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Abstract. In the quiet Sun, convective motions form a characteristic granular pattern, with
broad upflows enclosed by a network of narrow downflows. Magnetic fields tend to accumulate
in the intergranular lanes, forming localised flux concentrations. One of the most plausible
explanations for the appearance of these quiet Sun magnetic features is that they are generated
and maintained by dynamo action resulting from the local convective motions at the surface of
the Sun. Motivated by this idea, we describe high resolution numerical simulations of nonlinear
dynamo action in a (fully) compressible, non-rotating layer of electrically-conducting fluid. The
dynamo properties depend crucially upon various aspects of the fluid. For example, the magnetic
Reynolds number (Rm) determines the initial growth rate of the magnetic energy, as well as
the final saturation level of the dynamo in the nonlinear regime. We focus particularly upon
the ways in which the Rm-dependence of the dynamo is influenced by the level of stratification
within the domain. Our results can be related, in a qualitative sense, to solar observations.

Keywords. Convection, magnetic fields, (magnetohydrodynamics:) MHD, Sun: magnetic fields,
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1. Introduction
High resolution observations of the solar surface have greatly enhanced our theoretical

understanding of the ways in which magnetic fields interact with turbulent convection
in an electrically-conducting fluid. The time-dependent, near-surface, convective motions
in the quiet Sun form a characteristic granular pattern at the solar photosphere (see,
for example, Stix 2004). The dark intergranular lanes, which correspond to the convec-
tive downflows, contain mixed-polarity concentrations of vertical magnetic flux. These
localised magnetic features show up as bright points in G-band images of the solar sur-
face (see, for example, Sánchez Almeida et al. 2010). Peak magnetic field strengths in
these regions are typically in excess of a kilogauss (see, for example, de Wijn et al. 2009,
and references therein), which implies that the magnetic energy density of these fea-
tures is about an order of magnitude larger than the mean kinetic energy density of the
surrounding granular convection

It is plausible that the convective motions that are observed at the solar surface are
themselves responsible for the generation of quiet Sun magnetic fields. A small-scale
dynamo of this type would proceed independently of the large-scale dynamo processes
that are responsible for driving the solar cycle. As demonstrated by Cattaneo (1999),
standard Boussinesq convection in an electrically-conducting fluid (in the absence of
rotation or shear) can drive a small-scale dynamo. More recent calculations have demon-
strated that dynamo action is also possible in fully compressible convection (Abbett
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Figure 1. The temperature distribution for hydrodynamic convection in a horizontal plane just
below the upper surface of the computational domain. Bright contours correspond to warmer
fluid. Left: Moderately-stratified convection (θ = 3). Right: Highly-stratified convection (θ = 10).

2007; Vögler & Schüssler 2007; Käpylä, Korpi & Brandenburg 2008; Bushby, Proctor &
Weiss 2010; Brummell, Tobias & Cattaneo 2010). However, there are still some aspects
of convectively-driven dynamos that have not yet been addressed. The aim of this short
paper is to investigate some of the ways in which the level of stratification within the
fluid influences the efficiency of a convectively-driven dynamo.

2. An idealised model
We consider the behaviour of a compressible, electrically-conducting, monatomic gas,

in the presence of a magnetic field. In this idealised model, we adopt constant values for
the viscosity µ, the thermal conductivity K, the magnetic diffusivity η, and the magnetic
permeability µ0 . The constant specific heat capacities (cP and cV ) satisfy cP /cV = 5/3,
whilst the gas constant is defined by R∗ = cP − cV . Choosing a (non-rotating) Cartesian
frame of reference in which the z-axis points vertically downwards, the gas occupies the
region 0 � x � 4d, 0 � y � 4d, 0 � z � d. The constant gravitational acceleration is
given by g = gẑ. The state of this system at position x and time t is defined by the density
ρ(x, t), the temperature T (x, t), the velocity u(x, t) and the magnetic field B(x, t). The
gas pressure, P (x, t), is given by P = R∗ρT . The fluid variables satisfy periodic boundary
conditions in each horizontal direction. The upper and lower bounding surfaces are held
at fixed, uniform temperatures, with T = T0 at z = 0 and T = T0 + ∆T at z = d (where
a positive value of ∆T implies that the layer is heated from below). These boundaries
are also assumed to be impermeable and stress-free in this idealised model. Vertical field
boundary conditions are imposed on B at z = 0 and z = d. The evolution of this system is
governed by the standard equations of (non-ideal) compressible magnetohydrodynamics
(see, for example, Bushby et al. 2008).

