NON-COMPACT COMPOSITION OPERATORS

R.K. SINGH AND S.D. SHARMA

In this note sufficient conditions for non-compactness of composition operators on two different functional Hilbert spaces have been obtained.

1. Introduction

Let H(X) denote a functional Hilbert space on a set X and let T be a mapping from X into itself. Then define the composition transformation C_T on H(X) into the vector space of all complex valued functions on X as

$$C_{\eta}f = f \circ T$$
 for every $f \in H(X)$.

If the range of C_T is a subspace of H(X), then by the closed graph theorem C_T is a bounded operator on H(X) and we call it a composition operator induced by T. In [5] we have studied these operators on $H^2(\pi^+)$, the Hilbert space of functions f holomorphic in π^+ (the upper half plane) for which

$$||f|| = \sup_{y>0} \left\{ \left(\int_{-\infty}^{\infty} |f(x+iy)|^2 dx \right)^{\frac{1}{2}} \right\} < \infty$$

In this note we are interested in studying non-compact composition operators on $H^2(\pi^+)$ and $H^2(D)$, the classical Hardy space of functions f holomorphic on the unit disc D for which

Received 13 August 1979.

$$\sup_{0 < r < 1} \left\{ (2\pi)^{-1} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta \right\} < \infty .$$

The Banach algebra of all bounded linear operators on H(X) into itself is denoted by B(H(X)).

2. Non-compact composition operators on $H^2(\pi^+)$

If T is a holomorphic function from π^+ into itself such that the only singularity that T can have is a pole at infinity, then it has been shown in [5] that C_T is a bounded operator on $H^2(\pi^+)$ if and only if the point at infinity is a pole of T. In this section we shall give sufficient conditions for the non-compactness of C_T on $H^2(\pi^+)$. A study of compact composition operators on another interesting functional Hilbert space has been made by Swanton [6]. Our results and techniques are entirely different from those of Swanton [6]. At this stage we need the following result of Nordgren [2].

LEMMA 2.1. A sequence in a functional Hilbert space is a weak null sequence if and only if it is norm bounded and pointwise null.

We now proceed towards the main results of this section.

THEOREM 2.2. Let $T: \pi^+ \to \pi^+$ be a holomorphic function such that $C_T \in B(H^2(\pi^+))$. If $T_*(x) = \lim_{y \to 0} T(x+iy)$ exists almost everywhere on R $y \to 0$ (the real line) and $T_*(x) \in R$ for $x \in R$, then C_T is not compact.

Proof. Consider the functions s_n defined by

$$s_n(\omega) = (1/\sqrt{\pi})((\omega-i)^n/(\omega+i)^{n+1})$$
, $n = 0, 1, 2, ...$

Clearly $s_n \neq 0$ pointwise and the sequence $\{s_n\}$ is norm bounded. Since $H^2(\pi^+)$ is a functional Hilbert space, by Lemma 2.1, $\{s_n\}$ is a weak null sequence in $H^2(\pi^+)$. Since for every n,

126

$$\begin{split} \|C_{T}s_{n}\|^{2} &= \int_{-\infty}^{\infty} |(s_{n} \circ T)_{*}(x)|^{2} dx \\ &= (\pi)^{-1} \int_{-\infty}^{\infty} |(T_{*}(x)-i)^{n}/(T_{*}(x)+i)^{n+1}|^{2} dx \\ &= (\pi)^{-1} \int_{-\infty}^{\infty} [1+(T_{*}(x))^{2}]^{-1} dx \end{split},$$

it follows that $\{\|C_T s_n\|\}$ is bounded away from zero. Hence $\{C_T s_n\}$ does not converge to the zero function strongly. This shows that C_T is not compact. Thus the proof is complete.

THEOREM 2.3. Let T be a holomorphic function from π^+ into itself such that $C_T \in B(H^2(\pi^+))$. If there exists an M > 0 such that $|(i+nT(w))/(i+nw)| \leq M$ for every $w \in \pi^+$ and $n \in N$, then T induces a non-compact composition operator on $H^2(\pi^+)$.

Proof. For each $n \in \mathbb{N}$ define f_n by

$$f_n(w) = n^{-\frac{1}{2}} (in^{-1} + w)^{-1}$$
.

A simple computation shows that the sequence $\{f_n\}$ is a norm bounded sequence in $H^2(\pi^+)$ with

$$\|f_n\|^2 = \pi$$
 for every $n \in \mathbb{N}$.

