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ON THE MAXIMAL CIRCUMRADIUS OF A PLANAR
CONVEX SET CONTAINING ONE LATTICE POINT

POH W. AWYONG AND PAUL R. SCOTT

We obtain a result about the maximal circumradius of a planar compact convex set
having circumcentre O and containing no non-zero lattice points in its interior. In
addition, we show that under certain conditions, the set with maximal circumradius
is a triangle with an edge containing two lattice points.

1. INTRODUCTION

Let if be a compact convex set in the plane and let A be the integral lattice. We
say that K is A-admissible if the interior of K contains the origin O, but no non-zero
points of A. (This usage differs from the more conventional 'A is if-admissible', but
is more convenient here where A is fixed and K varies.)

A number of results concerning the circumradius of a general convex set are known
(see for example [1, 2, 4, 5, 6, 8]). However, there are relatively few results on the
circumradius of a convex set constrained by lattice points (see for example [7]). In this
paper we obtain a result on the circumradius of a planar, A-admissible, compact convex
set having circumcentre O.

Let 5 be the square with vertices (±1,±1). We label the eight lattice points
( l , l ) , ( 0 > l ) , ( - l l l ) , ( - l , 0 ) , ( - l , - l ) 1 ( 0 , - l ) l ( l , - l ) , ( l , 0 ) on 5 by LUU,... ,L8 re-
spectively. We also label the half edges, L\Li,LiLz,... ,LgLi of 5 , hi, /12, . . . , h%
respectively. Let O be the circumcentre of K and let C be the corresponding circum-
circle. Suppose that K crosses the half edge hi. Then hi partitions K into two regions,
one of which does not contain O. Let K' denote this region. Then if K' intercepts
C, we say that K intercepts C beyond the half edge hi. We prove here the following
result concerning the circumradius of K.

THEOREM. Let K be a compact A-admissible convex set in the plane with cir-
cumcentre O, and circumradius R(K). Then R(K) < a where a « 1.685, unless
K intercepts C beyond exactly two opposite half edges of S, in which case no upper
bound can be found for R(K). The bound a is best possible.

A set for which R(K) = a is attained is shown in Figure 1. The exact value for a
is a = -\/by2 + Ay + 1 where y is the positive root of 25j/3 + 20i/2 — 3 = 0.
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Figure 1: A set K for which R(K) = a.

2. NARROWING THE SEARCH

If K lies within the square 5 , then R(K) ^ s/2 < a. Hence we may assume that
R(K) > y/2, and we need only consider sets which extend beyond the boundary of S.
Convexity arguments show that the convex set K may cross at most four of the eight
half edges of S, with no two of the crossed half edges comprising an edge of 5 . For a
given set K, we call the set of half edges beyond which K intercepts C the intercept
setoi K.

It may be proved (see for example, [9, p. 59]) that either C contains two points of
the boundary of K which are the ends of a diameter of C, or C contains three points
of the boundary of K which form an acute-angled triangle containing 0. Henceforth,
we shall refer to this property of C as the 'circumcircle property1. Clearly by the
circumcircle property, K must intercept C beyond at least two half edges of 5 .

If K intercepts C beyond exactly two half edges of S, using rotations about 0
and reflections in lines through O to discard equivalent cases, we need only consider
the cases where the intercept set of K is

(a) {h,h3} (b) {huh6} (e) {huhB}.

In cases (a) (b), (d) and (e), since 0 is interior to K, all intercepts of K and C
lie in the half planes j / > 0 , y > x, z > 0 and y > 0 respectively. By the circumcircle
property we can discard these cases.

In case (c) a A-admissible set K can be constructed having circumcentre 0 and
diameter making a very small angle with the j/-axis. It is easily seen that for such a set
K, R(K) may be made arbitrarily large. Therefore if K intercepts C beyond exactly
two opposite half edges, no upper bound may be found for R(K).
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[3] Maximal circumradius 139

We may now assume that K intercepts C beyond three or four half edges of S.
By the circumcircle property, C contains three points of the boundary of K which form
the vertices of an acute-angled triangle T containing 0. In the rest of the paper, we
shall use 'triangle' to mean a A-admissible closed set bounded by the edges of a triangle
with circumcentre 0. As R(T) = R{K), it is sufficient to establish the theorem for the
class of triangles. Since T crosses exactly three half edges of S, using rotations and
reflections as before, we find that it suffices to consider the cases where the intercept
set of T is

(a) {*!,*,,&,} (b) {huh3M} (c) {/H,/*4,M (d) {/n,/i4,M-

In case (b), since 0 is interior to K, all intercepts of K and C lie in the half
plane y > 0. By the circumcircle property, this case may be eliminated.

