. It is
straightforward to check that this gives a perfect pairing:

P3 : ker(i†)×M∗/(M∗ ∩ j((L∗F )2))→O(X).

2.9 An analogue of Ihara’s lemma

In classical level-raising results (such as [DT94, Rib84, Tay89]) analogues of ‘Ihara’s
lemma’ [Iha75, Lemma 3.2] are used to show that prime ideals of a Hecke algebra containing
the annihilators of certain modules of automorphic forms are in some sense ‘uninteresting’, or
even to show that these modules are trivial. In this section we prove the appropriate analogue
of Ihara’s lemma in our setting.

From this section onwards we will assume that X is a one-dimensional irreducible connected
smooth affinoid in weight spaceW, so we can apply Proposition 5. We want to obtain information
about the T(Nδpl) action on the quotients Λ2/Λ3

∼= i†(M/iL2)tors, Λ∗2/Λ
∗
3
∼= j†(M∗/jL∗2)tors,

Λ0/Λ1 and Λ∗0/Λ
∗
1. The pairings P1 and P2 allow us to use an analogue of Ihara’s lemma (the

following two propositions and theorem) to obtain crucial information about all four quotients.
Recall that the radius of overconvergence r equals p−n for some positive integer n. Fix a positive
integer c such that Nm(U1(Npα+n)) contains all elements of Ẑ× congruent to 1 modulo c. We
first need a lemma allowing us to control certain forms with weight a point in weight space.

Lemma 7. Let x ∈W(K ′) for some K ′ a finite extension of Qp.

(i) Let y ∈ SDx (U ; r) be non-zero. Suppose y factors through Nm, that is y(g) = y(h) for
all g, h ∈D×f with Nm(g) =Nm(h). Then κx is a classical weight z 7→ z2εp(z), and for all
but finitely many primes q ≡ 1 mod c, where c is the fixed integer chosen above,
(Tq − q − 1)y = 0.

(ii) Let y ∈VD
x (U ; r). If y factors through Nm, that is y(g) = y(h) for all g, h ∈D×f with

Nm(g) =Nm(h), then y is zero.

Proof. We first prove part (i). Suppose y is as in the statement of that part. For up ∈ SL2(Qp) ∩ U
we have y(g) = y(gup) = y(g) · up for all g ∈D×f . Noting that

(
1 a
0 1

)
∈ SL2(Qp) ∩ U for all

a ∈ Zp, we see that y(g)(z + a) = y(g)(z) for all a ∈ Zp, z ∈ Br,K′ so y(g)(z) is constant in z,
since non-constant rigid analytic functions have discrete zero sets. Recall that U = U1(Npα), so
u0 :=

(
1 0
pα 1

)
is in SL2(Qp) ∩ U , and for z ∈ Br,K′ we have

y(g)(z) = (y(g)u0)(z) =
κx(pαz + 1)
(pαz + 1)2

y(g),
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so κx must correspond to the classical weight given by z 7→ z2εp(z) for some character εp trivial
on 1 + pα+nZp, where r = p−n. This now implies that for each g ∈D×f we have y(g)γ = y(g) for
all γ in the projection of U1(Npα+n) to Mα+n, since these matrices all have bottom right-hand
entry congruent to 1 mod pα+n.

We now follow [DT94] to complete the proof of the first part of the lemma. There is a d0 ∈D×
with Nm(d0) = q, so Nm(d−1

0 ηq) ∈ A×f is actually in Ẑ× and is congruent to 1 modulo c. Thus
(by the way we picked c) there is u0 ∈ U1(Npα+n) such that Nm(u0) =Nm(d−1

0 ηq). Now we have

Tq(y)(g) =
∑

u∈(η−1
q Uηq)∩U\U

y(gu−1η−1
q ) · up

=
∑

u∈(η−1
q Uηq)∩U\U

y(gη−1
q u−1) · up

=
∑

u∈(η−1
q Uηq)∩U\U

y(gη−1
q ) = (q + 1)y(gη−1

q )

