CONE PRESERVING MAPPINGS FOR QUADRATIC CONES OVER ARBITRARY FIELDS

J. A. LESTER

1. Introduction and terminology. Let V be a non-singular metric vector space, that is, a vector space over a field F not of characteristic two, upon which is defined a non-singular symmetric bilinear form (,). For any $a \in V$, we define the cone with vertex a to be the set

$$
C(a)=\{x \mid(x-a, x-a)=0, x \in V\} .
$$

A mapping $f: V \rightarrow V$ will be said to preserve cones if $f[C(a)]=C[f(a)]$.
Mappings which preserve Minkowskian cones $\left(F=R\right.$ and $(x, y)=x_{1} y_{1}$ $\sum_{i=2}^{n} x_{i} y_{i}$ with respect to some basis) have been examined by many authors: we mention only Alexandrov [1] and Zeeman [6] as two notable examples. We are interested here in a result of Borchers and Hegerfeldt [4]. These authors showed that bijections of Minkowski space (of dimension $\geqq 3$) which preserve cones are, up to dilatations and translations, Lorentz transformations; this result was proven by first demonstrating the linearity of the cone-preserving mappings (up to a translation). We shall generalize their result to cones over arbitrary fields by first showing that the cone-preserving mappings are, up to a translation, semi-linear, as defined in [2, 3]:

A semi-linear bijection of a vector space W over a field F is a pair of bijections $L: W \rightarrow W, \tau: F \rightarrow F$ such that for all $x, y \in W, \alpha \in F$,
i) $L(x+y)=L x+L y$
ii) $L(\alpha x)=\alpha^{\tau} L x$.
(These two properties imply that τ is an automorphism of F).
Our main result is the following.
Theorem. Let V be a non-singular metric vector space over the field F, with bilinear form (,); assume that $\operatorname{dim} V \geqq 3$ and that V is not anisotropic (i.e. $(x, x)=0$ for some $x \neq 0)$. Let $f: V \rightarrow V$ be a bijection of V which preserves cones. Then $f(x)=L x+f(0)$, where (L, τ) is a semi-linear bijection of V satisfying $(L x, L y)=\lambda(x, y)^{\tau}$ for some non-zero $\lambda \in F$ and for all $x, y \in V$.

Note 1. If $F=R$, then $\tau=\operatorname{id}_{R}$ (since R has no non-trivial automorphisms) and for some $\mu \in R$, either $\lambda=\mu^{2}$ or $\lambda=-\mu^{2}$. In the first case, $i=\mu^{-1} L$ satisfies $(i x, i y)=(x, y)$, i.e. i is an isometry of V. In the second case, $j=\mu^{-1} L$ satisfies $(j x, j y)=-(x, y)$; this statement implies that the bilinear forms

[^0](,) and - (,) have the same signature. By Sylvester's law of inertia, this is possible only if the dimension of V is twice its Witt index (to be defined below). Thus the first case includes the Minkowskian case of Borchers and Hegerfeldt.

Note 2. For general F, if $\lambda=\mu^{2}$ for some $\mu \in F$, then $s=\mu^{-1} L$ satisfies $(s x, s y)=(x, y)^{\tau}$ for all $x, y \in V$. Semi-linear bijections (s, τ) which satisfy this property are generalizations of isometries, and may be called "semiisometries." The fact that such mappings arise naturally from transformations which preserve the cones generated by the metric structure of the space indicates that further study of semi-isometries might well prove worthwhile.

The proof of our theorem relies heavily on the geometry of metric vector spaces; a very readable presentation of this appears in Snapper and Troyer [5] (see also Artin [2]). Those features of this geometry relevant to our discussion are outlined below.

Let V denote any non-singular metric vector space. A bijection of V which preserves the bilinear form (,) of V is called an isometry.

The vectors $x, y \in V$ are said to be orthogonal if $(x, y)=0$; this notion extends to orthogonality of subspaces of V. Self-orthogonal vectors are called null, or isotropic, while self-orthogonal subspaces are called totally isotropic. Any subspace U has an orthogonal complement U^{\perp}, consisting of all vectors orthogonal to U; U is then said to be non-singular if and only if the subspace $\operatorname{rad} U=$ $U \cap U^{\perp}$, called the radical of U, is $\{0\}$. There always exists a non-singular subspace \bar{U} of U, unique up to isometry, such that U can be decomposed as the orthogonal direct sum $U=\bar{U}(1) \operatorname{rad} U$.