We now let F denote the family of triangles with circumcentre O and having
intercept set (a), (c) or (d). It will be shown in each of these cases that F is contained
in a closed disk. Therefore R(T) is bounded and we let

TO = sup R{T).

Let {Ti} be a sequence in F such that R(T{) converges to TO. Since Ti is contained
in a closed disk, by Blaschke's selection theorem (see [1, p. 64]), there is a subsequence
{Tj} which converges to a triangle T in the Hausdorff metric. Since the circumradius
function is continuous on F, we have

R{T) = R( Urn Tj] = lim R{Tj) = TO.
\i—>°° / i—»oo

Furthermore since F is compact, T G F. For a given intercept set, a set K with
R(K) = R(T) is referred to as a maximal set; in particular, a triangle T with R(T) =
R[T) is referred to as a maximal triangle.

In Section 3 we shall establish some properties of a maximal triangle. In Section 4,
we prove two lemmas which will further narrow our search for a maximal set. In Section
5, Section 6 and Section 7, we shall prove the existence of a maximal triangle in cases
(a), (c) and (d) respectively. For each case we shall also establish the uniqueness of the
maximal triangle by employing the results in Section 4 to eliminate all other triangles
in F as possible solutions.

Unless otherwise specified, the vertices of a triangle will be described in an anti-
clockwise order.
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3. PROPERTIES OF A MAXIMAL TRIANGLE AND A MAXIMAL SET

The following lemmas establish some properties of a maximal triangle and a max-
imal set for intercept sets (a), (c) or (d) in Section 2.

LEMMA 1. If T is a maximal triangle, then each edge of T must contain at least
one non-zero lattice point in its interior.

PROOF: Let T — AXYZ be a maximal triangle with edges x, y and z lying
opposite the vertices X, Y and Z respectively. We suppose that there is at least one
edge of T which does not contain a non-zero lattice point in its interior. If edge x
(say) contains no non-zero lattice point in its interior, we enlarge T about X until
x first contains such a lattice point. Denote this enlarged triangle T' with vertices
X', Y', Z' and edges x', y', z'. Let K' be the set bounded by the circumcircle of
T and the edges x', y' and z'. Clearly K' is A-admissible and R(K') = R(T). By
construction, K' is bounded by three straight edges and two arc boundaries of C. If
now y' contains no non-zero lattice point in its interior, a small enlargement of T"
about Y' results in a triangle T" containing no non-zero lattice point in its interior.
By construction, the set bounded by the edges of T" and the circumcircle of T has
three arc boundaries. On the other hand, if y' contains a lattice point in its interior,
a small clockwise rotation about the lattice point (choose the lattice point closest to
X' if there is more than one lattice point in the interior of y') also results in a set
with three arc boundaries. We may therefore assume that K' is a set with three arc
boundaries. But now a small enlargement of C about O to C" will result in a A-
admissible set K" bounded by the lines containing the straight edges of K' and arcs
of C". Clearly R(K") > R{K') = R(T), contradicting our assumption that T is a
maximal triangle. 0

LEMMA 2. If K is a maximal set, then K is a triangle.

PROOF: We suppose that K is not a triangle. Then by the circumcircle property,
K intercepts C in three points which form an acute-angled triangle T containing O.
Since K is a maximal set, T is a maximal triangle. As K ^ T, there is an edge e of
T whose interior lies in the interior of K. Hence e contains no non-zero lattice point
in its interior. By Lemma 1, T is not a maximal triangle. Hence K is a triangle. U

If each edge of a triangle contains exactly one non-zero lattice point in its interior,
we call the join of a vertex to the opposite lattice point a VL-line.

LEMMA 3 . If T is a maxima] triangle then either

(i) its VL-tines are concurrent or
(ii) at least one of the edges of T contains two lattice points in its interior.