= (q + 1)y(gη−1
q d0d

−1
0 ) = (q + 1)y(gu−1

0 d−1
0 ) = (q + 1)y(gu−1

0 ) = (q + 1)y(g),

where to pass from the first line to the second we use the fact that y factors through Nm to
commute y’s arguments, from the second to the third we use that y is modular of level U and
in the final line we first substitute u0 for d−1

0 ηq (since they have the same reduced norm), then
commute y’s arguments and use the left invariance of y under D× followed by the fact that
u−1

0 ∈ U1(Npα+n) implies that y(gu−1
0 ) = y(g)u−1

0,p = y(g).
We now give a proof of the second part of the lemma. First we perform a formal calculation.

Fix an isomorphism

Ax,r ∼=
n∏

α=1

K ′〈T 〉

where K ′〈T 〉 is the ring of power series with coefficients in K ′ tending to zero (T a formal
variable), and n is a positive integer depending on r. Such an isomorphism exists since Br,K′ is
just a disjoint union of finitely many affinoid discs. We then have an identification of Dx,r with∏n
α=1 K

′〈[T ]〉, where K ′〈[T ]〉 denotes the ring of power series with bounded coefficients in K ′,
and the pairing betweenAx,r and Dx,r is given on each component by 〈

∑
aiT

i,
∑
bjT

j〉=
∑
aibi.

Now we can compute the action of γ =
(

1 −1
0 1

)
on Dx,r. Let f = (fα)α=1,...,n be an element of Dx,r,

with fα =
∑
bj,αT

j . For each α= 1, . . . , n and i> 0 fix ei,α to be the element of Ax,r which is T i

at the α component, and zero elsewhere. We have〈
ei,α, f ·

(
1 −1
0 1

)〉
=
〈
T i,

(∑
bj,αT

j

)
·
(

1 −1
0 1

)〉
=
〈
T i ·

(
1 1
0 1

)
,
∑

bj,αT
j

〉
=
〈

(T + 1)i,
∑

bj,αT
j

〉
=
〈 i∑
k=0

(
i

k

)
T k,

∑
bj,αT

j

〉

=
i∑

j=0

(
i

j

)
bj,α.
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We can now see that if we have f = f ·
(

1 −1
0 1

)
we get

∑i
j=0

(
i
j

)
bj,α = bi,α for all i and α, which

implies that f = 0.
Now we return to the statement in the lemma and suppose y ∈VD

x (U ; r) factors through Nm.
Let u1 be the element of U ⊂D×f with p component equal to γ and all other components the
identity. For all g ∈D×f , y(gu1) = y(g)γ since u1 ∈ U and y(gu1) = y(g) since Nm(u1) = 1. Hence
y(g) = y(g)γ and the above calculation shows that y(g) = 0 for all g. 2

The following two propositions apply the preceding lemma to give a form of Ihara’s lemma
for modules of overconvergent automorphic forms and dual overconvergent forms.

Proposition 8. For all but finitely many primes q ≡ 1 mod c, Tq − q − 1 annihilates the module

TorO(X)
1 (M/iL2,O(X)/m) for each maximal ideal m of O(X).

Proof. Fix q ≡ 1 mod c with q -Npδl and set Hq := Tq − q − 1. Let m be a maximal ideal of
O(X) and set K ′ =O(X)/m. The maximal ideal m corresponds to a point x of X(K ′), with
corresponding weight κx : Z×p →K ′× the specialisation of κ at m.

We have a short exact sequence,

0 // L2 i // M // M/iL2 // 0 .

Noting that L2 and M are O(X)-torsion free, hence flat, and taking derived functors of
−⊗O(X)K

′ gives an exact sequence.