In the absence of any magnetic fields, the governing equations have a hydrostatic
solution, corresponding to a polytropic layer, in which T = T0 (1 + θz/d) and ρ =
ρ0 (1 + θz/d)m . Here, the parameter θ = ∆T/T0 is a measure of the thermal stratification
of the layer, whilst m = (gd/R∗∆T )−1 defines the polytropic index. For an unmagnetised
monatomic gas, this polytropic equilibrium is unstable to convective perturbations pro-
vided that m < 3/2. The evolution of any convective perturbation depends crucially upon
the other parameters in the system. We define the Prandtl number to be σ = µcP /K,
whilst the dimensionless thermal diffusivity is defined to be κ = K/dρ0cp (R∗T0)

1/2 .
The parameter ζ0 = ηcP ρ0/K gives the ratio of the magnetic diffusivity to the thermal
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Dynamos in compressible convection 199

diffusivity at the upper surface of the domain. Two other relevant parameters for con-
vection are the (mid-layer) Reynolds number,

Re =
ρmidUrmsd

µ
, (2.1)

(where Urms is the rms velocity of the convection and ρmid is the mid-layer density of
the unperturbed polytrope) whilst

Rm =
Urmsd

η
, (2.2)

corresponds to the magnetic Reynolds number of the flow.
By carrying out three-dimensional numerical simulations (see, for example, Bushby

et al. 2008 for numerical details), we investigate the dynamo properties of convection in
two different polytropic layers, one moderately-stratified, the other highly-stratified. In
both cases, m = 1 and σ = 1. In the moderately-stratified case, we set θ = 3, which
implies that the density and temperature both vary by a factor of 4 across the depth of
the unperturbed layer. In the highly-stratified layer, we set θ = 10, which means that the
initial density and temperature profiles both vary by a factor of 11. Finally, κ = 0.0245
for the highly-stratified case and κ = 0.00548 for the moderately-stratified layer. These
parameters have been chosen so that both calculations produce hydrodynamic convection
with Re ≈ 150. This is illustrated in Figure 1, which shows the temperature distribution
(for each case) in a horizontal plane just below the upper surface of the computational
domain. Note that the “granular” pattern is similar in both simulations, despite the
differing levels of stratification. Some aspects of dynamo action in the highly-stratified
case were described in a previous paper (Bushby, Proctor & Weiss 2010).

Once statistically-steady hydrodynamic convection has developed, we insert a weak
vertical magnetic field into the flow. This has a simple cosine dependence upon x and
y in order to ensure that there is no net flux across the computational domain. The
fate of this field depends crucially upon the magnetic Reynolds number. If everything
else is fixed, the value of Rm depends solely upon the value of ζ0 , with Rm ∝ (1/ζ0).
Hence for a given hydrodynamic flow, different values of Rm can be investigated simply
by changing the value of ζ0 . Since Re is fixed, varying Rm is equivalent to varying the
magnetic Prandtl number (which is given by Pm = Rm/Re).

3. Numerical results
3.1. The kinematic regime

Provided that the energy of the initial magnetic field is very much smaller than the kinetic
energy of the flow, the Lorentz force does not play a significant dynamical role during
the early stages of the field evolution. During this kinematic phase, the magnetic energy
fluctuates in time, but (on average) either grows or decays exponentially, depending upon
the magnitude of the magnetic Reynolds number, Rm. Dynamo growth can only occur
if Rm is large enough such that the inductive effects due to the fluid motions are strong
enough to outweigh the dissipative effects of magnetic diffusion. Of course, exponential
growth cannot proceed indefinitely. Eventually, the dynamo-generated magnetic field will
become strong enough to exert a significant Lorentz force upon the flow, which forces
the dynamo to saturate in the nonlinear regime.