PROOF: Let T = AXYZ be a maximal triangle. By Lemma 1, each edge of T
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[5] Maximal circumradius 141

contains at least one lattice point in its interior. Suppose there is exactly one lattice
point, Lx, Ly and Lz lying in the interior of each of the edges x, y and z respectively
and suppose that the V X-lines, XLX, YLy and ZLZ are not concurrent. We transform
the edges of the triangle T by first rotating the edge XY (sliding the endpoints on
C) about Lz through a small angle 0 to X'Y'. This is followed by a rotation in the
same direction of the edge YZ about Lx to the edge Y'Z'. Finally ZX is rotated
in the same direction about Ly to Z'X". We denote the described transformation on
the edges of T by fc{T, 0) if the edges of T are rotated in a clockwise manner, and
by fa(T,0), if the edges of T are rotated in an anticlockwise direction. We note that
ZYXX' — ZX'Y'Y since these two angles are in the same segment of C subtended by
chord X'Y. Similarly, ZY'YX = ZY'X'X. We therefore deduce that AYLZY' and

AX'LZX are similar. Hence
XX' X'L2

YY' ~ LZY '

Since X, Y and Z are oriented anticlockwise and 0 is small and AXYZ contains
the circumcentre in its interior, fa(T,6) gives X'LZ = XLZ — e, where e is small and
positive. Therefore

XX' XLZ - e XLZ

YY' LZY LZY

Similarly
YY' YLX

ZZ' < LXZ

and

XX" LyX

Multiplying, we obtain

XX' XLZ YLX ZLy
say,XX" LZY LXZ LyX

where XX'/XX" differs from p by a small amount ep. Similarly, if fc(T,6) is applied,

XX'
XX" >P'

where XX'/XX" differs from p by a small amount e'p. We note that by Ceva's theorem
(see [3, p. 90]), p = 1 if and only if the FL-lines XLX , YLy and ZLZ are concurrent.
By assumption, p ^ 1.

If p > 1, fa(T, 9) yields XX'/XX" = p-ep. We choose 9 so that ep is sufficiently
small to give XX'/XX" > 1. Since now XX' > XX", the transformation results in a
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x . X" X

Figure 2: The effect of fa(T,6) on T for p > 1.

set K bounded by edges X'Y', Y'Z', Z'X" and the arc X"X' as shown in Figure 2.

By Lemma 2, K is not a maximal set. Since R(K) — R(T), T is therefore not a

maximal triangle, contradicting our assumption.

If p < 1, fc{T,8) yields XX'/XX" = p+e'p. We choose B so that e'p is sufficiently

small to give XX'/XX" < 1. Since now XX' < XX", the transformation results in

a set K with an arc boundary. Arguing as before, T is not a maximal triangle.

Therefore, the maximal triangle is such that either its VZ-lines are concurrent, or

it has at least one edge containing two lattice points in its interior. U

For future easy reference, we summarise our findings thus far in the following
lemma.

LEMMA 4 . A maximal set K is a triangle having a non-zero lattice point interior
to each of its edges and such that either

(i) its VL-lines are concurrent or
(ii) at ieast one of its edges contains two lattice points in its interior.

PROOF: By Lemma 2, a maximal set K is a triangle. By Lemma 1, a maximal
triangle has a non-zero lattice point interior to each of its edges and by Lemma 3, a
maximal triangle has concurrent VX-lines or has at least one edge containing two lattice
points. U

4. NARROWING THE SEARCH FURTHER

Henceforth we may restrict the members of F to those triangles with a given
intercept set and with edges each containing a non-zero lattice point. For each intercept
set we list the possible lattice points contained in each of the three edges of a triangle
in F.
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Intercept set Edge 1 Edge 2 Edge 3
{hi,h3,hs} L2 I>4 L6 or L\ or both
{hi,h.4,hy} Ls L2 or £4 or both L5 or L^ or both
{hi, hi,hg} L\ Li or JD4 or both £5 or La or both

To each T = AXYZ, we associate the ordered set (£1,^2,^3) called the lattice-

point set where Ii, i = 1,2,3 is a listing of the non-zero lattice points in the interior
of the edges YZ, ZX and XY respectively. If T has an edge XY say, containing in
its interior two non-zero lattice points Lz and L'z in the order X,LZ,L'Z,Y, then we
write 3̂ — LZL'Z.

