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A CLASS OF PROJECTIVE STONE ALGEBRAS

Ivo DUNTSCH

We prove that a regular double Stone algebra is protective in the

category of Stone algebras if and only if its centre is a

projective Boolean algebra and its dense set is countably

generated as a filter. It follows that every countable regular

double Stone algebra is projective as a Stone algebra.

0. Introduction

In his book [5] Gratzer lists as problem 53: Describe the projective

Stone algebras. The finite case has been solved first by BaIbes and

Gratzer [7]; more characterizations have been given by the author [4].

Already for the countable case no worthwhile description is known. Any

projective Stone algebra has to be a double Stone algebra {of. [4]), so it

seems quite natural to ask which classes of double Stone algebras are

projective in the category of all Stone algebras, and in this paper we

shall answer this question for the regular double Stone algebras.

1. Preliminaries

A Stone algebra (L, +, •, *, 0, l) is a pseudocomplemented

distributive lattice with 0 and 1 , such that for all x € L ,

x* + x** = 1 . We shall identify in the sequel any structure with its

underlying set. B, = {x* \ x € L} is called the centre of L ; it is the

set of complemented elements of L and, as a subalgebra of L , it is a

Boolean algebra. Df = {x i L \ x* = 0} is called the set of dense
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elements of L ; it is a filter in L . L is called a double Stone

algebra, if it is also dually pseudocomplemented, that is, for every

element x of L there is an x in L , such that for all y € L ,

x + y = 1 if and only if x - y , and if furthermore x -x = 0 . We

refer the reader to [5] for the basic facts on Stone algebras.

A double Stone algebra is called regular, if for all x, y € L ,

x* = y* and x = y imply x = y .

LEMMA 1.1 (Varlet [8]). Let L be a double Stone algebra. Then

the following statements are equivalent:

(1) L is regular;

(2) x'x S y+y* for all x, y £ L ;

(3) every chain of prime ideals of L has at most two elements.

For a regular L , set F= {x \ x £ D } ; then F is a filter

in BT , and the map d : F -*• Dr which assigns to each element a of F

the unique element x of D satisfying x = a , is a lattice
L

isomorphism. In [7], Ka+rinak has shown that every regular double Stone

algebra L can be constructed from a Boolean algebra B and a (not

necessarily proper) filter in B .

A Stone algebra homomorphism is a lattice homomorphism which also

preserves *, 0 , and 1 .

LEMMA 1.2 (Chen and Gratzer [3]). Let L and M be Stone

algebras, and suppose f : Bf •* B is a Boolean homomorphism, and that

/„ : D -*• D.. is a lattice homomorphism preserving 1 . Then there is a
el Li M

Stone algebra homomorphism f : L ->• M , such that f\BT = / and

/|D = f if and only if for all a € B , x € D with a 2 x , we have

f,(a) £ /p(x) . In this case, the extension f of f and f. over L

is unique. Furthermore, f is onto (one-to-one) if and only if f and

/„ are onto {one-to-one).

If L is a double Stone algebra, Lemma 1.2 obviously implies

LEMMA 1.3. Let L, M, f fg be defined as in Lemma \.2, and let L
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he a. double Stone algebra. Then there is an extension of f. and f

over L if and only if for all x € £> , f (x ) 5 fAx) .

(Note that the extension does not necessarily preserve .)

2. Representations in free Stone algebras

This section consists of a series of - mostly - technical lemmas which

are crucially needed in the proof of the main theorem. Let a be a non-

zero cardinal; for every i < a let F. be the free Stone algebra
If

generated "by some element a. .

THEOREM 2.1 (Balbes and Horn [2]). Let F be the free produat of

(F. | i < a) in the category of distributive lattices with 0 and 1 .

Then F is the free Stone algebra on the free generators {a-a I i < a] .

For the remainder of the paper let F be the free Stone algebra on

the free generators {a. | i < a} . For i < a , let a.. = a*. , and

a. = a*.* . For r ( {0, 1, 2} , set Ar = {a. \ i < a} , and let
i'^ t-U til*

A = .4° u A1 u A2 .

Theorem 2.1 implies that for every x Z F - {o, l} there are non-

empty finite subsets T ..., T , S, ..., S of A , such that

(1) for all i 5 m , sup T. + 1 and x = sup T • ... • sup T ;
t- A. J71

(2) for all ,j 5 r , inf S. t 0 and x = inf 5 + ... + inf 5 .