Initially, however, we focus on the kinematic regime, indefinitely extending this phase
of evolution by “switching off” the magnetic terms in the momentum and heat equations.
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Figure 2. Scaled kinematic growth rates for the magnetic energy, as a function of the magnetic
Reynolds number. Stars correspond to the moderately-stratified case, diamonds correspond to
highly-stratified convection. The solid line is the curve Γ = 0.36 loge (Rm/325).

A prolonged kinematic phase allows us to average growth rates over a long period of time,
thus obtaining more accurate values for these quantities. In a previous paper (Bushby
et al. 2010), it was shown that dynamo action is possible in the highly-stratified case
provided that the magnetic Reynolds number exceeds a critical value of Rmcrit ≈ 325.
Furthermore, the results from that paper suggested that the kinematic growth rates (de-
noted here by Γ) had a logarithmic dependence upon Rm. More precisely, expressing the
growth rates in terms an inverse (isothermal) acoustic travel time at the top of the com-
putational domain, (R∗T0)1/2/d, the measured growth rates are a good fit to the following
curve, Γ = 0.21 loge(Rm/325). Although this logarithmic fit is rather empirical, a similar
Rm-dependence has been found in a previous analytic study (Rogachevskii & Kleeorin
1997). In order to assess the influence that stratification has upon the kinematic regime,
we repeated these calculations for our moderately-stratified convective layer. Again we
found a critical magnetic Reynolds of Rmcrit ≈ 325, whilst Γ = 0.12 loge(Rm/325) gives
a good fit to the Rm-dependence of the dynamo growth rates in moderately-stratified
convection.

From these results, it is tempting to draw the conclusion that dynamo action is more
efficient in highly stratified convection, with a higher kinematic growth rate for a given
value of Rm. In fact, some care is needed here. The acoustic travel time that has been
used to scale these growth rates corresponds to the time taken for a sound wave to
cross a horizontal distance d across the upper surface of the domain. Clearly the surface
surface sound speed is more representative of a “typical” sound speed in the moderately-
stratified case than it is in the highly stratified simulation. So, in order to make a fairer
comparison between the two cases, we scale the growth rates by the convective turnover
time, d/Urms . The results of this rescaling, for both stratifications, are shown in Figure 2.
It is apparent from Figure 2 that all the data points lie close to the same best fit curve,
Γ = 0.36 loge(Rm/325). This suggests that the rescaled growth rates are effectively
independent of the level of stratification in the domain. In other words, it is purely
the convective turnover time that is responsible for setting the growth rate rather than
any of the topological aspects of the flow that are associated with the compressibility.

3.2. Nonlinear results
The process of flux expulsion leads to the formation of vertical magnetic flux concentra-
tions in the downflow regions at the edges of the granular convective cells. Whilst the field
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Figure 3. A nonlinear dynamo calculation, in moderately-stratified convection, for Rm ≈ 480.
Left: Contours of constant temperature, overlaid with contours of the vertical component of the
magnetic field. Solid (dashed) contours correspond to positive (negative) values of Bz . Right:
A log-linear plot showing the magnetic energy (in dimensionless units) as a function of time
(expressed in terms of ohmic decay times).

is weak, this is a kinematic process, with no magnetic feedback upon the flow. In fully
nonlinear dynamo simulations, the high magnetic pressure that is associated with these
magnetic regions causes them to become partially evacuated, particularly in the upper
layers of the domain. Amongst other things, this leads to an increase in the local Alfvén
speed, as well as a reduction in the timescale that is associated with thermal diffusion.
Both of these factors lead to a reduction in the time-step that must be taken in order
to ensure stability of the (explicit) numerical scheme. Preliminary nonlinear results for
highly-stratified convection were described in Bushby et al. (2010). Even for a relatively
modest values of Rm (Rm ≈ 350, which is less than 10% above the critical value for dy-
namo action), the partial evacuation that occurs is extremely significant. In such cases,
the corresponding reduction in the time-step is so severe that it is not possible to carry
out the calculation on a reasonable time-scale without (e.g.) imposing an artificial lower
limit on the minimum density within the domain.