Also $\{f_n\}$ is a pointwise null sequence in $H^2(\pi^+)$ and again since $H^2(\pi^+)$ is a functional Hilbert space, by an application of Lemma 2.1 we can conclude that $\{f_n\}$ is a weak null sequence in $H^2(\pi^+)$. To complete the proof it is enough to show that $\{\|C_Tf_n\|\}$ is bounded away from zero. In this regard we have

$$\begin{split} |(C_T f_n)(x+iy)|^2 &= |n^{-\frac{1}{2}} (in^{-1} + T(w))^{-1}|^2 \quad \text{where} \quad w = x + iy ,\\ &= n^{-1} |(in^{-1} + T(w))^{-1} (in^{-1} + w) (in^{-1} + w)^{-1}|^2 \\ &\geq M^{-2} |f_n(x+iy)|^2 . \end{split}$$

Therefore,

$$\int_{-\infty}^{\infty} |(C_T f_n)(x+iy)|^2 dx \ge M^{-2} \int_{-\infty}^{\infty} |f_n(x+iy)|^2 dx$$

Hence

$$\|C_T f_n\|^2 \ge M^{-2} \pi$$

which completes the proof of the theorem.

3. Non-compact composition operators on $H^2(D)$

In this section we restrict ourselves to those holomorphic functions T from π^+ into itself whose only singularity is the pole at the point at infinity. If T is a holomorphic function from π^+ into π^+ , then we define a holomorphic function t of D into itself by $t(z) = (L^{-1} \circ T \circ L)(z)$, where L is the linear fractional transformation from D onto π^+ defined by L(z) = i(1+z)/(1-z) with L^{-1} defined by $L^{-1}(\omega) = (\omega - i)/(\omega + i)$. Next we need a result of [5] which we put in the form of a lemma.

LEMMA 3.1. If C_T is a bounded operator on $H^2(\pi^+)$, then the multiplication operator M_β induced by the function $\beta(z) = (1-t(z))/(1-z)$ is a bounded operator on $H^2(D)$, where $t = L^{-1} \circ T \circ L$.

THEOREM 3.2. If $C_T \in B(H^2(\pi^+))$, then t induces a non-compact composition operator on $H^2(D)$, where $t = L^{-1} \circ T \circ L$.

Proof. Since
$$C_T \in B(H^2(\pi^+))$$
, by Lemma 3.1, $M_\beta \in B(H^2(D))$. Hence
 $\sup\{|(1-t(z))/(1-z)| : z \in D\} = ||\beta||_{\infty}$
 $= ||M_\beta|| < \infty$,

which by the theorem of Julia-Carathéodory [1, Section 299, p. 32] shows that t has an angular derivative at 1. So by Theorem 2.1 of [3], C_t is not compact.

128

But the converse of this theorem is false. We cite the following example.

EXAMPLE. Let T(w) = ((i-3)w-3i+1)/((i-1)w+i-1). Then it is easy to see that T maps π^+ into π^+ . Also $T(w) \rightarrow (i-3)/(i-1)$ as $w \rightarrow \infty$ which shows that C_T is not a bounded operator on $H^2(\pi^+)$. But we shall show that the function t defined by $t(z) = (L^{-1} \circ T \circ L)(z) = (i+z)/2i$ induces a non-compact composition operator on $H^2(D)$. Here we have

$$\lim_{\substack{z \neq i \\ z \in \Delta}} \frac{t(z)-1}{(z-i)} = 1/2i ,$$

where Δ is any triangle contained in *D* with a vertex at i. This shows that t has an angular derivative at i. So again, by Theorem 2.1 of [3], C_t is not compact.

References

- [1] C. Carathéodory, Theory of functions of a complex variable, Volume two (translated by F. Steinhardt. Chelsea, New York, 1960).
- [2] Eric A. Nordgren, "Composition operators on Hilbert spaces", Hilbert space operators, 37-63 (Proc. Conf. Hilbert Space Operators, California State University, Long Beach, 1977. Lecture Notes in Mathematics, 693. Springer-Verlag, Berlin, Heidelberg, New York, 1978).
- [3] J.H. Shapiro & P.D. Taylor, "Compact, nuclear, and Hilbert-Schmidt composition operators on H²", Indiana Univ. Math. J. 23 (1973), 471-496.
- [4] R.K. Singh, "A relation between composition operators on $H^2(D)$ and $H^2(\Pi^+)$ ", Pure and Appl. Math. Sci. 1 (1974/75), no. 2, 1-5.
- [5] R.K. Singh and S.D. Sharma, "Composition operators on a functional Hilbert space", Bull. Austral. Math. Soc. 20 (1979), 377-384.

[6] Donald Wesley Swanton, "Composition operators on $H^{\mathcal{P}}(D)$ " (PhD thesis, Northwestern University, Evanston, Illinois, 1974).

Department of Mathematics, University of Jammu, Jammu 180001, India.

130