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1. Introduction. About a hundred years ago, the author of Through the 
Looking-Glass wrote another book called Euclid and his Modern Rivals. Were 
these rivals Lobachevsky and Bolyai, Riemann and Schlafli? No, they were 
merely the authors of dull school textbooks that would soon be forgotten. The 
sad truth is that, in 1873, hardly anyone in England knew of the breakthrough 
that had occurred on the Continent some fifty years before: only Cayley in 
Cambridge, Clifford in London, and a few students. Even if Cayley or Clifford 
had visited Oxford and given a lecture there, it is doubtful that he would have 
succeeded in convincing the conservative Dodgson that Euclid's postulates 
could be modified to yield two new worlds, surpassing in strangeness the 
worlds of the two Alice books and yet just as logically consistent as Euclid. 

At the very time when Dodgson in England was defending Euclid, Klein in 
Germany was bringing together the two "opposite" worlds by embedding them 
in a projective space and specializing a polarity or, as von Staudt called it, a 
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Polarsystem. Klein's reasons for calling one of these geometries hyperbolic and 
the other elliptic are somewhat obscure. I like to justify the names in terms of 
their Greek roots, using a simple figure suggested by the title of this talk. 

M\ 

Figure 1 

Figure 1 shows two rays in a plane, drawn from points A and B, perpendicu­
lar to the line AB on the same side of it. According to the familar notions of 
Euclidean geometry, these rays are parallel. Measuring the distance from a 
point L on the first ray to the nearest point M on the second, we find this 
distance equal to AB. But is this only a first approximation? Can we be sure 
that the distance will remain the same when L is very far away? Suppose the 
rays are extended millions of miles: the measurement of LM ceases to be 
practical. If in fact LM is less than AB, or greater than AB, which would be 
strange but not really inconceivable, then we are living in a non-Euclidean 
universe. 

If LM<AB, so that the rays converge and ultimately intersect, the geometry 
is elliptic (from elleipein, to fall short). If L M > A J B , SO that the rays diverge, 
the geometry is hyperbolic (from hyperballein, to exceed, or to throw beyond. I 
have been tempted to speculate that the verb ballein, to throw, may be the 
origin of our word ball, or that the two words sprang from a common Aryan 
root). 

2. The hyperbolic plane. In the latter case, Euclid's "fifth postulate" is 
denied. For, if the ray AL, making a right angle with AB, is replaced by AJ, 
making a very slightly smaller angle with AB (as in Fig. 2), then this new ray 
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Figure 2 
from A and the old one from B will converge at first, attain a minimal distance 
JK, and then diverge. In the terminology of Eduard Study, these lines AJ and 
BK are ultraparallel, and we have the germ of a proof that ultraparallel lines 
have a common perpendicular which measures the shortest distance between 
them. (Compare [1], p. 133, Fig. 7.2A.) 

Somewhat similarly, we may consider what happens to a ray AM (Fig. 3) 
when M recedes from B so that the distance BM tends to infinity. In the 
terminology and notation of Lobachevsky, the limiting ray AN is parallel to 
BM, and the angle BAN, which is the limit of BAM, is the angle of parallelism 
n(p) corresponding to the distance p = AB. Thus the situation illustrated in 
Figure 2 will arise if the ray AJ satisfies 

n(p)<Z-BA/<90°. 
Both Lobachevsky and Bolyai used a horosphere, that is, a sphere of infinite 

radius, in order to prove that 
Il(p) = 2 arc tan e~p 

when p is measured in terms of a suitable unit of distance. Later on I hope to 
present an easy proof of this important formula. 

3. A historical digression. But first I would like to quote a paragraph about 
Lobachevsky and Bolyai from the non-Euclidean geometry textbook by Stefan 
Kulczycki ([4], pp. 54-55): 

It is truly amazing to what extent the trains of thought of the two scholars were related; they 
were in essence both based on the properties of the horosphere They were both aware of the 
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Figure 3 

value and importance of their work . . . . Both met with complete indifference or even, in the case of 
Lobachevsky, with jeers from people who . . . failed to comprehend what it was about. [They] were 
both bitterly disappointed but reac ted . . . in different ways. Bolyai, exasperated, closed his mouth 
and withdrew from scientific activity. Lobachevsky... in publication after publication . . . doggedly 
justified his non-Euclidean geometry from every point of v iew. . . . The extraordinary steadfastness 
of spirit shown by Lobachevsky during his twenty-five year struggle in utter isolation has very few 
equals in the history of science. 

This account is, perhaps slightly exaggerated; for we know that Gauss sent 
Lobachevsky a letter of genuine praise and arranged a corresponding member­
ship for him in the Gôttingen Academy. 