3 J. r

The sets used in the representation of an x £ F are always assumed to be

finite nonempty subsets of A .

For T c A , let ~T = T u {a.. | a .o € T] . Let B be the centre

of F^ and D be the set of its dense elements. The proof of the

following two lemmas can be found in Katrinak [6].

LEMMA 2.2. Let T be a nonempty finite subset of A .

(1) sup 7 = 1 if and only if there is an i < a , such that
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(2) sup T € D if and only if there is an i < a , such that

(3) inf T = 0 if and only if there is an i < a s such that

LEMMA 2.3. Let x, y € F , x = sup T • . . . • sup 2^ ,

y = sup V • . . . • sup W , such that sup W. # 1 /o r a^^ j - p . Then

x 5 y if and only if for every j - p one of the following conditions

hold:

(1) there is an i S m such that T. c W. ;

(2) for all i 5 m , T. - W. t 0 , and

sup(2^.) • ... • Bwp[Tm-Wj) = 0 .

In the same paper, Katrinak has also shown that B is the free

Boolean algebra freely generated by {a. | i < a} .

The following construction of a normal representation of an

x € F - {o, l) is an application of Gratzer ([5], Section 12), to our

situation.

Suppose x € F - {o, l} ; then there are nonempty finite subsets

S ..., S^ of A , such that

(1) for all i < a , j S r , \S. n {a a. a. }\ 5 1 ,
J "Z-U TsL T*d.

(2) X = inf S + ... + inf 5^ .

Note that inf S. # 0 for all J S r by Lemma 2.2 (3).

Let J = \S , ..., S } and

C(J) = {/ I / : J + UJ, f[S.) € 5. for every i 5 r} .

C(c/) is the set of choice functions on J . For every f € C(j) let
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f^iJ) be the following subset of A :

(1) a.± € / + ( J ) i f and only i f a ^ € f(j) ;

(2) a.2 € / + ( J ) i f and only i f a . ? /( . /) ;

(3) a . . € / + ( J ) i f and only i f a . n € / ( J ) and a . o ^ /(<7) .

Since a.. £ a. , we have sup /(</) = sup / (J) .

Let C (=7) be the following subset of C{J) :

f € C (J) if and only if / € C'(J) and sup / (t̂ ) is a minimal

element of the set sup{<7 (=7) | g € C(J)} .

Then x = inf{sup f (J) \ f € C (J)} . This representation of x is

called normal; the normal representation of x is unique up to

commutativity; furthermore, if /, g € C (J) and sup / (J) - sup g (J) ,

then f{J) = g+(J) .

LEMMA 2.4. Let x, y € Fa - (o, 1> ; suppose

x = sup T • ... • sup T is the normal representation, and

y = sup W • ... • sup W is a representation, such that sup W. 4- 1 /or

a£Z- j 5 p . 27zen x S y if and only if for every j - p there is an

i S m , such that T. is a subset of W. .

Proof. First note that for nonempty finite subsets W, T of A

satisfying sup W f 1 , sup T £ sup W if and only if T c W . This

obviously implies sufficiency.

Now let S , ..., S be nonempty finite subsets of A , such that

a; = inf S + ... + inf 5 , and for all i < a , j £ r , we have

l5j n ^aio' ail' a i 2 ^ - 1 • L e t J = ^Sl' •••' 5r^ ' a n d Cr{J) a n d

/+(<7) be defined as above. Then {T ..., T^ = {f+(J) \ f d C^J)} .

Let j 2 p ; since x £ sup V. , we have inf 5. < sup W. for every

•i £ r , thus, S. n W + 0 by Lemma 2.3. Hence, there is an / € C{J) ,

such that f(J) is a subset of W. , and therefore sup j(J) - sup ^- .
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By definition of C (J) , there is a g € C (J) satisfying

sup g+(J) 5 sup f+(J) . Let g+(J) = T. ; then T. is a subset of W. .

In order to prove the main theorem, we have to take a closer look at

the normal representation of an x € F' - {o, l) . For a nonempty finite

subset T of A define

T* = K i i \oe T o r ai2€ T^u H 2 1 a i i € r } '

and

K°(T) = |i < a | ai{) f T) .

If x € Fa - {0, l} , a: = sup T • ... ' sup Tm is the normal

representation, set K°(x) = X°(r ) u ... u K°[TJ .

Clearly, (sup T)* = inf TA , and K°(a;) = 0 , if x i B^ .

The proof of the following lemma is a straightforward application of

the construction of the normal representation from an arbitrary

representation and is left to the reader.