The space V has an orthogonal direct sum decomposition of the form

$$
V=U\left(₫ H _ { 1 } \left(\perp \ldots \left(\pm H_{k}\right.\right.\right.
$$

where U is anisotropic (it contains no non-zero null vectors) and each H_{i} is a hyperbolic 2-space (called Artininan plane in [5]), i.e. it is spanned by two nonorthogonal null vectors. Such decompositions are unique up to isometry, thus the non-negative integer k, called the Witt index of V, is an invariant of V. It can be shown that the largest totally isotropic subspace of V has dimension k.

Some notation: for $u, v, w, \ldots \in V,\langle u, v, w, \ldots\rangle$ denotes the subspace spanned by u, v, w, \ldots. For any subset S of V, S^{c} denotes the (set-theoretic) complement of S in V.
2. Some geometric properties of cones and subspaces of V. Throughout this section, V denotes a non-singular non-anisotropic metric vector space (thus V has Witt index at least 1).

Definition. A basis of null vectors of any metric vector space will be called a null basis.

Lemma 2.1. Any non-singular, non-anisotropic metric vector space has a null basis.

Proof. Let W be such a space; then $W=U(1) H_{1}(\perp) \ldots$. (1) $H_{l i}$ where U is anisotropic and H_{1}, \ldots, H_{k} are hyperbolic 2-spaces. If $U=\{0\}$, the required basis can be constructed by taking pairs of non-orthogonal null vectors $n_{i}, m_{i} \in H_{i}, i=1,2, \ldots, k$. If $U \neq\{0\}$, let $\left\{u_{j}\right\}$ be a basis of U and define the vectors k_{j} by $k_{j}=u_{j}+n_{1}+\beta_{j} m_{1}$, where $\beta_{j}=-\frac{1}{2}\left(u_{j}, u_{j}\right)\left(n_{1}, m_{1}\right)^{-1}$. Then $\left\{k_{j} ; n_{i}, m_{i}\right\}$ is the required basis.

Lemma 2.2. If V has Witt index at least 2, then for any $x \in V,\langle x\rangle^{\perp}$ has a null basis.

Proof. If x is not null, $\langle x\rangle^{\perp}$ is non-singular and non-anisotropic and Lemma 2.1 applies; the same is true if $x=0$. If x is null and non-zero, it can be chosen as the vector n_{2} of a decomposition of V like that of Lemma 2.1; thus for k_{j}, n_{i}, m_{i} as in Lemma 2.1, $\left\{k_{j}, n_{i}, m_{r}, r \neq 2\right\}$ is the required basis.

Lemma 2.3. For non-zero $x \in V$, if $\langle x\rangle^{\perp}$ has a null basis,

$$
\langle x\rangle={\underset{n \in(x)}{ } \wedge^{\perp} \cap C(0)}_{\cap}\langle n\rangle^{\perp} .
$$

Proof. Because $n \in\langle x\rangle^{\perp} \cap C(0)$ implies $\langle x\rangle \subset\langle n\rangle^{\perp}$, we have

$$
\langle x\rangle \subseteq \underbrace{}_{n \in\langle x\rangle^{\perp} \cap} \cap\langle(0)<\rangle^{\perp} .
$$

But $\langle x\rangle^{\perp}$ has a null basis, so $\langle x\rangle^{\perp} \cap C(0)$ contains ($\operatorname{dim} V$) -1 linearly independent vectors; hence $\bigcap_{n \in(x)^{\perp} \cap c(0)}\langle n\rangle^{\perp}$ must be a line, specifically, the line $\langle x\rangle$.

Lemma 2.4. If $m \neq 0$ in V is null, then

$$
C(m) \cap C(0)=\langle m\rangle^{\perp} \cap C(0)
$$

Proof. The equations of $C(m), C(0)$ and $\langle m\rangle^{\perp}$ are $(x, x)-2(x, m)=0$, $(x, x)=0$, and $(x, m)=0$ respectively. Any two of these implies the third, proving our claim.

