ON ADJACENCY PRESERVING MAPS

BY
R. WESTWICK

1. In his paper [1] on homogeneous spaces W. L. Chow states that "Any one-toone adjacency preserving transformation of the Grassmann space of all the [r] of $S_{n}(0<r<n-1)$ onto itself is a transformation of the basic group of the space." In the proof both the transformation and its inverse are assumed to be adjacency preserving. See also Dieudonne [2] p. 81. What we show in this paper is that the inverse of a one-to-one onto adjacency preserving transformation is itself adjacency preserving and so Chow's theorem is in fact correct as stated.
2. To fix the notation we let U denote a finite dimensional vector space over a field F. We let $P_{r}(U)$ denote the set of all r-dimensional subspaces of U. It is convenient also to introduce, for each subspace V of U, the set $Q_{r}(V)$ consisting of the set of all r-dimensional subspaces of U containing V. The purpose of this note is to prove the

Theorem Let $f: P_{r}(U) \rightarrow P_{r}(U)$ be a one-to-one onto adjacency preserving transformation. Then f^{-1} preserves adjacency also.

The proof depends on determining the effect of f on the maximal sets of pairwise adjacent subsets of $P_{r}(U)$. The two possible types of maximal sets are the $P_{r}(V)$ for $V \in P_{r+1}(U)$ and the $Q_{r}(V)$ for $V \in P_{r-1}(U)$. We let $\mathfrak{A}_{r}(U)=\left\{P_{r}(V): V \in P_{r+1}(U)\right\}$ and $\mathfrak{B}_{r}(U)=\left\{Q_{r}(V): V \in P_{r-1}(U)\right\}$. The proof separates into two parts depending on whether there are two members of $\mathfrak{A}_{r}(U)$ whose images are of different type or all the members of $\mathfrak{A}_{r}(U)$ have images of the same type. In the next section we will show that the first alternative is not possible by showing that f cannot be onto in that case.
3. We assume that there are two elements $P_{r}\left(V_{1}\right)$ and $P_{r}\left(V_{2}\right)$ of $\mathfrak{U}_{r}(U)$ such that $f\left(P_{r}\left(V_{1}\right)\right) \subseteq A$ for some $A \in \mathfrak{A}_{r}(U)$ and $f\left(P_{r}\left(V_{2}\right)\right) \subseteq B$ for some $B \in \mathfrak{B}_{r}(U)$. Then there must be an adjacent pair of subspaces V_{1} and V_{2} satisfying the above and so we may assume this to be the case at the outset.

In this paragraph we show that there is an $A_{1} \in \mathfrak{V}_{r}(U)$ and $B_{1} \in \mathfrak{B}_{r}(U)$ (not necessarily the A and B above) for which we have $f\left(P_{r}\left(V_{1}+V_{2}\right)\right) \subseteq A_{1} \cup B_{1}$. For each $V \in P_{r-1}\left(V_{1} \cap V_{2}\right)$ the set $f\left(Q_{r}(V)\right)$ has at least two points (r-dimensional subspaces of U will be referred to as points) in common with each of A and B. Therefore $f\left(Q_{r}(V)\right) \subseteq A$ or $f\left(Q_{r}(V)\right) \subseteq B$. For each $W \in Q_{r+1}\left(V_{1} \cap V_{2}\right)$ we have $\left(P_{r}(W)\right) \subseteq A \cup B$ (because every r-dimensional subspace of W meets $V_{1} \cap V_{2}$ in at least ($r-1$)-dimensions) and therefore $f\left(P_{r}(W)\right) \subseteq A$ or $f\left(P_{r}(W)\right) \subseteq B$. Then there are at least two members of $\mathfrak{G}_{r}(U)$ which are mapped into one of A or B and for
definiteness we will take it to be A. Then for every $W \in P_{r+1}\left(V_{1}+V_{2}\right)$ such that $f\left(P_{r}(W)\right)$ has the same type as A we have $f\left(P_{r}(W)\right) \subseteq A$ because it meets A in at least two points. If all the $f\left(P_{r}(W)\right)$ are of the same type as A then we may take $A_{1}=$ A and $B_{1}=B$. Suppose then that for some $W_{0} \in P_{r+1}\left(V_{1}+V_{2}\right), f\left(P_{r}\left(W_{0}\right)\right)$ is not of type A. Then $f\left(P_{r}\left(W_{0}\right)\right) \subseteq B_{1}$ for some $B_{1} \in \mathfrak{B}_{r}(U)$ and there is a point $X \in P_{r}\left(W_{0}\right)$ such that $f(X) \notin A$. We point out here that B_{1} need not be B because in our choice of V_{1} and V_{2} it may have happened that $f\left(P_{r}\left(V_{2}\right)\right) \subseteq B \cap A$. By considering the pair $P_{r}\left(V_{1}\right)$ and $P_{r}\left(W_{0}\right)$ we have $f\left(Q_{r}(V)\right) \subseteq A \cup B_{1}$ for all $V \in P_{r-1}\left(V_{1} \cap W_{0}\right)$. If $V=X \cap V_{1} \cap W_{0}$ then $\left.f\left(Q{ }_{r} V\right)\right) \subseteq B_{1}$ and for any $W \in Q_{r+1}(X), f\left(P_{r}(W)\right)$ cannot be of type A. Therefore $f\left(P_{r}(W)\right)$ has the same type as B_{1} and since it meets B_{1} in at least two points we have $f\left(P_{r}(W)\right) \subseteq B_{1}$. Therefore at least two members of $\mathfrak{A}_{r}(U)$ are mapped into subsets of B_{1} and so we have $f\left(P_{r}\left(V_{1}+V_{2}\right)\right) \subseteq A \cup B_{1}$. Note that $A_{1} \cap B_{1}$ is not empty since in the first case $A_{1} \cap B_{1}=A \cap B$ contains $f\left(V_{1} \cap V_{2}\right)$ while in the second case $A_{1} \cap B_{1}$ contains $f\left(V_{1} \cap W_{0}\right)$.