4. Hyperbolic space. Believing that astronomical space might be non-
Euclidean, Lobachevsky looked for an experimental proof using parallax. 
Suppose (Fige 4) M is a star while A and C are two opposite positions of the 
Earth in its orbit round the Sun, so chosen that the angles at A and C are 
equal. Since the parallax 90°-LBAM is greater than 90°-II(AB), hyperbolic 
space would require a positive lower bound for all parallaxes. The fact that no 
such bound was observed merely means that, if astronomical space is hyper­
bolic, 93 million miles must be very small in comparison with the absolute unit 
of hyperbolic distance. 
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Figure 4 

In hyperbolic space, two non-intersecting planes may be either parallel or 
ultraparallel. Figures 1, 2, 3 may be thought of as normal sections of arrange­
ments of planes. Most of Euclid's Book XI remains valid when the space is 
hyperbolic. (See [I], pp. 180-184.) Through A, and likewise through B, there is 
a unique plane perpendicular to the line AB ; but these two planes (Fig. 1) are 
ultraparallel, having AB for their shortest distance, and the whole arrangement 
is symmetrical for rotations about the line AB. The sections of these ultraparal­
lel planes by the plane through AB perpendicular to ABM are two ultraparal­
lel lines: say a through A, and b through B. While M recedes from B (Fig. 3), 
the plane aM rotates about a, and its limiting position aN is parallel to bM. 
When the plane, still rotating about a, has proceeded beyond this critical stage, 
it becomes, for a while, ultraparallel to the fixed plane through b. 

To sum up, there are three types of plane-pair: intersecting (so as to contain 
a common line), parallel (so as to contain parallel lines in a perpendicular 
plane), and ultraparallel (having a common perpendicular line). 

5. The celestial sphere. These ideas become clearer when we imagine our­
selves to be surrounded by a celestial sphere, the kind of sphere on which 
people long ago believed the stars to be embedded: a sphere so large that we 
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can move about and still remain at the centre. Parallel rays converge to a point 
on the celestial sphere, the kind of ideal point that Hilbert called an end. A 
complete line has thus two ends, infinitely far apart, where it cuts the celestial 
sphere. This is more intuitively acceptable than what we were taught in the 
usual introduction to projective geometry, where the two ends are supposed to 
coincide. 

Since a plane intersects the celestial sphere in a circle, we may regard the o°3 

planes in space as being in one-to-one correspondence with the o°3 circles on 
the sphere. (For this purpose we make no measurements on the sphere itself 
and thus make no distinction between the so-called great circles and small 
circles.) Two intersecting planes yield two circles, intersecting at the same pair 
of supplementary angles. When the smaller angle tends to zero, we obtain two 
parallel planes yielding two tangent circles. Finally, two ultraparallel planes 
yield two disjoint circles, that is, two circles having no common point. 

Now that we have represented all the planes in the hyperbolic space by all 
the circles on the sphere, we can overlook the infinite size of the sphere and 
project it stereographically on an ordinary plane or, more precisely, an inver­
sive plane. Such a plane is derived from the Euclidean plane by adding one 
"point at infinity" and regarding all the straight lines as circles that happen to 
pass through this "ideal" point. 

6. The inversive plane. It thus appears that the o°3 planes in hyperbolic 
space correspond to the °°3 circles in the inversive plane, and we can develop 
these two geometries "along parallel lines", with enhanced understanding of 
both. 

According to Klein's Erlangen programme, a geometry is determined by the 
group of transformations under which its essential properties remain invariant. 
For hyperbolic space this is the group of hyperbolic isometries, generated by 
reflections in all the planes. For the inversive plane it is the group of 
circle-preserving transformations, generated by inversions in all the circles. The 
correspondence that we have been discussing is justified by the fact that these 
two continuous groups are isomorphic. 

The transformation called inversion is commonly ascribed to someone called 
Magnus in 1831. But J. J. Burckhardt recently told me that its true inventor 
was Jakob Steiner, a few years earlier. Inversion in a circle is usually defined in 
terms of Euclidean distances from the centre, but a more significant definition 
is the following. Two points P and P ' are inverses of each other in a circle 0 if 
every circle through P and P' is orthogonal to |8. Given |3 and P, we merely 
have to draw two circles orthogonal to |3 through P, and their remaining point 
of intersection is P \ This definition is "more significant" because it remains 
valid in a non-Euclidean plane, or on a sphere such as our celestial sphere. A 
circle |3 decomposes the sphere into two parts, such as hemispheres, which are 
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interchanged by inversion in /3. The corresponding plane decomposes the 
hyperbolic space into two half-spaces which are interchanged by reflection in 
the plane. The isomorphism is now clear. 