We shall now prove two lemmas to help us narrow down the possibilities for a
maximal triangle. Lemma 5 establishes the uniqueness of a triangle T* = AX*Y*Z*

with a given lattice-point set (Lx,Ly,LzL'z). Therefore from the above table, it may
be deduced that there are at most five such triangles satisfying condition (ii) of Lemma
4 (see also Figure 3).

LEMMA 5 . Let T = AXYZ and V = AX'Y'Z' be two triangles with the same

intercept set and lattice-point set (Lx,Ly,LzL'z). Then T = T.

PROOF: We first suppose that R(T') > R(T). Then X' lies on the side of X
remote from Y, and Y' lies on the side of Y remote from X. The edge X'Z' is therefore
oriented clockwise about Ly from XZ and the edge Y'Z' is oriented anticlockwise
about Lx from YZ. The vertex Z' therefore lies in the interior of T and so O is not
the circumcentre of T", contradicting our assumption on T". Hence R(T') ^ R{T). A
similar argument shows that R(T') yt R(T). Therefore R(T') = R(T). It follows that
X' = X, Y' = Y so Z' = Z and therefore V = T. D

The next lemma helps us to eliminate those triangles in F which do not satisfy
conditions (i) and (ii) of Lemma 4. We shall be comparing a triangle T* = AX*Y*Z*
along with its given lattice-point set (Lx,Ly,LzL'z) with a related triangle T — AXYZ
having the same intercept set as T.

LEMMA 6 . Let T* = AX*Y*Z* denote the unique triangle with a given lattice-

point set (Lx,Ly,LzLz). We define P* to be the intersection of X*LX and Y*Ly, and

Q* to be the intersection of Z*P* produced with X*Y*. If Lz lies in the open Hne

segment Q*X*, then any triangle with lattice-point set (Lx,Ly,Lz) is not maximal.

If L'z lies in the open hne segment Q*Y*, then any triangle with lattice-point set

(LX,LV,L'Z) is not maximal.

PROOF: Let T = AXYZ be a triangle with the lattice-point set (Lx,Ly,Lz).
We define P to be the intersection of XLX and YLy, and Q to be the intersection
of ZP produced with XY. We show that ZLZ cannot pass through P. It will then
follow that the VX-lines of T are not concurrent and by Lemma 3, T is not a maximal
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(a)(h1,h3,h5)

Y Y*

: Z* X

(b)|h,,h4,h7|

(c){h,,h4,h!

Figure 3: Triangles with edges containing two lattice points.

triangle. Let hx and hy be the open half planes bounded by the line Q*Z* containing
X* and Y* respectively.

Figure 3 shows the five possible triangles T*, and how the intercept set constrains
the edge XY of any triangle T = AXYZ with lattice point set (Lx,Ly,Lz). Since T
is A-admissible, T cannot contain L'z in its interior. Thus in each case, since X*, LZ)

L'z and Y* are in the given order, the edge XY of T is oriented anticlockwise about
Lz from the edge X*Y* of T*. Similarly if T has lattice-point set (Lx,Ly,L'z), then
it cannot contain Lz in its interior and the edge XY of T is oriented clockwise about
L'z from X*Y*.

We first suppose that T is a maximal triangle. Therefore R(T) > R(T*) which
implies that the vertices of T are exterior to T*. As observed from Figure 3, the edge
XY of T is oriented anticlockwise about Lz from the edge X*Y* of T*, and since
the vertices of T are exterior to T*, the edges YZ and ZX of T are also oriented
anticlockwise about Lx and Ly respectively from the corresponding edges of T* (see
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Figure 4).

Maximal circumradius 145

Figure 4: The case where R(T) ^ R(T*).

Therefore the V-L-lines, XLX and YLy of T are oriented anticlockwise about
Lx and Ly from X*LX and Y*Ly respectively, placing the point P in the interior
of AY*P*LX. It follows that P lies in hy. Since Lz lies in the open line segment
Q*X*, the lattice point Lz lies in hx. Also, since the edges YZ and ZX are oriented
anticlockwise about Lx and Ly respectively from Y*Z* and Z*X*, the point Z neces-
sarily lies in hx. Hence the closed line segment ZLZ is contained in hx . Therefore the
closed line segment ZLZ and the point P are on opposite sides of the line Q*Z* and
hence the V -̂L-lines of T are not concurrent. Therefore T is not a maximal triangle.