LEMMA 2.5. Let x = sup 5 • ... • sup S be an arbitrary

representation. Then K (x) is a subset of K [sA u ... u K [s ) .

LEMMA 2.6. Let x be such that x + x* * 1 . Then

K°(x+x*) = K°(x) .

Proof. Let x = sup T • ... • sup T ,

sup W be the normal representations. SupposeX + X* = sup

F u .

x +

Wl

. . i

X*

•

J Tm •

= sup

• sup W

We have

T, • . . . sup Tm + inf T* + ... + inf T£ ,

so, using distributivity, we can compute a representation

x + a:* = sup 5 • ... • sup S , where each S. is a subset of

T u . . . u T u T* u . . . u T* . Since T*. n A is empty for any 3 5 m ,
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a, is not an element of 5 u ... u S , hence, k is not an element of

K (x+x*) by the preceding lemma.

The reverse inclusion is proved similarly, using x = (x+x*) • x** .

The proof of the following lemma is an easy application of the two

preceding lemmas and is omitted.

LEMMA 2.7. Let x = sup T • ... • sup T be the normal

representation, and suppose there is a k 5 m , such that

x + x* = sup T • ... • sup T, + x* . Then K (x) is a subset of

3. Projectivity of regular double Stone algebras

Recall that a Stone algebra is projective if and only if it is a

retract of a free Stone algebra. For the basic facts on projective Stone

algebras see Balbes and Gratzer [I].

Let L be a Stone algebra and F a filter in L ; a subset 5 of

F is called a set of generators for F , if for every x € F there are

J/x» • • •. My_
 e s satisfying y1 • ... • y^ 5 x .

Now we can prove the main theorem.

THEOREM 3.1. Let L be a regular double Stone algebra. Then L is

projective in the category of all Stone algebras if and only if B is a

projective Boolean algebra and DT has at most a countable set of

generators.

Proof. Let L be projective; then L is a retract of some F , so

suppose without loss of generality that L is a subalgebra of F , and

that / : F •* L is a retraction.

Since B. is a retract of L , and since a Boolean algebra is

projective if and only if it is projective in the category of Stone

algebras (c/. Balbes and Gratzer [?]), B has to be a projective Boolean
U

algebra.
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Also, B, is a subalgebra of B , the centre of F . For x € L
L Ot Ot

let x be the dual pseudocomplement of x in £ ; this does not have to

be the dual pseudocomplement of x in F , but since x is an element

of BT , and £ is a subalgebra of F , we have x = x * and
£* Ot

Now we shall show that £> has a set of generators which is at most

countable.

Let D be the filter of dense elements of F ; by Lemma 2.2 (2),

{a. +a. | i < a} is a set of generators for D
U\J isX. Ot

Let I = {i < a | f{a. +a. ) * l} ; then {f[a. +a. ) | i € l}

generates £> . For every i Z I define x. = /fa. +a. ) • /(a. +a. 1 ;

then x. + x*. = f[a.+a.) , and, since L is regular, x. < x. + xi for
'Z' "Z- 1-U *Z*X 1> Q J

all i, j (. I {of. Lemma 1.1 (2)).

If x = sup T • ... • sup T is the normal representation, then m

is called the rank of x , and we write rk(x) = m .

Let M be a nonempty subset of I , and let m, k be natural

numbers, such that 1 - k ̂  m . M is called an {m, k)-set, if for every

i (. M , rk(x.J = m and there are finite nonempty subsets T , . . . , T, of

<4 , such that, up to commutativity,

m i i

x. = sup T • ... • sup T, ' sup T1 • . . . • sup T

is the normal representation of x. .

M is called an [m, O)-set if rk(x.) = m for all i € M .

Note that an (m, fe)-set is also an (m, r)-set for every r 5 k , and

that for an {m, m)-set M we have | {x. | i 6 M) \ 5 1 .

Next, as an intermediate step, we want to prove the following

PROPOSITION. Let M be an (m, k)-set. Then u{/(0(x.) | i € A/1 is

finite or M is the union of finitely many (w, fe+l)-sets.
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Proof. For every i (. M l e t

xi = sup Tx • . . . • sup Tk • sup 2 j + 1 • . . . • sup T*

be the normal representa t ion; i f 0 < k < m , se t

p = sup T • . . . • sup T, ; i f k = 0 , se t p = 1 ; i f k = m , set

P = xi •

If, for every i S. M , K° [x^j is a subset of K° (T ) u ... u K° [T^) ,

I 0 f \ i 1
then WK [x.J | i ( M| is a finite set. Note that this is the case, if

k = m .