7. Pencils of circles and pencils of planes. Orthogonal to any two circles in 
the inversive plane, there is a pencil of coaxal circles: intersecting or tangent or 
disjoint according as the first two circles are disjoint or tangent or intersecting. 
Analogously in hyperbolic space, perpendicular to any two planes there is a 
pencil of planes: intersecting or parallel or ultraparallel according as the first 
two planes are ultraparallel or parallel or intersecting. In particular, any three 
planes perpendicular to one line belong to a pencil of ultraparallel planes, and 
the corresponding three disjoint circles are coaxal. 

If three disjoint circles are not coaxal, their three radical axes concur in a 
point, called their radical centre, from which tangents drawn to the three circles 
all have the same length (or possibly the radical axes are parallel, and the 
radical centre is at infinity). Hence there is a unique circle (or line) orthogonal 
to the three disjoint circles. This familiar theorem of Euclidean geometry yields 
the following interesting property of planes. If three planes are ultraparallel in 
pairs, their three common perpendicular lines, if distinct, are coplanar: there is a 
unique plane perpendicular to the three given planes. 

8. Liebmann and Poincaré. This representation of hyperbolic space on the 
inversive plane was originally developed by Heinrich Liebmann in the first 
edition of his book ([5], p. 54). Strangely, he abandoned it in later editions. 
This may have been because, although a plane is represented by a circle and a 
line by a point pair, there is no very simple image for a single point. 

To investigate the geometry of one hyperbolic plane, he represented this 
plane by a circle (o and regarded its lines as sections of planes perpendicular to 
the one plane. The circles representing these planes are, of course, orthogonal 
to co. In this way the circles orthogonal to o) represent the lines of the 
hyperbolic plane. We have thus derived Poincaré's conformai model in a 
perfectly natural manner. 

In particular, the angles between two intersecting lines, being equal to the 
dihedral angles between two intersecting planes, can be measured as the angles 
of intersection of the two corresponding circles. Similarly, the distance between 
two points A and B may be regarded as the distance between two ultraparallel 
planes, namely the planes through A and B perpendicular to the line I that 
joins these points. 

9. Hyperbolic distance expressed as inversive distance. The distance AB 
thus appears as the so-called inversive distance (a(3) between two disjoint 
circles a and 0. To investigate this kind of distance, we observe that it must 
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have two essential properties. It must be invariant for the group generated by 
all inversions, and it must be properly additive, so that if B lies between A and 
C on the line i, 

AC = AB+BC. 

This means that, if three disjoint coaxal a, |3, y are named in order, so that |3 
lies between a and y in the sense that every circle intersecting a and y 
intersects /3 too, then 

(cry) = («£) + ( 0 Y ) . 

Figure 5 

Three such circles may reasonably be called nested, through various inversions 
will make their Euclidean appearance change considerably (see Fig. 5), The 
coaxal pencil to which they belong has two limiting points representing the two 
ends of the line I. Inversion in a circle whose centre is one of these limiting 
points will yield concentric circles whose radii satisfy a>b>c or a<b<c 
according to which of the two limiting points is used. Different radii of 
inversion will yield similar figures, but the two ratios alb and b/a are inver-
sively invariant together, though they may be interchanged. In other words, 
|loga/b| is truly invariant. This remark suggests an appropriate definition for 
the inversive distance p = (a@) between any two disjoint circles a and 0: it is 
the absolute magnitude of the natural logarithm of the ratio of the radi of any two 
concentric circles into which the given circles can be inverted: 

P = 
i a 

l o g -

This kind of distance is properly additive, for, if a>b>c or a<b<c, 

log- + log-
b i a 

l o g -
c 

It is an inversive invariant even though it is most easily defined in terms of the 
Euclidean concept of radius. 
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Figure 6 

10. The inversive distance between two Euclidean circles. Figure 6 shows, in 
the Euclidean plane, two circles of radii a and b whose centres are distant c 
apart. (Please forgive my using c in a new sense.) If 

a<b + c and b<c + a and c<a + b, 

so that the circles intersect, either point of intersection forms, with the two 
centres, a triangle with sides a, b, c; hence the cosines of the two supplemen­
tary angles of intersection are 

lab 

Since angles are preserved by inversion, it follows that the expression 

a2 + b2-c2 

lab 

is an inversive invariant. Since inversion is an algebraic transformation of 
Cartesian coordinates, this invariance is independent of the "triangle ine­
qualities" and thus remains valid when the two circles are disjoint. In particu­
lar, the above expression is unchanged when the circles have been inverted into 
concentric circles. Suppose this inversion changes a, b, c into a', b\ 0. Then 

a'2 + b'2 1 a2 + b2-c2 

lab 

2'2 + b'2_l/a' V\ 

2a'V ~ 2 W + a 7 * 

If p is the inversive distance between the two circles (before or after inversion), 
so that a'lb' and b'/a' are ep and e~p or vice versa, we conclude that 

a2 + b2-c2 

lab 
= | (e p + e - p) = coshp. 