0 // TorO(X)
1 (M/iL2, K ′)

δ // L2 ⊗O(X) K
′

i

||
0 M/iL2 ⊗O(X) K

′oo M ⊗O(X) K
′oo

We have a commutative diagram

0 // L2 i //

Hq

��

M //

Hq

��

M/iL2 //

Hq
��

0

0 // L2 i // M // M/iL2 // 0

so by the naturality of the long exact sequence for Tor the diagram

TorO(X)
1 (M/iL2, K ′)

δ //

Hq
��

L2 ⊗O(X) K
′

Hq

��

TorO(X)
1 (M/iL2, K ′)

δ // L2 ⊗O(X) K
′

commutes. To complete the proof it suffices to prove that Hq annihilates the kernel of

i : L2 ⊗O(X) K
′→M ⊗O(X) K

′.

We proceed by viewing these modules as spaces of automorphic forms with weight x (a single
point in weight space). We define two finite-dimensional K ′-vector spaces:

Lx := SDx (U ; r)6d,

Mx := SDx (V ; r)6d.
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There are maps ix : L2
x→Mx and i†x :Mx→ Lx as defined in § 2.7 (taking the weight X in that

section to be the point x), but note that as now the weight is just a point in weight space,
Proposition 5 does not apply. In particular the map ix might not be injective.

Recall that L and M are finitely generated O(X) modules, whence L⊗O(X) K
′ and M ⊗O(X)

K ′ are finite-dimensional K ′-vector spaces. Since the Newton polygon of the characteristic
power series for Up acting on SDX(U ; r) has the same slope 6d part when specialised to
any point of X, and the specialisation of the Banach O(X)-modules SDX(U ; r) and SDX(V ; r)
at m gives SDx (U ; r) and SDx (V ; r) respectively, we have isomorphisms L⊗O(X) K

′→ Lx and
M ⊗O(X) K

′→Mx which commute suitably with i : L2 ⊗O(X) K
′→M ⊗O(X) K

′ and ix : L2
x→

Mx. These isomorphisms also commute with double coset operators, so to prove the proposition
it suffices show that Hq annihilates the kernel of ix.

Suppose ix(y1, y2) = 0. Then y1 =−y2|ηl, so we have y2 ∈ SDx (U ; r), y2|ηl ∈ SDx (U ; r).
Therefore y2 and y2|ηl are both invariant under the action of the group U , so y2 is invariant
under the action of the group generated by U and ηlUη

−1
l in D×f . (Note that every element of

this group has projection to its pth component lying in Mα.) Since by [Ser80, II.1.4, Corollary 1]

SL2(Ql) =
〈

SL2(Zl),
(
l 0
0 1

)
SL2(Zl)

(
l 0
0 1

)−1〉
,

and the l-factor of U is GL2(Zl), we have that y2 is invariant under SL2(Ql), where we embed
SL2(Ql) into D×f in the obvious way.

Denote by DNm=1 the algebraic subgroup of D× whose elements are of reduced norm 1. We
have DNm=1(Ql)∼= SL2(Ql), since D is split at l. The strong approximation theorem applied to
DNm=1 implies that DNm=1(Q) · SL2(Ql) is dense in DNm=1

f :=DNm=1(Af ), where DNm=1(Q)
is embedded diagonally in DNm=1

f . For each g ∈D×f we define

Xg := {h ∈DNm=1
f : y2(gh) = y2(g)}.

Since y2 is continuous, Xg is closed, and for δ ∈DNm=1(Q), γ ∈ SL2(Ql) we have
y2(gg−1δγg) = y2(δγg) = y2(γg) = y2(gg−1γg) = y2(g), since g−1γg ∈ SL2(Ql). Therefore Xg

contains the dense set g−1DNm=1(Q)SL2(Ql)g, so Xg is the whole of DNm=1
f . This shows that y2

factors through Nm. Now the first part of Lemma 7 applies. 2

Proposition 9. The module TorO(X)
1 (M∗/jL∗2,O(X)/m) is 0 for all maximal ideals m of

O(X).