Lemma 2.5. If $m \neq 0$ in V is null, then

$$
\langle m\rangle=\underset{n \in C(m) \cap C(0)}{\cap} C(n)
$$

Proof. Case i). V has Witt index 1. Lemma 2.4 implies that for any non-zero null vector $k, C(0) \cap C(k)=\langle k\rangle$ (since otherwise V would contain a totally isotropic 2 -space, an impossibility in spaces of Witt index 1). We obtain

$$
\langle m\rangle=\bigcap_{n \in C\left(\begin{array}{c}
n) \\
n \neq 0
\end{array}\right.}^{\cap}\left[C(0)<\bigcap_{n \in C(m) \cap C(0)} C(n)\right. \text {. }
$$

Case ii). V has Witt index >1. Since $\langle m\rangle^{\perp}$ has a null basis by Lemma 2.2, Lemma 2.3 implies

$$
\langle m\rangle={ }_{n \in\langle m\rangle^{\perp} \cap c(0)}\langle n\rangle^{\perp} .
$$

But $\langle m\rangle \subset C(0)$, so

$$
\begin{aligned}
\langle m\rangle & =\bigcap_{n \in\{m\rangle^{\perp} \cap C(0)}\left[\langle n\rangle^{\perp} \cap C(0)\right] \\
& =\bigcap_{n \in C(m) \cap C(0)}^{\cap}[C(n) \cap C(0)] \quad \text { (by Lemma 2.4) } \\
& ={ }_{n \in C(m) \cap C(0)}^{\cap} C(n)
\end{aligned}
$$

Lemma 2.6. If $m \neq 0$ in V is null, then

$$
\bigcup_{n \in\langle m\rangle} C(n)=C(0) \cup\left(\langle m\rangle^{\perp}\right)^{c} .
$$

Proof. i) Assume that $x \in \cup_{n \in\langle m}{ }_{(2)} C(n)$; then $x \in C(n)$ for some $n \in\langle m\rangle$, implying $(x, x)-2(x, n)=0$. If $x \notin C(0)$, then $(x, x) \neq 0$, so $(x, n) \neq 0$, i.e. $x \notin\langle n\rangle^{\perp}$. Since $\langle m\rangle^{\perp}=\langle n\rangle^{\perp}, x \in\left(\langle m\rangle^{\perp}\right)^{c}$. Thus $x \in C(0) \cup\left(\langle m\rangle^{\perp}\right)^{c}$.
ii) Assume that $y \in C(0) \cup\left(\langle m\rangle^{\perp}\right)^{c}$. If $y \in C(0)$, then $y \in \cup_{n \in\langle m\rangle} C(n)$. If $y \notin C(0)$, then $y \notin\langle m\rangle^{\perp}$, so $(y, m) \neq 0$. Consequently, for $\alpha=\frac{1}{2}(y, y)(y, m)^{-1}$, we have $(y-\alpha m, y-\alpha m)=0$, i.e. $y \in C(\alpha m) \subseteq \cup_{\left.n \in \ell_{m}\right\rangle} C(n)$.

Our claim is proven from i) and ii).
Lemma 2.7. If $m \neq 0$ in V is null, then

$$
\langle m\rangle^{\perp}=\left[\left\{\bigcap_{n \in\{m\rangle} C(n)^{c}\right\} \cup C(0)\right] \cap\left[C(m) \cup C(0)^{c}\right] .
$$

Proof. Put $A=\langle m\rangle^{\perp}$ and $B=C(0)$ in the set-theoretic identity

$$
A=\left[\left\{A^{c} \cup B\right\}^{c} \cup B\right] \cap\left[(A \cap B) \cup B^{c}\right]
$$

and use Lemmas 2.4 and 2.6.
3. Proof of the theorem. For any $a \in V$, define the mapping $f^{a}: V \rightarrow V$ by

$$
f^{a}=T_{-f(a)} \circ f \circ T_{a}
$$

where for any $b \in V, T_{b}$ denotes the translation $T_{b} x=x+b$. Then f^{a} is bijective, $f^{a}(0)=0$, and f^{a} preserves cones: $f^{a}[C(x)]=C\left[f^{a}(x)\right]$.