So suppose there is an s (. M such that K (x J is not a subset of

K°{T ) u ... u KO{TV) . Then p ^ x + x* .

Assume the contrary; then p t 1 and

" s " s s s 's '

so, by Lemma 2.7, -K° G O is a subset of K° [T ) u .. . u K° [T,) , a
O X it

contradiction.

Let x + x* = sup S • ... • sup S be the normal representation,
S S ± V

and suppose without loss of generality that p ^ sup 5 ; then T. <£ S

for every £ 2 & .

Let j (. M ; then, by regularity of L and by definition of M ,

x. = p • sup T? • ...» r7 5 x + x* 2 sup 5 . Since the representation
t] <v • X //( S S X
of x. is normal, there is a <?(j) f {k+1, . . . , m) , such that T1, .-. is

3 q^3'

a subset of S . For every q 6 {k+1, ..., m} and every subset P of

5 , let M(q, P) = ii € « | q(i) = <? and T1", ., = p\ .

Since 5 has only finitely many subsets, the set

{M{q, P) | q € {k+1, ..., m], P c S.} is also finite. If i € M , then
X
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i € M\q{i), TV,. A , so we have

M = U{M(q, P) | q € {fc+l, . . . , m) , P c 5 ^ .

Every nonempty M(<?, P) i s an (m, fe+l)-set, s ince, for £ € M ^ , P) ,

T ... = P . This proves the proposition.

For every m < co , set I = \i Z I \ rk(a;.J = m\ . We want to show

that U U [x.J | i Z J f is a finite set.

Assume on the contrary that there is an m < w , such that

•"(x̂ ) | i € l\ is infinite.

Set I = I ; I is an (m, 0)-set, which, by our assumption and

the proposition, can be partitioned into finitely many (w, l)-sets. Then

there is an (m, l)-set I1 c J° , such that U\K°{X.) \ i Z l]\ is
777 ™"~ Til V )

infinite. We repeat the argument m times, and we arrive at an (m, m)-

{ \
K [x.) | i Z I \ is infinite.

This is a contradiction, since I is an (m, m)-set, and therefore

Thus, for every m < o> , UJX (a;.) | i € J j- is finite, and therefore

UIK (X.) I i € If is at most countable.

By Lemma 2.6, UJ.K [x.+xt] \ i € I> is also at most countable.

For every i Z I an element j/. of £> is defined as follows. Let

x. + x*. = sup 5 • ... • sup S be the normal representation; for every
If Is -L "

j •S r , set

j a n d aki € 5 j } u H i I a/co e s j a n d aki

Then o. i s a subset of S. , and sup 5^ i s an element of D . Now l e t
J 0 0 ^
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y. = sup S7 • . . . • sup S> . Then

(1) y. 5 x. + x*. , hence f[y.) 5 / ( * . « * ) = * . + * * ,
tr £> {* *•* Is is Is Is

(2) # U/•) i s a subset of X [x.+x*J .
"Is Is Is

Recall that {x.+xt | i € J} is a set of generators of D , hence
Is IS •"

\ i € l} is also a set of generators for D . (2) implies that

\y. I i £ l} is countable, hence {/Q/-J | "t € Xj is, at most, a

countable generating set for 0, .

For the converse, let £ be a regular double Stone algebra such that

B is a projective Boolean algebra and that 0 has, at most, a countable

set of generators. Let G = {x | x € £> } ; then G is a filter in

B . Since L is regular, the map d : G •* D. which assigns to every

element a of G the unique element x of D which satisfies

x = a , is a lattice isomorphism.

Let \m. I i < w} be a set of generators for G , and suppose without

loss of generality that i < 3 implies m. > m. . So, for every a € G ,

i* 3
there is a natural number £ and an element b of BT , such that b 5 m*.

Lt "V

and a = m. + b .

Let F be a free Stone algebra, f : F •* L an onto Stone algebra

homomorphism, and set / = f\Bp , /„ = f\Dp . Since / is onto, so are

fx and

B is a projective Boolean algebra, thus there is a Boolean

homomorphism an : B •* B satisfying f-,°9,~ id Br .
X L c X X h

For every i < a) , let u. = g
Is J.

which satisfies f(z) = d[m.) , then

For every i < a) , let u. = g [m.) . If s is an element of D
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Thus, for every i < w , we can choose an x. t D , such that

f{\) = dl\) > and «{ < i . .

