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CONE PRESERVING MAPPINGS FOR QUADRATIC CONES 
OVER ARBITRARY FIELDS 

J. A. LESTER 

1. I n t r o d u c t i o n and t e r m i n o l o g y . Let F be a non-singular metric vector 
space, t ha t is, a vector space over a field F not of characteristic two, upon which 
is defined a non-singular symmetric bilinear form ( , ). For any a £ V, we 
define the cone with vertex a to be the set 

C(a) = [x\ (x — a, x — a) = 0, x 6 V\. 

A m a p p i n g / : F —> V will be said to preserve cones if f[C(a)] = C[f(a)]. 
Mappings which preserve Minkowskian cones (F = R and (x, y) = Xij\ — 

X^=2 Xiji with respect to some basis) have been examined by many authors : 
we mention only Alexandrov [1] and Zeeman [6] as two notable examples. We 
are interested here in a result of Borchers and Hegerfeldt [4]. These authors 
showed tha t bijections of Minkowski space (of dimension ^ 3 ) which preserve 
cones are, up to dilatations and translations, Lorentz transformations; this 
result was proven by first demonstrat ing the linearity of the cone-preserving 
mappings (up to a t ranslat ion). We shall generalize their result to cones over 
arb i t rary fields by first showing tha t the cone-preserving mappings are, up to a 
translation, semi-linear, as defined in [2, 3]: 

A semi-linear bijection of a vector space W over a field F is a pair of bijections 
L: W-*W, T : F -* F such tha t for all x, y £ W, a G F, 

i) L(x + y) = Lx + Ly 

ii) L(ax) = aTLx. 

(These two properties imply tha t r is an automorphism of F). 

Our main result is the following. 

T H E O R E M . Let V be a non-singular metric vector space over the field F, with 
bilinear form ( , ) ; assume that dim V ^ 3 and that V is not anisotropic (i.e. 
(x, x) = 0 for some x 9e 0) . Let f : V —> V be a bijection of V which preserves 
cones. Then f{x) — Lx + / ( 0 ) , where (L, r ) is a semi-linear bijection of V satis
fying {Lx, Ly) = X(x, y)T for some non-zero X G F and for all x, y £ V. 

Note 1. If F = R, then r = id^ (since R has no non-trivial automorphisms) 
and for some /x £ R, either X = ju2 or X = — JJL2. In the first case, i = }jrlL 
satisfies (ix, iy) = (x, y), i.e. i is an isometry of V. In the second case , / = /x-1L 
satisfies (jx,jy) — —(x,y); this s ta tement implies tha t the bilinear forms 
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( , ) and — ( , ) have the same signature. By Sylvester 's law of inertia, this is 
possible only if the dimension of V is twice its W i t t index (to be defined below). 
T h u s the first case includes the Minkowskian case of Borchers and Hegerfeldt. 

Note 2. For general F, if X = ^2 for some /x G F, then s = yrxL satisfies 
(sx, sy) = (x, y)T for all x, y G V. Semi-linear bijections (s, r) which satisfy 
this property are generalizations of isometries, and may be called "semi-
isometries." The fact t ha t such mappings arise natural ly from transformations 
which preserve the cones generated by the metric s t ructure of the space 
indicates t ha t further s tudy of semi-isometries might wrell prove worthwhile. 

The proof of our theorem relies heavily on the geometry of metric vector 
spaces; a very readable presentat ion of this appears in Snapper and Troyer [5] 
(see also Art in [2]). Those features of this geometry relevant to our discussion 
are outlined below. 

Let V denote any non-singular metric vector space. A bijection of V which 
preserves the bilinear form ( , ) of V is called an isometry. 

The vectors x, y G V are said to be orthogonal if (x, y) = 0; this notion extends 
to orthogonali ty of subspaces of V. Self-orthogonal vectors are called null, or 
isotropic, while self-orthogonal subspaces are called totally isotropic. Any 
subspace U has an orthogonal complement UL, consisting of all vectors orthogonal 
to U; U is then said to be non-singular if and only if the subspace rad U = 
U C\ UL, called the radical of U, is {0}. There always exists a non-singular 
subspace V of U, unique up to isometry, such tha t U can be decomposed as the 
orthogonal direct sum U = V © rad U. 