Proof. We again set K ′ =O(X)/m, and let x ∈X(K ′) be the point corresponding to m.
Proceeding as at the beginning of the proof of Proposition 8 we see that we must show that
the map

j : L∗2 ⊗O(X) K
′→M∗ ⊗O(X) K

′

is injective. We define

L∗x := VD
x (U ; r)6d,

M∗x := VD
x (V ; r)6d.

As in the previous proposition, it is sufficient to show that the map jx : L∗2x →M∗x is injective.
Now we continue as in the proof of Proposition 8, and finally apply the second part of Lemma 7. 2
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The following consequence of the preceding two propositions will be the most convenient
analogue of Ihara’s lemma for our applications.

Theorem 10.

(i) There is a positive integer e such that for all but finitely many primes q ≡ 1 mod c,
(Tq − q − 1)e annihilates (M/iL2)tors. Therefore these Hecke operators annihilate the
modules Λ2/Λ3 and, by consideration of the pairing P2, Λ∗0/Λ

∗
1.

(ii) The module (M∗/jL∗2)tors is equal to 0. Therefore the modules Λ∗2/Λ
∗
3 and, by consideration

of the pairing P1, Λ0/Λ1 are also equal to 0.

Proof. We first prove the first part of the theorem. Fix a q ≡ 1 mod c with q -Npδl. The
module (M/iL2)tors is finitely generated (and torsion) over the Dedekind domain O(X), so
it is isomorphic as an O(X)-module to

⊕
iO(X)/mei

i for some finite set of maximal ideals mi in
O(X). We set e to be the maximum of the ei. Set Hq := Tq − q − 1 as before. We will show that
He
q annihilates (M/iL2)tors.

Indeed, suppose that m ∈M represents a non-zero torsion class in M/iL2. Thus, there exists
a non-zero α ∈ O(X) such that αm ∈ iL2. We have TorO(X)

1 (M/iL2,O(X)/(α)) = {m ∈M/iL2 :
αm= 0}. So we are required to prove that He

q annihilates TorO(X)
1 (M/iL2,O(X)/(α)). Since

(M/iL2)tors ∼=
⊕
i

O(X)/mei
i ,

we can assume that (α)⊃
∏
i m

ei
i , so it is enough to show that He

q annihilates⊕
i

TorO(X)
1 (M/iL2,O(X)/mei

i ).

Taking derived functors of −⊗O(X)M/iL2 of the short exact sequence

0 // mi/m
ei
i

// O(X)/mei
i

// O(X)/mi
// 0

and applying Proposition 8 and induction on ei (note that mi/m
ei
i is isomorphic to O(X)/mei−1

i ),
we see that for each i, Hei

q annihilates TorO(X)
1 (M/iL2,O(X)/mei

i ). Now ei 6 e for all i, so He
q

annihilates all of TorO(X)
1 (M/iL2,O(X)/(α)). Since α was arbitrary, He

q annihilates (M/iL2)tors.
The second part of the theorem follows easily from Proposition 9. 2

2.10 Supporting Hecke ideals
We will call a maximal ideal M in the Hecke algebra T(Nδp) Eisenstein (compare [Maz77]) if there
is some positive integer c such that for all but finitely many primes q ≡ 1 mod c, Tq − q − 1 ∈M.
The motivation for this definition is the following well-known lemma.

Lemma 11. Suppose we have a Galois representation ρ : Gal(Q/Q)→GL2(Ql) and a positive
integer c such that for all but finitely many primes q ≡ 1 mod c, the trace of Frobenius at q,
Tr(Frobq) = q + 1. Then ρ is reducible.