We now let T = AXYZ be a triangle with the lattice-point set (Lx,Ly,L'z).
Arguing in a similar way as above, the edge XY of T is oriented clockwise about L'z
from X*Y*. Defining P and Q as above and using a similar argument, it may be
shown that the closed line segment ZLZ and the point P again lie on opposite sides of
the line Q*Z*. Hence the VX-lines of T are not concurrent and T is not a maximal
triangle. U

In the subsequent sections, we shall employ Lemma 6 to show that a maximal
triangle in F has an edge containing two lattice points in its interior. The maximal
triangle may then be found by evaluating the circumradius for each triangle with an
edge containing two interior lattice points.

We now list all lattice-point sets for a given intercept set. We shall employ the
notation used in Lemma 6 throughout the rest of the paper. In addition, we shall denote
by Vi, the vertex of T lying beyond hi.
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5. THE {fci,/i3,fcs} CASE

Let F denote the family of triangles with circumcentre O and intercept set
{hi,hs,hs}. The following lattice-point sets occur for F:

(a) (£2 ,Z4 ,£8£i) (b) (L2,Lt,L6) (c) (Z,2,Z4,£i).

Let T be in F. Due to the constraints of the given intercept set, the edge of T
containing L2 has a slope between 0 and 1, and the edge containing L4 has a slope
less than — 1. It follows that the vertex V3 may not be further from the origin than the
point (—2,1). Hence F is contained in the closed disk centred at O, radius \/b and
by Blaschke's selection theorem, a maximal triangle T may be found in F.

In case (a) we let T* = AVsViV3 = AX*Y*Z* be the unique triangle with lattice-
point set (L2,Li,LeLi). We assign the coordinates (x,2x — 1) and (y,2y — 1) to X*
and Y* respectively. Since X* and Y* also he on C,

x2 + (2x - I)2 = y2 + (2y - I)2

which gives x+y = A/5. We let Z* have coordinates (zi,z2). Since Y*Z* and Z*X*
contain the lattice points (0,1) and (—1,0) respectively,

z2 - 1 _ 2y - 2 z2 - 0 _ 2x - 1
zi - 0 ~ ~ y ' zi + 1 ~ x + 1 '

Eliminating x and solving for Z\ and z2, we obtain

^ -y(6 + 5y) -23y + 10y2 + 6
Zl 25y - 18 ' *2 ~ 25y - 18

As Z* also lies on the circumcircle,

Simphfying and factorising, we have

{by - 2)(25t/3 - 45y2 + 25y - 6) = 0.

Since y > 1, we solve 25y3 - 45y2 + 25y - 6 = 0 to obtain y w 1.080 and R(T*) w
1.582 < a.

We now proceed to show that any triangle T with lattice-point set (b) or (c) is not
maximal. We consider the quadrangle X*Y*L2I>4. Let K be the point of intersection
of the lines X*Y* and L2L^, that is the point (2,3). By the harmonic property of
the quadrangle, the points X*, Y* separate Q* and K harmonically. Therefore the

https://doi.org/10.1017/S0004972700014519 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014519


[11] Maximal circumradius 147

cross-ratio (X*,Y*;Q*,K) — —1. We now orthogonally project the four points X*,
Y*, Q* and K on the x-axis to obtain the points X*, Y*, Qx and Kx respectively.
Since the cross-ratio is unaltered under projection, we have (X*,Y*; Q*x, Kx) — —1.
Letting the as-coordinate of Q* be q, we have

q — x _ 2 — x

y-q~ y - 2 '

which gives q as 0.689. Therefore Le lies in the open line segment Q*X* and L\ lies
in the open line segment Q*Y*. By Lemma 6, any triangle with lattice-point set (b)
or (c) is not maximal.

Hence T is the triangle with lattice-point set (£2,^4,-^6-^1) and R(T) w 1.582 <
a.

6. THE {h!,hA,hi} CASE

Let F denote the family of triangles with circumcentre O and intercept set
{/ii,/i4,/i7}. The following lattice-point sets occur for F:

(a) (L8,£4,1^7) {b){L5,LB,L2L4) (c) (L8,L2I4 |L,£7)

(d)(L7 ) JL8, i2 i4) (e)(L8,L2,L5L7) (f) (LA,Lt,LB)

(g)(£7,£8,X4) (h)(L8,L2,L5) (i){L8,L2,L-r).