In the next three lemmas, where a is fixed, denote the image of any $x \in V$ under f^{a} by $\bar{x}: \bar{x}=f^{a}(x)$.

Lemma 3.1. For any non-zero null vector m,

$$
f^{a}(\langle m\rangle)=\left\langle f^{a}(m)\right\rangle
$$

Proof. By Lemma 2.5

$$
\langle m\rangle=\bigcap_{n \in C(m) \cap C(0)} C(n),
$$

thus, since f^{a} preserves cones,

$$
f^{a}(\langle m\rangle)=\bigcap_{n \in C(m) \cap C(0)} C(\bar{n}) .
$$

But $n \in C(m) \cap C(0)$ if and only if $\bar{n} \in C(\bar{m}) \cap C(0)$, thus

$$
\begin{aligned}
f^{a}(\langle m\rangle) & =\bigcap_{\bar{n} \in C(\bar{m}) \cap C(0)} C(\bar{n}) \\
& =\langle\bar{m}\rangle \\
& =\left\langle f^{a}(m)\right\rangle,
\end{aligned}
$$

using Lemma 2.5 again.
Lemma 3.2. For non-zero null vectors m,

$$
f^{a}\left(\langle m\rangle^{\perp}\right)=\left\langle f^{a}(m)\right\rangle^{\perp} .
$$

Proof. From Lemma 2.7,

$$
\langle m\rangle^{\perp}=\left[\left\{\bigcap_{n \in\{m\rangle} C(n)^{c}\right\} \cup C(0)\right] \cap\left[C(m) \cup C(0)^{c}\right] .
$$

Since f^{a} is bijective, it preserves unions, intersections and complements of subsets of V; hence

$$
f^{a}\left(\langle m\rangle^{\perp}\right)=\left[\left\{\bigcap_{n \in\{m\rangle} C(\bar{n})^{c}\right\} \cup C(0)\right] \cap\left[C(\bar{m}) \cup C(0)^{c}\right]
$$

But by Lemma 3.1, $n \in\langle m\rangle$ if and only if $\bar{n} \in\langle\bar{m}\rangle$, so

$$
\begin{aligned}
f^{a}\left(\langle m\rangle^{\perp}\right) & =\left[\left\{\bigcap_{\bar{n} \in(\bar{m}\rangle} C(\bar{n})^{c}\right\} \cup C(0)\right] \cap\left[C(\bar{m}) \cup C(0)^{c}\right] \\
& =\langle\bar{m}\rangle^{\perp} \\
& =\left\langle f^{a}(m)\right\rangle^{\perp}
\end{aligned}
$$

by another application of Lemma 2.7.
Lemma 3.3. For any non-zero $x \in V$, if $\langle x\rangle^{\perp}$ has a null basis, then $f^{a}(\langle x\rangle)=$ $\left\langle f^{a}(x)\right\rangle$.

Proof. For null x, Lemma 3.1 applies. For non-null x, Lemma 2.3 yields

$$
\langle x\rangle=\cap_{n \in(x))^{\perp} \cap C(0)}^{\cap}\langle n\rangle^{\perp},
$$

thus, using Lemma 3.2

$$
f^{a}(\langle x\rangle)=\bigcap_{n \in\langle x\rangle \perp} \bigcap_{C(0)}\langle\bar{n}\rangle^{\perp} .
$$

But $n \in\langle x\rangle^{\perp}$ if and only if $x \in\langle n\rangle^{\perp}$, which, by Lemma 3.2 , is true if and only if $\bar{x} \in\langle\bar{n}\rangle^{\perp}$, or $\bar{n} \in\langle\bar{x}\rangle^{\perp}$. Thus

If $\langle\bar{x}\rangle^{\perp}$ has no null basis, it is anisotropic by Lemma 2.1 (it is not singular, since \bar{x} is not null), and the above equation gives the contradiction $f^{a}(\langle x\rangle)=$
$\langle 0\rangle^{\perp}=V$. Thus $\langle\bar{x}\rangle^{\perp}$ has a null basis, and Lemma 2.3 yields $f^{a}(\langle x\rangle)=\langle\bar{x}\rangle=$ $\left\langle f^{a}(x)\right\rangle$.