Proof. The formula for the traces implies that ρ restricted to the cyclotomic field Q(ζc) is
isomorphic to 1⊕ χ, where 1 is the trivial one-dimensional representation, and χ is the l-adic
cyclotomic character. Denoting Gal(Q/Q) by G and Gal(Q/Q(ζc)) by H and applying Frobenius
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reciprocity we conclude that

Hom(IndGH(1⊕ χ), ρ)

is non-zero. IndGH(1⊕ χ) is just a direct sum of one-dimensional representations, so ρ is
reducible. 2

We recall that for an arbitrary ring R the support of an R-module A is the set of prime
ideals p �R such that the localisation Ap is non-zero. If A is finitely generated as an R-module
then the support of A is equal to the set of prime ideals in R containing the annihilator of A.
We write TL for the image of T(Nδp) in EndO(X)(L) and similarly TM for the image of T(Nδpl)

in EndO(X)(M). Analogously we define TL∗ and TM∗ to be the image of the Hecke algebra in
the endomorphism rings of the relevant dual modules. Note that there are natural embeddings
TM ↪→ TL and TM∗ ↪→ TL∗ . If I is an ideal of T(Nδp) we write IL for the image of I in TL and
I ′M for the image of I ∩ T(Nδpl) in TM .

We can now state and prove the main theorem of this section.

Theorem 12. Suppose M is a non-Eisenstein maximal ideal of T(Nδp) containing T 2
l −

(l + 1)2Sl. Further suppose that ML is in the support of the TL-module L. Then M′M is in
the support of the TM -module ker(i†)⊂M .

Proof. We write ML∗ for the image of M in TL∗ and M′M∗ for the image of M ∩ T(Nδpl) in TM∗ .
Since ML is in the support of L, and the perfect pairing between L and L∗ is equivariant with
respect to all of T(Nδp) (including Tl), we know that ML∗ is in the support of L∗. Consider the
module

Q := Λ∗0/Λ
∗
3 = L∗2

/
L∗2

(
l + 1 Tl
S−1
l Tl l + 1

)
.

Since L∗2ML∗
6= 0 and det

(
l+1 Tl
S−1
l Tl l+1

)
∈M we know that QML∗ 6= 0, i.e. ML∗ is in the support

of Q. We can view Q as a TM∗-module, with M′M∗ in its support.
Theorem 10 implies that if M′M∗ is in the support of Λ∗0/Λ

∗
1 or Λ∗2/Λ

∗
3 then it is Eisenstein, so it

must be in the support of Λ∗1/Λ
∗
2. This quotient is a homomorphic image of M∗/(M∗ ∩ j(L∗2F )),

so M′M∗ is in the support of M∗/(M∗ ∩ j(L∗2F )). Finally we can apply pairing P3 (which is
equivariant with respect to T(Nδpl)) to conclude that M′M is in the support of ker(i†). 2

3. Applications

In this section we explain some applications of the preceding results, including the proof of some
cases of the conjecture mentioned in the introduction.

3.1 Geometric level raising for p-adic modular forms
We firstly describe the application of Theorem 12 to the conjecture of our introduction.
Chenevier [Che05] extended the classical Jacquet–Langlands correspondence to a rigid analytic
embedding from the eigencurve for a definite quaternion algebra to some part of the GL2

eigencurve. We may use this to translate the results of the previous section to the GL2 eigencurve.
We state the case of [Che05, Theorem 3] that we will use. We have primes p, l and a coprime

integer N > 1. Fix another prime q and a character ε of Z/NpZ. Let E be the tame level
Γ1(N) ∩ Γ0(q) and character ε reduced cuspidal eigencurve. Let D/Q be a quaternion algebra
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ramified at the infinite place and at q, and let ED be the corresponding reduced eigencurve of
tame level U1(N) and character ε.

Theorem 13. There is a closed rigid analytic immersion

JLp : ED ↪→E

whose image is the Zariski closure of the classical points of E that are new at q. This map is
defined over weight space and is Hecke equivariant.