T h e space V has an orthogonal direct sum decomposition of the form 

V = UQH,® . . .©Hk 

where U is anisotropic (it contains no non-zero null vectors) and each Hi is a 
hyperbolic 2-space (called Artininanplane in [5]), i.e. it is spanned by two non-
orthogonal null vectors. Such decompositions are unique up to isometry, thus 
the non-negative integer k, called the Witt index of V, is an invar iant of V. 
I t can be shown tha t the largest totally isotropic subspace of V has dimension k. 

Some notat ion: for u, v, w, . . . G V, (u, v, w, . . .) denotes the subspace 
spanned by u, v, w, . . . . For any subset 5 of V, Sc denotes the (set-theoretic) 
complement of .S in V. 

2. S o m e g e o m e t r i c propert ies of c o n e s a n d s u b s p a c e s of V. Through
out this section, V denotes a non-singular non-anisotropic metric vector space 
( thus V has W i t t index at least 1). 

Definition. A basis of null vectors of any metric vector space will be called a 
null basis. 

LEMMA 2.1. Any non-singular, non-anisotropic metric vector space has a null 
basis. 
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Proof. Let W be such a space; then W = U® i?i 0 . . . © Hk where U is 
anisotropic and Hi, . . . , Hk are hyperbolic 2-spaces. If U — {0}, the required 
basis can be constructed by taking pairs of non-orthogonal null vectors 
nif mt G Hf, i = 1, 2, . . . , k. If U ^ {0}, let {wy} be a basis of [/and define 
the vectors &y by &7 = wy + n\ + /3;-Wi, where /^ = — \{UJ, uf)(wi, mi) - 1 . Then 
{&y; Wj, mz} is the required basis. 

LEMMA 2.2. 7/ F /ms WÏ// index at least 2, then for any x Ç F, (x)-1 has a null 
basis. 

Proof. If x is not null, (x)-1 is non-singular and non-anisotropic and Lemma 2.1 
applies; the same is true if x = 0. If x is null and non-zero, it can be chosen as 
the vector n2 of a decomposition of V like that of Lemma 2.1 ; thus for kjt nf, m{ 

as in Lemma 2.1, {kj} nu mr, r ^ 2} is the required basis. 

LEMMA 2.3. For non-zero x £ V, if (x)1- has a null basis, 

(x)= n (nf. 
w€<ar>J- n C(0) 

Proof. Because n £ (x)-1 Pi C(0) implies (x) C (^)J") we have 

<*> ç n (n)\ 
nçix)2- n c(o) 

But (x)-1 has a null basis, so (x)1- P\ C(0) contains (dim V) — 1 linearly 
independent vectors; hence Pl^^ncco) (w)-1 must be a line, specifically, the 
line (x). 

LEMMA 2.4. If m ^ 0 in F w null, then 

C(m)C\ C(0) = ( w ) ^ C(0). 

Proof. The equations of C(m), C(0) and (w)-1 are (x, x) — 2{x, m) = 0, 
(x, x) = 0, and (x, m) = 0 respectively. Any two of these implies the third, 
proving our claim. 

LEMMA 2.5. If m ^ 0 in V is null, then 

(m)= H C(n) 
nÇCim) H C(0) 

Proof. Case i). F has Witt index 1. Lemma 2.4 implies that for any non-zero 
null vector k, C(0) C\ C(k) = (k) (since otherwise F would contain a totally 
isotropic 2-space, an impossibility in spaces of Witt index 1). We obtain 

(m) = n [c(n) n c(o)] = n c(«). 
nÇC(ra) H C(0) wÇC(m) H C(0) 

Case ii). F has Witt index > 1 . Since (m)-1 has a null basis by Lemma 2.2, 
Lemma 2.3 implies 

(m) = O (nf. 
ntirn)1- f i C(0) 
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But <m> C C(O), so 

<w>= n [(n)xnc(o)] 
n ^ r o ^ O C(0) 

H [C(n) C\ C(0)] (by Lemma 2.4) 
n€C(m) H C(0) 

n c(») 
n£C{m) Pi C(0) 

LEMMA 2.6. If m 9^ 0 in V is null, then 

U C(«) = C(0) W «w) x ) c . 

Proof, i) Assume that x G Uwe<m> C(w); then x G C(n) for some n G (m), 
implying (x, x) — 2(x, w) = 0. If x ^ C(0), then (x, x) ^ 0, so (x, n) 9^ 0, i.e. 
x g (w)-1. Since (m)1- = (n)\ x G {{rn)L)c. Thus x G C(0) \J ((m)-1)0. 

ii) Assume that y G C(0) U ((w)1)0. If y G C(0), then 3; G U„e<m> C(»). If 
y (? C(0), then 3/ g (w)-1, so (y, m) ^ 0. Consequently, fora = \{y, y)(y, m)_ 1 , 
we have (y — am, y — am) = 0, i.e. y G C(am) C Unç(m) C(n). 