Corollary. If $x \neq 0$ is such that $\langle x\rangle^{\perp}$ has a null basis, then f maps lines parallel to x into lines.

Proof. Such a line is a coset of the form $a+\langle x\rangle$ for some $a \in V$; thus $f(a+\langle x\rangle)=f \circ T_{a}(\langle x\rangle)=T_{f(a)} \circ f^{a}(\langle x\rangle)=f(a)+\left\langle f^{a}(x)\right\rangle$.

From the above corollary, Lemma 2.2 and the fundamental theorem of projective geometry (see [2] or [3]) if V has Witt index at least $2, f(x)=$ $L x+f(0)$ for some semi-linear bijection (L, τ) of V. We now consider the case where V has Witt index 1 . The following is an algebraic generalization of results in [4] for Minkowskian spaces.

Lemma 3.4. If V has Witt index 1 , then for any $a \in V, f^{a}$ maps hyperbolic 2-spaces into hyperbolic 2-spaces.

Proof. Let $P=\langle m, n\rangle$ be a hyperbolic 2 -space in V, where m and n are nonorthogonal null vectors. Then $P^{\prime}=\left\langle f^{a}(m), f^{a}(n)\right\rangle$ is also a hyperbolic 2 -space (it contains the distinct null lines $\left\langle f^{a}(m)\right\rangle=f^{a}(\langle m\rangle)$ and $\left\langle f^{a}(n)\right\rangle=f^{a}(\langle n\rangle)$, which are not orthogonal, since V has Witt index 1). Let k be any non-zero null vector not contained in P, and pick $s \in\langle k\rangle^{\perp} \cap P, s \neq 0$. Because V has Witt index 1 , s is not null (else $\langle s, k\rangle$ would be a totally isotropic 2 -space in V) thus s is not parallel to m or n. By Lemma 2.1 and the corollary to Lemma 3.3, since $\langle s\rangle^{\perp}$ is non-singular and non-anisotropic (it contains k), f maps lines parallel to s into lines. It follows that f^{a} does the same.

Now any $y \in P \backslash\langle s\rangle$ lies on a line parallel to s which intersects $\langle n\rangle$ and $\langle m\rangle$ at distinct points. Hence $f^{a}(y)$ lies on a line intersecting $\left\langle f^{a}(n)\right\rangle$ and $\left\langle f^{a}(m)\right\rangle$ at distinct points, so $f^{a}(y) \in P^{\prime}$.

Any $y \in\langle s\rangle$ lies on some line l parallel to n. Since $\Lambda \backslash\{y\} \subset P \backslash\langle s\rangle, f^{a}(\lambda\{y\}) \subset$ $f^{a}(P \backslash\langle s\rangle) \subset P^{\prime}$. But $f^{a}(l)$ is a line (Lemma 3.1 implies f^{a} maps lines parallel n into lines), thus $f^{a}(y) \in P^{\prime}$.

Therefore $f^{a}(P) \subseteq P^{\prime}$.
Lemma 3.5. If $\langle x\rangle^{\perp}$ has no null basis for some $x \neq 0$, then f maps lines parallel to x into lines.

Proof. By Lemma 2.2,V has Witt index 1. If x is null, Lemma 3.1 yields the required result. If x is not null, then $\langle x\rangle^{\perp}$ is non-singular and thus anisotropic by Lemma 2.1. For some two null vectors $n, m \in V, x, n$ and m are linearly independent, and neither of $(x, n),(x, m)$ is zero (since $\langle x\rangle^{\perp}$ is anisotropic); thus $\langle x, m\rangle$ and $\langle x, n\rangle$ are hyperbolic 2 -spaces. From $\langle x\rangle=\langle x, m\rangle \cap\langle x, n\rangle$ and Lemma 3.4 follows that $f^{a}(\langle x\rangle)$ is contained in a line, and from this, our desired conclusion.

Now Lemma 3.5 and the fundamental theorem imply that $f(x)=L x+f(0)$ for some semi-linear bijection (L, τ) of V.