We get the same result if we change the level of E to Γ1(N) ∩ Γ0(ql) (call this eigencurve E ′)
and change the level of ED to U1(N) ∩ U0(l) (call this eigencurve ED′), where we construct these
eigencurves using the Hecke operators at l in addition to the usual Hecke operators away from
the level. This allows us to relate E ′ and the two-covering Eold of E corresponding to taking roots
of the lth Hecke polynomial.

Lemma 14. There is a closed embedding Eold ↪→E ′, with image the Zariski closure of the classical
l-old points in E ′.

Proof. Given X an affinoid subdomain ofW, let MX and M ′X denote the Banach O(X)-modules
of families (weight varying over X) of overconvergent modular forms of tame levels Γ1(N) ∩ Γ0(q)
and Γ1(N) ∩ Γ0(ql) respectively, as defined in [Buz07, § 7]. The two degeneracy maps from level
Γ1(N) ∩ Γ0(ql) to level Γ1(N) ∩ Γ0(q) give a natural embedding M2

X →M ′X . Denote the image
of this map by Mold

X ; it is stable under all Hecke operators (including at l). The lemma follows
from the observation that applying the eigenvariety machine of [Buz07] to the Banach modules
Mold
X (with X varying) gives the space Eold. 2

Let Z ⊂ E ′ be the Zariski closure of the classical points in E ′ corresponding to forms new
at l. Proposition 4.7 of [Che05] shows that Z can be identified with the points of E ′ lying in
a one-dimensional family of l-new points, where l-new means they come from overconvergent
modular forms in the kernel of the map analogous to i† in the GL2 setting. The following theorem
corresponds to the conjecture in the introduction for points of E ′ in the image of JLp.

Theorem 15. Suppose we have a point φ ∈ E lying in the image of JLp, with T 2
l (φ)−

(l + 1)2Sl(φ) = 0. Let the roots of the lth Hecke polynomial corresponding to φ be α and lα
where α ∈ Cp. Then the point over φ of Eold corresponding to α lies in Z.

Proof. We pick d, r and α such that the automorphic form corresponding to the preimage of φ
under JLp is r-overconvergent of slope 6d and level U1(Npα). Now fix a closed ball in W,
containing the weight of φ, which is small enough (note that ‘small enough’ depends on d, r
and α) to apply the local eigenvariety construction described in [Che04, § 6.2]. Denote this ball
by X. As usual the rp−α-analytic character Z×p →O(X) induced by the embedding X ↪→W is
denoted by κ.

The system of Hecke eigenvalues given by φ corresponds to a maximal ideal M in the O(X)
Hecke algebra T(Npq). We know that T 2

l − (l + 1)2Sl ∈M. If we set L= SDX(U1(Npα); r)6d as
before, and use the notation of the previous section, then ML is in the support of L. At this
stage Theorem 12 applies to the ideal M, which is not Eisenstein since the Galois representation
attached to φ is irreducible (recall that we are working on the cuspidal part of the eigencurve).
Therefore we know that M′M is in the support of ker(i†)⊂M . We can then take a height
one prime ideal p⊂M′M in the support of ker(i†)⊂M , and then this corresponds (by [Che04,
Proposition 6.2.4]) to a p-adic family of automorphic forms, new at l, passing through a point φ′
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with system of Hecke eigenvalues the same as those for φ away from l. Now applying the map
JLp we see that one of the points over φ must lie in Z. A calculation using the fact that φ′ comes
from an eigenform in the kernel of i† shows that the point corresponds to the root α. 2

To translate this theorem into the language of the introduction, note that Eold corresponds
to the generically unramified principal series components of E ′, whilst Z corresponds to the
generically special or supercuspidal components. We may identify the point over φ lying in Z as
the one whose attached GL2(Ql)-representation is special.