To show that f is not onto we consider first the case $n \leq 2 r$. Let $A_{1}=P_{r}\left(W_{1}\right)$ and $B_{1}=Q_{r}\left(W_{2}\right)$ where $W_{1} \in P_{r+1}(U)$ and $W_{2} \in P_{r-1}(U)$. Since $A_{1} \cap B_{1}$ is not empty we have $W_{2} \subseteq W_{1}$. Choose $X \in P_{r}(U)$ so that $\operatorname{dim}\left(X \cap W_{1}\right)$ and $\operatorname{dim}\left(X \cap W_{2}\right)$ are both minimal. Then any chain of points $X_{1}, X_{2}, \ldots, X_{k}$ of $P_{r}(U)$ where X_{i}, X_{i+1} are adjacent, $X=X_{1}$ and $X_{k} \in A_{1} \cup B_{1}$ has length at least $k=n-r$ (If $X_{k} \in A_{1}$ or if $n=2 r$ then $k \geq n-r$ while if $X_{k} \in B_{1}$ and $n<2 r$ then $k \geq n-r+1$). For any $Y \in P_{r}(U)$ there is a chain $Y_{1}, Y_{2}, \ldots, Y_{n-r-1}$ of points of $P_{r}(U)$ such that Y_{i}, Y_{i+1} are adjacent, $Y=Y_{1}$, and $Y_{n-r-1} \in P_{r}\left(V_{1}+V_{2}\right)$. Therefore X cannot be the image of any Y and so f is not onto. The case for which $n>2 r$ is reduced to the previous case as follows; Let $g: P_{r}(U) \rightarrow P_{n-r}(U)$ be a map induced by a correlation and consider the map

$$
f^{\prime}=g \circ f \circ g^{-1}: P_{n-r}(U) \rightarrow P_{n-r}(U) .
$$

Then f^{\prime} is a one-to-one onto adjacency preserving map and for each $V \in P_{r-1}\left(V_{1} \cap V_{2}\right), f^{\prime}$ maps $g\left(Q_{r}(V)\right)$ into one of $g(A)$ or $g(B)$. Now, $g(A) \in \mathfrak{B}_{n-r}(U)$ $g(B) \in \mathfrak{A}_{n-r}(U)$, and $g\left(Q_{r}(V)\right) \in \mathfrak{A}_{n-r}(U)$. We select a distinct pair V^{\prime} and $V^{\prime \prime}$ from $P_{r-1}\left(V_{1} \cap V_{2}\right)$ and choose W_{1}^{\prime} and W_{2}^{\prime} from $P_{n-r+1}(U)$ such that $g\left(Q_{r}\left(V^{\prime}\right)\right)=$ $P_{n-r}\left(W_{1}^{\prime}\right)$ and $g\left(Q_{r}\left(V^{\prime \prime}\right)\right)=P_{n-r}\left(W_{2}^{\prime}\right)$. Then W_{1}^{\prime} and W_{2}^{\prime} are adjacent. If f^{\prime} takes each member of $\mathfrak{A}_{n-r}\left(W_{1}^{\prime}+W_{2}^{\prime}\right)$ into sets of the same type then since at least two of them go into one of $g(A)$ or $g(B)$ (namely the $g\left(Q_{r}(V)\right)$ for $V \in P_{r-1}\left(V_{1} \cap V_{2}\right)$) they all do. If some pair has images of different type then we are back to the original hypothesis of this section and with $n<2(n-r)$. Therefore f^{\prime} is not onto and it follows that f is not onto.
4. In this section we assume that f maps the members of $\mathfrak{A}_{r}(U)$ into sets all of the same type, and the members of $\mathfrak{B}_{r}(U)$ into sets all of the same type. For any two members of $\mathfrak{A}_{r}(U)$ with underlying adjacent $(r+1)$-dimensional subspaces the maximal sets containing their images under f must be distinct. This follows from the argument in $\S 3$. Therefore for $A \in \mathfrak{U}_{r}(U)$ and $B \in \mathfrak{B}_{r}(U)$, the types of
$f(A)$ and $f(B)$ are different. By replacing f by f^{2} if necessary, we may assume that $f(A) \subseteq A^{\prime} \in \mathfrak{U}_{r}(U)$ for $A \in \mathfrak{A}_{r}(U)$ and $f(B) \subseteq B^{\prime} \in \mathfrak{B}_{r}(U)$ for $B \in \mathfrak{B}_{r}(U)$.