The following lemma completes the proof of our theorem.
Lemma 3.6. If (L, τ) is a cone-preserving semi-linear bijection, then for some non-zero $\lambda \in F$,

$$
(L x, L y)=\lambda(x, y)^{\tau}
$$

for all $x, y \in V$.
Proof. Set $V=U(1) H_{1}(1) \ldots$ (1) H_{k} as in § 1 ; then $H_{i}=\left\langle m_{i}, n_{i}\right\rangle$ where m_{i} and n_{i} are non-orthogonal null vectors. For any $x \in V, x$ is null if and only if $L x$ is null.
i) For $i, j=1,2, \ldots, k ; i \neq j$, the vectors $n_{i}, m_{i}, n_{i}+n_{j}, m_{i}+m_{j}, n_{i}+m_{j}$ are null, implying that their images under L are null. It follows that $\left(L n_{i}, L n_{i}\right)=\left(L m_{i}, L m_{i}\right)=\left(L n_{i}, L n_{j}\right)=\left(L m_{i}, L m_{j}\right)=\left(L n_{i}, L m_{j}\right)=0$. For any $i=1,2, \ldots, k, n_{i}+m_{i}$ is not null, thus neither is $L n_{i}+L m_{i}$. Hence $\left(L n_{i}, L m_{i}\right) \neq 0 . \operatorname{Set}\left(L m_{i}, L n_{i}\right)=\lambda_{i}\left(m_{i}, n_{i}\right)^{\tau}, i=1,2, \ldots, k$.
ii) We show that all the λ_{i} 's are equal $(k \geqq 2)$. For $\beta=-\left(n_{i}, m_{i}\right)\left(n_{j}, m_{j}\right)^{-1}$, $b=n_{i}+m_{i}+n_{j}+\beta m_{j}$ is null, implying that $L b$ is null, i.e. $\left(L n_{i}, L m_{i}\right)+$ $\beta^{\tau}\left(L n_{j}, L m_{j}\right)=0$. Using i), then, $\lambda_{i}\left(m_{i}, n_{i}\right)^{\tau}+\lambda_{j} \beta^{\tau}\left(n_{j}, m_{j}\right)^{\tau}=0$, which implies $\lambda_{i}=\lambda_{j}$. Thus $\left(L n_{i}, L m_{i}\right)=\lambda\left(n_{i}, m_{i}\right)^{\tau}, i=1,2, \ldots, k$.
iii) If $U=\{0\}$, we are done; thus assume $U \neq\{0\}$. For non-zero $u \in U$, define $c=\gamma u+n_{i}$, where $\gamma^{\tau}=-2\left(L u, L n_{i}\right)(L u, L u)^{-1}$. Since $L c$ is null, c is null, implying that $\gamma^{2}=0$. Thus $\gamma^{\boldsymbol{\tau}}=0$ and $\left(L u, L n_{i}\right)=0$. Similarly, $\left(L u, L m_{i}\right)=0$.

If $\delta=-\frac{1}{2}(u, u)\left(n_{i}, m_{i}\right)^{-1}$ for non-zero $u \in U$, the vector $d=u+n_{i}+\delta m_{i}$ is null. Then $L d$ is null: $(L u, L u)+2 \delta^{\tau}\left(L n_{i}, L m_{i}\right)=0$, which implies via i) and ii), $(L u, L u)=\lambda(u, u)^{r}$.

For distinct $v, w \in V, u=v+w$ satisfies $(L u, L u)=\lambda(u, u)^{r}$; this yields $(L v, L w)=\lambda(v, w)^{\tau}$.
Parts i), ii) and iii) prove our result.

References

1. A. D. Alexandrov, A contribution to chronogeometry, Can. J. Math. 19 (1967), 1119.
2. E. Artin, Geometric algebra (Interscience Publishers, New York, 1957).
3. R. Baer, Linear algebra and projective geometry (Academic Press, New York, 1952).
4. H. J. Borchers and G. C. Hegerfeldt, The structure of space-time transformations, Comm. Math. Phys. 28 (1972), 259.
5. E. Snapper and R. J. Troyer, Metric affine geometry (Academic Press, 1971).
6. E. C. Zeeman, Causality implies the Lorentz group, Journal Math. Phys. 5 (1964), 490.

Dalhousie University, Halifax, Nova Scotia

[^0]: Received November 30, 1976 and in revised form, March 30, 1977.