3.2 Eigenvarieties of newforms
We return to the situation of a definite quaternion algebra D over Q with arbitrary discriminant δ
prime to p. Denote the levels U1(Npα) by U and U1(Npα) ∩ U0(l) by V , as before. We denote
by ED the tame level U1(N) ∩ U0(l) reduced eigencurve for D. Suppose φ is a point of ED,
with weight x. We say that φ is l-new if it corresponds to a Hecke eigenform in the kernel of the
map i†x : SDx (V ; r)→ SDx (U ; r), where this is defined as in § 2.7 by i†x(f) := (f |[V 1U ], f |[V η−1

l U ]).
Denote by Z the Zariski closure of the points in ED arising from classical l-new forms. We have
the following proposition, due to Chenevier.

Proposition 16.

(i) The set of x in ED that are l-new is the set of points of a closed reduced analytic subspace
EDnew ⊂ ED.

(ii) The space Z is a closed subspace of EDnew, and its complement is the union of irreducible
components of dimension 0 in EDnew.

(iii) A point of EDnew lies in Z if and only if it lies in a one-dimensional family of points in EDnew.

Proof. Exactly as for [Che05, Proposition 4.7]. 2

We now apply the results of § 2 to show that a point of EDnew\Z lies in a one-dimensional
family of points in EDnew, so by contradiction we can conclude that EDnew is equal to Z.

Theorem 17. The space EDnew is equal to Z. In particular, EDnew is equidimensional of dimension
one.

Proof. Let φ be a point of EDnew\Z with weight x. The proof will proceed by showing that φ is
also l-old, then raising the level at φ, as in the previous theorem, to show that it lies in a family
of l-new points.

We pick d, r and α such that φ comes from a r-overconvergent automorphic form of slope d and
level U = U1(Npα). Now fix a closed ball inW, containing the weight of φ, which is small enough
(note that ‘small enough’ depends on d, r and α) to apply the local eigenvariety construction
described in [Che04, § 6.2]. Denote this ball by X. The point x in X corresponds to a maximal
ideal m of O(X). If we set M = SDX(V ; r)6d as before, then φ lies in a family corresponding to a
Hecke eigenvector in M .

As in the previous subsection, we have a closed embedding EDold ↪→ED, where EDold is a two-
covering of the tame level U reduced eigencurve for D, and the image of this embedding is the
Zariski closure of the classical l-old points in ED, which also equals the space of l-old points in
ED (as is clear from applying the proof of Lemma 14 to modules of overconvergent automorphic
forms for D). Since the space ED is equidimensional of dimension one, but φ does not lie in a
family of points in EDnew, φ must lie in a family of points in EDold. So φ is l-old and l-new.
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We now ‘raise the level’ at φ. As in the proof of Proposition 8 we specialise the O(X) modules
L= SDX(U ; r)6d and M at the maximal ideal m to give vector spaces Lx and Mx. Since φ is l-new
and l-old, it arises from an eigenform g in im(ix) ∩ ker(i†x). Now a calculation using the explicit
matrix for the map i†xix shows that g is of the form ix(αf,−f), where f is an eigenform in
Lx with (T 2

l − (l + 1)2Sl)f = 0, and the roots of the lth Hecke polynomial for f are α and lα
(note that with our normalisations g is the l-stabilisation of f corresponding to the root α).
Now applying the proof of Theorem 15 we see that φ lies in Z, so we have a contradiction and
therefore must have EDnew = Z. 2

3.2.1 Modules of newforms and the eigenvariety machine. Define the Banach O(X)-module
Mnew
X,r for varying affinoid subdomains X ⊂W (with corresponding character κ) to be the kernel

of the map

i† : SDX(U1(Npα) ∩ U0(l); r)→ SDX(U1(Npα); r)× SDX(U1(Npα); r).

One might wish to construct the rigid analytic space EDnew from these modules using Buzzard’s
eigenvariety machine [Buz07]. The key issue is to show that the modules Mnew

X,r behave well under
base change between affinoid subdomains. The author is not sure whether this should be true
or not; the results in this paper can be viewed as showing that these modules behave well under
base change from a sufficiently small affinoid to a point and it is not clear that one can conclude
something about base change between open affinoids from this.
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