Partial evacuation is also a feature of nonlinear dynamo action in moderately-stratified
convection. However, because the effects of compressibility are reduced (for example, the
peak mach number at the surface is approximately 0.6, as opposed to 1.0 in the highly-
stratified case), the effect is less dramatic. So, in this case, it is possible to carry out these
simulations without having to deal with overly restrictive time-step constraints. A calcu-
lation of dynamo action in moderately-stratified convection, for Rm ≈ 480, is illustrated
in Figure 3. The field geometry is similar to that of the kinematic regime, with mixed
polarity concentrations of vertical magnetic flux accumulating in the convective down-
flows. The minimum gas density within these magnetic regions is highly time-dependent,
but a typical minimum value would be (approximately) 25% of the mean density of the
non-magnetic surroundings. This dynamo has saturated in the nonlinear regime, reach-
ing a state in which the total magnetic energy is approximately 5% of the total kinetic
energy in the domain. The saturation level of such a dynamo clearly depends upon the
magnetic Reynolds number, with larger values of Rm expected to produce more efficient
dynamos. Early results for an ongoing calculation at Rm ≈ 800 certainly support this
idea. For a lower magnetic Reynolds number of Rm ≈ 360, the magnetic energy saturates
at approximately 3 − 4% of the kinetic energy. For such a marginal dynamo (Rm ≈ 360
is only 10% above Rmcrit), the magnetic energy exhibits significant fluctuations, so it is
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Figure 4. Probability density functions for the vertical component of the magnetic field (scaled
by the equipartition value of Bz ) in a nonlinear dynamo that is driven by moderately-stratified
convection. Left: Rm ≈ 360. Right: Rm ≈ 480.

necessary to average over a significant fraction of an ohmic decay time in order to obtain
a reliable estimate for the saturation level in this case. As described in Bushby et al.
(2010), a highly-stratified calculation at Rm ≈ 350 produces a dynamo in which the
magnetic energy appears to be saturating at a similar level. However, due to fluctuations
in the magnetic energy, it is unclear whether or not the dynamo has truly saturated in
this highly-stratified case, so we will not attempt to draw any conclusions on the basis
of this particular comparison.

Figure 4 shows probability density functions (PDFs) for the vertical magnetic field
component at the upper surface, in moderately-stratified convection, at Rm ≈ 360 and
Rm ≈ 480. In these PDFs, the strength of the magnetic field has been scaled by the value
of Bz that would be in energy equipartition with the local convective motions at the sur-
face of the domain. Both PDFs are consistent with a stretched exponential distribution,
centred at Bz = 0. The peak fields that are obtained are roughly four times the equipar-
tition value. This can be related to the quiet Sun, where the observed kilogauss-strength
magnetic features exceed the equipartition field strength by a similar multiplicative fac-
tor. The processes which lead to the formation of such strong magnetic fields are discussed
elsewhere (see, for example, Bushby et al. 2008), so will not be discussed in any detail
here. The only thing that we note is that these super-equipartition magnetic features
can only be in near-pressure balance with their non-magnetic surroundings if they are
partially-evacuated.

4. Conclusions
These results clearly demonstrate that compressible convection in an electrically-

conducting fluid can drive a small-scale dynamo, provided that the magnetic Reynolds
number is large enough. For the two models of convection that are considered in this
paper, which both have a Reynolds number of Re ≈ 150, dynamo action is possible pro-
vided that Rm exceeds a critical value of Rmcrit ≈ 325. In the kinematic regime, the
growth rate of the magnetic energy appears to have a logarithmic dependence upon Rm.
Furthermore, if the growth rates are scaled in terms of the convective turnover time, the
result seems to be independent of the level of stratification, with all (scaled) growth rates
appearing to lie close to the same curve, Γ = 0.36 loge(Rm/325). Hence, although the
flow structure will clearly be sensitive to the level of stratification within the domain,
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it appears to be solely the convective turnover time that is responsible for determining
the growth rate of any dynamo. As in previous calculations (see, for example, Cattaneo
1999; Vögler & Schüssler 2007) the growth rate at large values of Rm is of the same
order as the convective turnover time. There is no evidence from these kinematic results
that high levels of stratification hinder the operation of convectively-driven dynamos.
Therefore, the lack of dynamo action in the calculations of Stein, Bercik & Nordlund
(2003) is probably not associated with the vertical asymmetry of the convective motions.
In this context, it should be noted that the calculations of Stein et al. (2003) have an
open (rather than an impermeable) lower boundary that allows magnetic flux to leave
the domain. However, the penetrative dynamo calculations of Brummell et al. (2010)
strongly suggest that an open lower boundary condition should not prohibit dynamo
action. So, perhaps the lack of dynamo action in the calculations of Stein et al. (2003)
was simply a consequence of Rm being too small.