Let T be in F. As before, given the intercept set of T, the edge of T containing
L2 has a slope which lies between 1/2 and 1, and the edge of T containing L$ has a
slope greater than 1. It follows that the vertex V\ may not be further from the origin
than the point (1,3). Hence F is contained in the closed disk centred at O, radius
\/l0 and by Blaschke's selection theorem, a maximal triangle T may be found in F.

We first consider a triangle T with lattice-point set (a), (b), (c) or (f). We note
that in these cases, |OVi| < \/5 and IOV41 ^ y/b. Hence T may not have circumcentre
O. We may therefore eliminate cases (a), (b), (c) and (f). (In fact, any triangle with
lattice-point set (f) contains the lattice point (—2, —1) in its interior and is therefore
not A-admissible.)

We now let T* = AV1F4F7 = AX*Y*Z* be the triangle with lattice-point set (d).
We assign the coordinates (x,x + 1) to X*, 0 < x < 1. Since X* and Y* lie on C,
by symmetry Y* has coordinates (—x — l,—x). We let Z* have coordinates (zi,Z2).
Since Z*X* and Y*Z* contain the lattice points (1,0) and (1,-1) respectively,

z2 - 0 _ x + 1 z2 + 1 _ - x + 1
zi - 1 ~ z - 1' z i - l ~ - x - 2 '
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Solving for Z\ and 22, we obtain

x2 - Ax - 3 _ x2 + 3x + 2
Zl~~ 5 s + 1 ' Z2~ 5z + l '

As Z* also lies on C,

z2 + z2=x2+(x + l)2.

Simplifying and factorising, we obtain

(2x + l ) ( 2 * 3 + 2 * 2 - l ) =0 .

Since 0 < x < 1, we solve 2x3 + 2x2 - 1 = 0 to obtain x « 0.565 and R{T*) « 1.664 <
a.

We now show that any triangle T with lattice-point set (g) is not maximal. We
consider the quadrangle formed by the points X*Y*L%Li. Letting the x-coordinate of
Q* be q and considering cross-ratios as in Section 4, we find that q « 0.256. Therefore
Li lies in the open line segment Q*Y*. By Lemma 6, any triangle with lattice-point
set (g) is not maximal.

We now let T* = AF4V7F1 = AX*Y*Z* be the triangle with lattice-point set (e).
We assign the coordinates (1 + y, -1) t o y * , 0 < y < 1. Since X* Y* also lie on C,
by symmetry, X* has coordinates (—1 -y,—l). We let Z* have coordinates (zl5z2)-
Since Y*Z* and Z*X* contain the lattice points (1,0) and (0,1) respectively,

z 2 - 0 _ l • z 2 - l _ 2
z\ - 1 ~ -2/ ' zi-0~ 1+2/'

Solving for zj and z-i, we obtain

As Z* also lies on C,
z2+zl=(l+y)2+l.

Simplifying and factorising, we obtain

(l+y)( l / 3+2t/2+22/- l) =0.

Since 0 < y < 1, we solve (ya + 2y2 + 2y - l) = 0 for y to obtain y « 0.353 and
R(T*)& 1.683 < a.

We now show that any triangle T with lattice-point set (h) or (i) is not maximal.
We consider the quadrangle X*Y*L%L?,. Letting the x-coordinate of Q* be q and
using cross-ratios as in Section 5, we find that q ss 0.915. Therefore L5 lies in the open
line segment Q*X* and Li lies in the open line segment Q*Y*. By Lemma 6, any
triangle with lattice-point set (h) or (i) is not maximal.

Hence T is the triangle with lattice-point set (LB,L2,LhLi) and R[T) w 1.683 <
a.

https://doi.org/10.1017/S0004972700014519 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014519


[13] Maximal circumradius 149

7. THE {hi,ht,hs} CASE

Let F denote the family of triangles with circumcentre O and intercept set
{hi,hi,hs}. The following lattice-point sets occur for F:

(a)(X1,L4 )i5£8) (b)(£. ,Za,£a£4) (c) (LUL2L4,L5L8)

( d ) ( I 8 l £ i , L , I 4 ) {e)(LuL2,L5L8) (f) (Hi.I^Ls)

(g)^,!!,^) (^(ii.^.Ig) (i) (li.Ij.is).