We now define inductively

^0 = X0 ' K#

Then, for a l l i < to ,

(1) y^ i Dp : yQ = xQ ( Dp Toy def in i t ion ; i f yk Z Dp , then,

since x £ + 1
 € Dp a nd 0_ is a f i l te r ,

(2) /(j/^) = d (mj : / ( j / 0) = / (x 0 ) = d(m0) ; suppose

= d[mk) ; then

+ d(m
feJ ' m{ , , since d(mfc+1) < d ( ^ ) ,

+ dim-u) ' "^ > s i n c e '"k e B >
+ d(m

k) ' d ( \ ) + . since dim
k)

+ = \ ,
= d[m, J , s ince L is regular ( e / . Lemma 1.1 (2 ) ) ;

(3) ui^yi : yQ = xQ > uQ by def in i t ion ; suppose u^ 5 yfe ;

then

. , + u . = v . fa;. +^^1 + M . = w . • x+1 t "i^ ^+l t ; ^ n

since ^•i-Ml , and ut i Bp .

Note that (h) implies that for i, j € u) , i * j , we have y . + u. = y.
j i v

Now we define g : Dr ->• D as follows: let a: € Dr ; there is a
d h t L
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j < w and an element b of B , such tha t x = d[m .+£>) ; since L i s
3

regular, z = d[m.) + & . Define gAx) = y . + gib)

3_

m.)
u

i s well defined

Let d{m Ab] = dfm.+e] ; then, since L i s regular ,
0 ^

m.+b=m.+c ; hence u. + g,(b) = u. + g (c) . Suppose without loss
0 T* t7 J- 'Z- 1

of generality t S j ; then

= y,/ + Uj

Thus g is well defined.

g^ is a lattice homomorphism

Suppose x, y £ D x = d{m.+b) , y = d(m Ac) , and i 5 j . Then

= ̂  +

(a;) + g2(y) ,

= gAd{m.+m.'b+b'c)) , since m. < m. ,
^ 3 ** 3 ^

= y^ + "^ ' ffa(fc) + ^(fc) • gAc)

= l/j + {yj+ui) ' 9Ab) + g1(2>) • gAc)

= J/j- + yi • gAb) + ?1(Z») • gAc) by (It)

• (y^gA
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Clearly g^(l) = 1 , so g^ i s a l a t t i c e homomorphism preserving un i t .

g^ , g- can be extended to a Stone algebra homomorphism g : L •* F

Let x = d(m.+b) € D ; then

g^x**) = g^mj+b) = ul + g^b) 5 y^ + ^(2?) = g2(x)

so , by Lemma 2.1+ there i s a (unique) extension g : L ->• F of g , <j- .

/ ° g = id L

Suppose without loss of generality x = dun .+b) € Dr ; then
If Li

Thus L is a retract of F and therefore protective.

Any countable Boolean algebra is protective, and we get

COROLLARY 3.2. If L is a countable regular double Stone algebra,

then L is protective in the category of Stone algebras.

References

[/] R. Balbes and G. Gratzer, "Injective and projective Stone algebras",

Duke Math. J. 38 (1971), 339-31»7.

[2] Raymond Balbes and Alfred Horn, "Stone lattices", Duke Math. J. 37

(1970), 537-5^5.

[3] C.C. Chen and G. Gratzer, "Stone lattices. I: Construction

theorems", Canad. J. Math. 21 (1969), 88H-891*.

[4] Ivo Duntsch, "Projectivity, prime ideals and chain conditions of

Stone algebras", Algebra Universalis (to appear).

[5] George Gratzer, Lattice theory. First concepts and distributive

lattices (Freeman, San Francisco, California, 1971).

[6D T. Katrinak, "Die freien Stoneschen Verbande und ihre Tripelcharakter-

isierung", Acta Math. Acad. Sci. Hungar. 23 (1972), 315-326.

https://doi.org/10.1017/S0004972700007498 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700007498


Projective Stone algebras 147

[7] Tibor Katrinak, "Construction of regular double p-algebras", Bull.

Soc. Roy. Sci. Liege 43 (lQJ'O, 283-290.

[S] J. Varlet, "A regular variety of type <2, 2, 1, 1, 0, 0> ", Algebra

Universalis 2 (1972), 218-223.

Freie Universitat,

FB 10,

Garystr. 21,

1000 Berlin 33,

West Germany.

https://doi.org/10.1017/S0004972700007498 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700007498