We will assume that the theorem is true for spaces U^{\prime} where $\operatorname{dim} U^{\prime}<\operatorname{dim} U$. Note that when $\operatorname{dim} U=r+1$ the theorem is obvious because in this case every pair of points of $P_{r}(U)$ are adjacent.

We begin by proving the statement: If V_{1} and V_{2} are adjacent k-dimensional subspaces of U and if $P_{r}(W)$ contains both $f\left(P_{r}\left(V_{1}\right)\right)$ and $f\left(P_{r}\left(V_{2}\right)\right)$ then $P_{r}(W)$ contains $f\left(P_{r}\left(V_{1}+V_{2}\right)\right)$. When $k=r$ this statement is certainly valid, and we proceed from here by induction. Let $V_{0} \in P_{r}\left(V_{1}+V_{2}\right)$ with $V_{0} \notin P_{r}\left(V_{1}\right)$ and $V_{0} \notin P_{r}\left(V_{2}\right)$. Then $V_{0} \nsubseteq V_{1} \cap V_{2}$ and so we can select $V \in P_{k}\left(V_{1}+V_{2}\right)$ which contains V_{0} but not $V_{1} \cap V_{2}$. Then $V \cap V_{1}$ and $V \cap V_{2}$ are adjacent ($k-1$)-dimensional subspaces and $P_{r}(W)$ contains $f\left(P_{r}\left(V \cap V_{1}\right)\right.$ and $f\left(P_{r}\left(V \cap V_{2}\right)\right.$. Therefore $f\left(P_{r}(W)\right)$ contains $f\left(P_{r}(V)\right)$ and so $f\left(V_{0}\right) \in P_{r}(W)$ which completes the proof of the statement. By an induction argument it now follows that if $V \in P_{k}(U)$ and $V_{0} \in P_{r}(U)$ such that $V+V_{0} \in P_{k+1}(U)$ and if W is a subspace of U such that $P_{r}(W)$ contains $f\left(P_{r}(V)\right)$ and $f\left(V_{0}\right)$ then it contains $f\left(P_{r}\left(V+V_{0}\right)\right)$. Therefore for each $V \in P_{k}(U)$ there is a $W \in P_{k}(U)$ such that $f\left(P_{r}(V)\right) \subseteq P_{r}(W)$. When $k=n-1$ we must in fact have equality, for suppose $W_{0} \in P_{r}(W)$ and $f^{-1}\left(W_{0}\right) \notin P_{r}(V)$. Then $U=V+f^{-1}\left(W_{0}\right)$ and so $f\left(P_{r}(U)\right) \subseteq P_{r}(W) \neq P_{r}(U)$, which contradicts the assumption that f is onto.

We now conclude our proof of the main theorem as follows: Let U_{1} and U_{2} be adjacent points and let $V_{1}=f^{-1}\left(U_{1}\right), V_{2}=f^{-1}\left(U_{2}\right)$. Let W_{1} be a hyperspace of U containing V_{1}. If W_{1} contains V_{2} then V_{1} and V_{2} are adjacent by the induction hypothesis, and so we suppose $V_{2} \nsubseteq W_{1}$. Let W_{2} be the hyperspace of U for which $f\left(P_{r}\left(W_{1}\right)\right)=P_{r}\left(W_{2}\right)$. Then $U_{1} \subseteq W_{2}$ and $U_{1} \cap U_{2}$ is an ($r-1$)-dimensional subspace of W_{2}. Let $V_{3} \in P_{r}\left(W_{1}\right)$ be adjacent to V_{2}. Then $f\left(V_{3}\right) \subseteq W_{2}$ and meets U_{2} in an $(r-1)$-dimensional subspace and since $\operatorname{dim}\left(U_{2} \cap W_{2}\right)=r-1$ we have $f\left(V_{3}\right) \cap$ $U_{2}=U_{2} \cap W_{2}=U_{1} \cap U_{2}$. Therefore $f\left(V_{3}\right)$ is adjacent to $f\left(V_{1}\right)$ and so V_{3} is adjacent to V_{1} (both are contained in W_{1}). Then the images of $Q_{r}\left(V_{1} \cap V_{3}\right)$ and $Q_{r}\left(V_{2} \cap V_{3}\right)$ are contained in $Q_{r}\left(U_{1} \cap U_{2}\right)$ from which we have $V_{1} \cap V_{3}=V_{2} \cap V_{3}$. Therefore V_{1} and V_{2} are adjacent.

References

1. W. L. Chow, On the Geometry of Algebraic Homogeneous Spaces. Ann. of Math. 50 (1949), 32-67.
2. J. Dieudonné, La Géométrie Des Groupes Classiques. 3rd edition, Springer-Verlag, Berlin Heidelberg New York (1971).