Our claim is proven from i) and ii). 

{ n c(»)4 u c(o) r\ [c{m) U c(or 

LEMMA 2.7. 7/ w ^ 0 in F 75 ww//, /fen 

Proof. Put 4̂ = (m)-1 and B = C(0) in the set-theoretic identity 

A = [\AC KJ B)C\J B] H [(A HB)U Bc] 

and use Lemmas 2.4 and 2.6. 

3. Proof of the theorem. For any a G V, define the mapping/0 : V —» F by 

fa = r_/(fl) of oTa 

where for any K F, T& denotes the translation Tbx = x + b. Then / a is 
bijective, /a(0) = 0, and p preserves cones: fa[C(x)] = C[fa(x)]. 

In the next three lemmas, where a is fixed, denote the image of any x G F 
under/0 by x : x = fa(x). 

LEMMA 3.1. For any non-zero null vector m, 

fa((m)) = (fa(m)). 

Proof. By Lemma 2.5 

(m) = H C{n), 
n£C(m) H C(0) 

thus, since fa preserves cones, 

/•««» = n c(«). 
n€C(m) Pi C(0) 
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But n € C(m) Pi C(0) if and only if n € C(m) C\ C(0), thus 

f((m}) = _H C(») 
n€C(m) D C(0) 

= (w) 

= (f(^))-
using Lemma 2.5 again. 

LEMMA 3.2. For non-zero null vectors m, 

fa((m^) = <f (m))-k 

Proof. From Lemma 2.7, 

(w)1 = n c(»)4 u c(o) n [c(m) u c(o)c 

Since / a is bijective, it preserves unions, intersections and complements of 
subsets of V; hence 

f({mf) = \\ n c(ny\yjc(o)\n\c(m)uc(o)i 

But by Lemma 3.1, n £ (m) if and only if n £ (râ), so 

r«^>x) = { f i , C(n)4 U C(0) O [C(w) \J C(0)e] 

by another application of Lemma 2.7. 

LEMMA 3.3. For any non-zero x £ F, i/ (x)-1 feas a «w// earn, then fa((x)) = 

(fix)). 
Proof. For null x, Lemma 3.1 applies. For non-null x, Lemma 2.3 yields 

<*> = n (nf, 
n£{x)L Pi C(0) 

thus, using Lemma 3.2 

/ • « * » = n («)x. 
w€<x) n c(0) 

But n Ç (x)-1 if and only if x £ (w)-1* which, by Lemma 3.2, is true if and only if 
x € (^)±, or w £ (^)_L- Thus 

/"«*» = n <«>x. 
nÇ^)-1- O C(0) 

If (x)-1 has no null basis, it is anisotropic by Lemma 2.1 (it is not singular, 
since x is not null), and the above equation gives the contradiction fa((x)) = 
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(O)1- = V. T h u s (x)1- has a null basis, and Lemma 2.3 yields fa((x)) = (x) = 

(fix)). 
COROLLARY. If x 9e 0 is such that (x)1- has a null basis, then f maps lines 

parallel to x into lines. 

Proof. Such a line is a coset of the form a + (x) for some a f F ; thus 

f(a + <*» = / o Ta((x)) = TM of((x)) = / ( a ) + </a(x)>. 

From the above corollary, Lemma 2.2 and the fundamental theorem of 
projective geometry (see [2] or [3]) if V has W i t t index at least 2, f(x) = 
Lx + / ( 0 ) for some semi-linear bijection (L, r ) of F. We now consider the case 
where V has W i t t index 1. The following is an algebraic generalization of 
results in [4] for Minkowskian spaces. 

LEMMA 3.4. If V has Witt index 1, then for any a Ç F, fa maps hyperbolic 

2-spaces into hyperbolic 2-spaces. 