In the nonlinear regime, the high magnetic pressure leads to the partial evacuation of
the upper regions of the vertical magnetic flux concentrations. With our existing explicit
code, this leads to numerical time-step constraints that rapidly become prohibitive in the
case of highly-stratified convection. Only for a marginally excited dynamo, has it been
possible to carry out a nonlinear dynamo calculation in the highly-stratified case, and
even there it was necessary to impose an artificial lower bound on the minimum density
within the computational domain. An implicit code would be needed to address this
parameter regime in a more satisfactory manner. For moderately-stratified convection,
on the other hand, it has been possible to carry out nonlinear dynamo simulations. At
moderate values of Rm, the dynamo saturates in the nonlinear regime, reaching a state
in which the total magnetic energy is a few percent of the total kinetic energy. At the
surface of the computational domain, the partially-evacuated magnetic features achieve
super-equipartition field strengths, as observed in the quiet Sun.
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Discussion

E. Zweibel: Convective collapse seems to be playing an important role in making the
strongest fields (as a dynamo – yesterday’s talk).

P. Bushby: Yes, we do observe an intensification process of this type, although we see
more of a convective adjustment rather than a well-defined convective collapse instability.
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Certainly, without the associated reduction in the internal gas pressure, it would be
impossible to generate the observed super-equipartition fields at the upper surface of the
domain.

G. Vasil: What type of numerical method did you use to solve the equations?

P. Bushby: Horizontal derivatives are evaluated in Fourier space, whilst fourth-order
finite differences are used to calculate the vertical derivatives. An explicit third-order
Adams-Bashforth scheme is used to time-step the equations.

S. Tobias: You were very diplomatic about avoiding the argument as to whether putting
more scale heights into a dynamo calculation “switches off” the dynamo. Do you have a
comment on this?

P. Bushby: From these calculations, there is no evidence to suggest that an increased
level of stratification will inhibit the dynamo.

D. Hughes: Would one expect very different levels of saturation for the compressible
dynamo as compared to the Boussinesq model? What determines the peak fields in the
compressible case?

P. Bushby: That is a difficult question to answer at the moment, as we have not yet
reached high enough values of Rm to make a direct comparison with the Boussinesq cal-
culation of Cattaneo (1999). Certainly it is feasible that the effects of magnetic pressure
will have some influence upon the saturation level of the dynamo in the compressible case.
Where significant partial evacuation occurs in the compressible case, the local magnetic
pressure within a vertical flux concentration is comparable to the external gas pressure.
Although the convective motions also play a role in the confinement of the flux con-
centrations, this total pressure balance sets an (approximate) upper limit on the peak
magnetic fields that can be generated in the upper layers of the domain.

N. Brummell: Raising Rm having fixed other parameters implies changing Pm. Com-
ments?

P. Bushby: Yes, that’s right. For Re ≈ 150, a marginal dynamo has a magnetic Prandtl
number of Pm ≈ 2. At fixed Re, Pm ∝ Rm, so wherever dynamo action is found in these
simulations, Pm > 2.

A. Brandenburg: For a small-scale dynamo one expects the Kazantsev scaling, where
magnetic energy increases with wavenumber, k, like k3/2 , reaching a peak at the resistive
scale kη . The growth rate should then scale with the turnover rate at that scale, so it
should scale with Rm like Rm1/2 (see Haugen et. al 2004, PRE; Käpylä et. al 2008).

P. Bushby: Although the logarithmic fit to the growth rate curve is empirical, it seems
to be fairly convincing, with a large number of data points spread over a significant range
of values for Rm. The scalings that you refer to both seem to cover a small number of
data points over a narrow range of magnetic Reynolds numbers. It’s not clear to me
that we should expect to see a Kazantsev-like scaling for dynamo action in compressible
convection. Furthermore, I believe that you need Pm � 1 in order to justify this Rm1/2

scaling. This is not the case here.
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