This is a useful formula for p in terms of a, b, c. 

11. The inversive distance between a line and a circle. It is interesting to see 
what happens when the first circle is replaced by a straight line. (Since a and c 
are now infinite, the formula cannot be applied directly.) Since the group 
generated by all inversions includes all similarities, the inversive distance 
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Figure 7 

between a line and a circle must be invariant for any similarity: it must be a 
function of the angle subtended by the circle at the nearest point A on the line. 
Let this angle be 20, as in Figure 7, so that, if O and b are the centre and 
radius of the circle |3, 

OA = b cosec 6. 

Inversion in /3 leaves (3 itself unchanged, but the line becomes a circle having 
diameter 

OA' = —- = b sin 0, 
OA 

that is, a circle a for which a = c =\b sin 6. (See Figure 8.) Hence the inversive 
distance p is given by 

cosh p = 
a2 + b2-a2 

lab 
b_ 

2a b sin 6 
•- cosec 6. 

Let us record this formula 

for future use. 

cosh p = cosec 6 

12. The angle of parallelism. Returning to Poincaré's conformai model of 
the hyperbolic plane by circles orthogonal to a fixed circle co, we see that the 
hyperbolic distance AB, which Poincaré expressed as the logarithm of a cross 
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Figure 8 

ratio, is now simply the inversive distance between two circles, one through A 
and one through B, orthogonal to both to and the circle that represents the line 
AB. If one of the two circles reduces to a line, this line is, of course, a diameter 
of a). 

Two parallel lines of the hyperbolic plane, being sections of parallel planes in 
hyperbolic space, are represented by tangent circles. As they are both or­
thogonal to <o, their point of contact N (representing the common end of the 
lines) is on a>. Thus Figure 7 represents Figure 3 when we have drawn <a as the 
circle with centre A and radius AN. The parallel rays are now the radius AN 
of a) and the arc BN of j3. The hyperbolic distance AB is the inversive distance 
p between the line a (through A) and the circle j3 (through B). The corres­
ponding angle of parallelism II(p) is the angle BAN=0. By the formula that 
we recorded for future use, 

This implies 

cosec 0 = cosh p. 

cot 6 = sinh p, 

cosec 6 - cot $ = cosh p - sinh p, 

tan§0 = e"p, 

n(p) = 2arctane"p. 

We have obtained the classical expression, which is what we set out to do. 
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13. The non-triangle inequality for inversive distances. Six years ago, in my 
Presidential Address ([3], p. 11), I sketched a proof that the inversive distances 
between pairs of three nested circles (with |3 between a and 7) satisfy the 
"non-triangle inequality" 

(ay) > (a/3) + (/3Y) 

with equality only when the circles are coaxal. I would like to explain, in 
conclusion, how the analogous situation in hyperbolic space makes this almost 
obvious. 

In saying that the given disjoint circles are nested, we mean that every circle 
intersecting both a and 7 intersects jS too. By considering three sections of a 
sphere, we see that the corresponding property of three planes (ultraparallel in 
pairs, with |3 between a and 7) is that every line joining a point of a to a point 
of 7 must intersect |3. Since these planes a, 0, 7 are ultraparallel in pairs, there 
is at least one plane perpendicular to all three. Their sections by such a plane 
are three mutually ultraparallel lines, to which we may assign the same labels 
a, |8, 7. Of course it is still true that every line joining a point of a to a point of 
7 intersects 0. This holds, in particular, for the common perpendicular of a 
and 7, If the three circles are coaxal (Fig. 5), this common perpendicular is 
perpendicular to 0 too, and on this line we measure 

( a 7 ) = (a0) + (0 7 ) . 

More interestingly, if the three nested circles are not coaxal, the shortest 
distances between pairs of the lines are alternate sides of a crossed hexagon 
having a right angle at each vertex, as in Figure 9. Since (a0) is the shortest 
distance from a to 0, and (07) from 0 to 7, it is clear that the segment marked 
(a7) is the sum of two parts, one greater than (a0) and the other greater than 
(07). Hence 

(a7)>(aj3) + (07). 

Figure 9 
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