Proof. Let P = (m, n) be a hyperbolic 2-space in F, where m and n are non-
orthogonal null vectors. Then P' = (fa(m), fa{n)) is also a hyperbolic 2-space 
(it contains the distinct null lines (fa(m)) =fa((m)) a n d ( / a ( n ) ) = fa((n)), which 
are not orthogonal, since V has W i t t index 1). Let k be any non-zero null vector 
not contained in P , and pick 5 € (k)1- P\ P, s ?£ 0. Because V has W7itt index 1, 
5 is not null (else (s, k) would be a totally isotropic 2-space in V) thus 5 is not 
parallel to m or n. By Lemma 2.1 and the corollary to Lemma 3.3, since (s)L is 
non-singular and non-anisotropic (it contains k),f maps lines parallel to 5 into 
lines. I t follows t h a t / a does the same. 

Now any y Ç P\(s) lies on a line parallel to 5 which intersects (n) and (m) a t 
distinct points. F Ience / a (^ ) lies on a line intersecting (fa(n)) and ( / a ( m ) ) a t 
distinct points, so fa(y) G P'• 

Any y £ (s) lies on some line / parallel to n. Since l\{y] C ^A(s),/ a(^M:yi) C 
fa(P\(s)) C -P'. B u t / a ( / ) is a line (Lemma 3.1 impl ies / 0 maps lines parallel n 
into lines), thus fa(y) G P''. 

Therefore / f l (P) C f . 

LEMMA 3.5. / / (x)-1 /zas wo «M// basis for some x ^ 0, then f maps lines parallel 
to x into lines. 

Proof. By Lemma 2.2, V has W i t t index 1. If x is null, Lemma 3.1 yields the 
required result. If x is not null, then (x)-1- is non-singular and thus anisotropic 
by Lemma 2.1. For some two null vectors n, m G V, x, n and m are linearly 
independent, and neither of (x, n), (x, m) is zero (since (x)1- is anisotropic); 
thus (x, m) and (x, w) are hyperbolic 2-spaces. From (x) = (x, m) C\ (x, n) and 
Lemma 3.4 follows t h a t / ° ( ( x ) ) is contained in a line, and from this, our desired 
conclusion. 

Now Lemma 3.5 and the fundamental theorem imply t h a t / ( x ) = Lx + / ( 0 ) 
for some semi-linear bijection (L, r ) of V. 
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The following lemma completes the proof of our theorem. 

LEMMA 3.6. / / (L, T) is a cone-preserving semi-linear bisection, then for some 
non-zero X G F, 

(Lx, Ly) = X(x, y)T 

for all x, y G V. 

Proof. Set V = U © H, © . . . © Hk as in § 1 ; then Ht = (mu nx) where mt 

and rti are non-orthogonal null vectors. For any x G V, x is null if and only if Lx 
is null. 

i) For i,j = 1,2, ... ,k;i 5* j , the vectors nh mi} nt + njy mt + ntj, fit + ra;-
are null, implying that their images under L are null. It follows that 
(Lnu Lrii) = (Lmt, Lmt) = (Lnu Lnf) = (Lmt, Lmf) = (LnuLmf) = 0. For 
any i = 1, 2, . . . , k, nt + m* is not null, thus neither is Lnt + Lmf. Hence 
(Lw*, Lmt) 7e 0. Set (LWJ, Lnt) = X*(raz-, wz-)

T, i = 1,2, ... ,k. 
ii) We show that all the X/s are equal (k ^ 2). For 0 = — (wz-, raz) (w ,̂ mf)~l, 

b = tii + mj + Uj + /5w7 is null, implying that L6 is null, i.e. (Lnt, Lm^) + 
t3T(Lnj, Lmf) = 0. Using i), then, \i(mu n^7 + \j/3

T(nj,mj)
T = 0, which implies 

Xz- = X;. Thus (Lni} Lmt) = \(nu m^)T, i = 1, 2, . . . , k. 
iii) If U = {0}, we are done; thus assume U ?* {0}. For non-zero u G U, 

define c = yu + wf, where 7 r = — 2(Lu, Lnt) (Lu, Lu)~l. Since Lc is null, c is 
null, implying that y2 = 0. Thus yT = 0 and (Lw, Ln*) = 0. Similarly, 
(Lu, Lmt) = 0. 

If 5 = — ±(u, u) (nif mi)-1 for non-zero u G U, the vector d = M + Wj + 5WJ 
is null. Then Ld is null: (Lz ,̂ Lw) + 2hT(Lni, Lm^ = 0, which implies via i) 
and ii), (Lu, Lu) = X(u, u)T. 

For distinct v, w £ V, u = v -{- w satisfies (Lu, Lu) = \(u, u)T\ this yields 
(Lv, Lw) = \(v, w)T. 

Parts i), ii) and iii) prove our result. 
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