Let T be in F. As before, given the intercept set of T, the edge of T containing
Li has a slope between 1/2 and 1 and the edge containing L\ has a slope less than 0.
It follows that the vertex V\ may not be further from the origin than the point (1,3).
Hence F is contained in the closed disk centred at O, radius VlO and by Blaschke's
selection theorem, a maximal triangle T may be found in F.

We first consider a triangle with lattice-point set (a), (b), (c) or (f). We note that
in all these cases, |OVi| < Vb and IOV4I ^ \/E. Hence T may not have circumcentre
O. Therefore we may disregard cases (a), (b), (c) and (f). (In fact, any triangle with
lattice-point set (a) or (f) contains the lattice-point (—2,-1) in its interior and is
therefore not A-admissible.)

We now let T* = AViV4F8 = AX*Y*Z* be the triangle with lattice-point set
(d). We assign the coordinates (x,x + 1 ) to X*. Since X* and Y* also lie on C,
by symmetry, Y* has coordinates (—x — l,—x). We let Z* have coordinates (^1,22).
Since Z*X* and Y*Z* contain the lattice points (1,1) and (1,0) respectively,

Z2 — 1 x Z2 — 0 —x
z i - 1 z - 1 ' z i - 1 -x-2'

Solving for z\ and zi, we obtain

_ -x2 + 2x + 2 _ —a; + 1

As Z* also lies on C,
z2+z2=x2 + {x + l)2.

Simplifying and factorising, we obtain

+ 2x2 - 1) = 0.

Since 0 < x < 1, we solve 2z3 + 2x2 - 1 - 0 for x to obtain x w 0.565 and R(T') «
1.664 < o .
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We now proceed to show that any triangle T with lattice-point set (g) is not
maximal. We consider the quadrangle X*Y*LBLi. Using the cross-ratio argument, we
find that the ^-coordinate q of Q* is approximately 0.256 and therefore L\ lies in the
open line segment Q*Y*. By Lemma 6, any triangle with lattice-point set (g) is not
maximal.

We now let T* = AV^VsVi = AX*Y*Z* be the triangle with lattice-point set
(e). We assign the coordinates (2x + l,a;) and (2y + l,y) to X* and Y* respectively.
Since X* and Y* also be on C,

which gives x + y — —| . We let Z* have coordinates (z\,Z2). Since Y*Z* and Z*X*

contain the lattice points (1,1) and (0,1) respectively,

Z2 — 1 y — 1 z2 — 1 x — 1
2 i - l 2y ' zx - 0 2x + 1'

Eliminating x and solving for z\ and z-i in terms of y, we obtain

- 3 - 7y + 10y2
 g -12 - 21y + 5y2

Z l 25y + 3 ' Z2 25y + 3

As Z* also lies on C,

Simplifying and factorising we obtain

- 3) = 0

Since y > 0, we solve 25y3 + 20j/2 - 3 = 0 for y to obtain y « 0.326 and
1.685 = a.

We now show that any triangle T with lattice-point set (h) or (i) is not maximal.
We consider the quadrangle X*Y*L\Li and using cross-ratios as before, we show that
the a;-coordinate q of Q* is approximately 0.953. Therefore L$ lies in the open line
segment Q*X* and ig lies in the open line segment Q*Y*. By Lemma 6, any triangle
with lattice-point set (h) or (i) is not maximal.

Hence T is the triangle with lattice-point set (Li,L2,LsLa) and R(T) w 1.685 =

a. We note that a = ^/(2y + I)2 + y2, where y « 0.326.

Comparing the results in Section 5, Section 6 and Section 7. we conclude that the
maximal set K is the triangle with lattice-point set (Li,L2,LsLs) with R(K) « 1.685.
The theorem is therefore proved.
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8. COMMENT

It is interesting to observe that the triangles with lattice-point sets {Z7, i s , £2-^4}
in Section 6 and {L8,Li,LiLi} in Section 7 have the same circumradius. There does
not appear to be any obvious algebraic connection, and we have been unable to find a
simple geometrical proof.
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