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UNIFORMISATION OF THE TWICE-PUNCTURED DISC -
PROBLEMS OF CONFLUENCE

JOACHIM A. HEMPEL AND SIMON J. SMITH

For the twice-punctured unit disc Up = {z : |z| < 1, 2 ^ ±p} , where 0 < p < 1, we obtain
precise descriptions for p near 0 of various parameters associated with the uniformisation
of n p by the upper half-plane U = {T : Im T > 0}. These parameters include the
hyperbolic length of the geodesic surrounding ±p, the so-called "accessory parameters",
and the "proximity parameter" which determines the behaviour of the hyperbolic density
near the punctures of fip .

1. INTRODUCTION

Let {pi, . . . , pn} be a set of points of the unit disc D = {z : \z\ < 1}, and put
fl = D \ {pi, . . . , pn}. Also, let U denote the upper half-plane {T : Imr > 0} , and
Mob U the group of all Mobius transformations of U onto itself. By the Uniformisation
Theorem there exists a (unique to witliin an element of Mob U) conformal universal
cover z = <j){r) of fi by U, and hence a hyperbolic structure on ft, with metric p(z) \dz\
defined by

Further, <f> is automorphic with respect to a Fuchsian group G, a subgroup of Mob U
without elliptic elements. Now if n = 1, a universal cover of il by U is

However, for n ^ 2 a universal cover cannot be explicitly stated, and, indeed, little
quantitative information concerning the various parameters associated with the con-
formal equivalence of fi to U/G appears to be known. In this paper we consider the
uniformisation of the twice-punctured disc fi = D \ {pi, P2}) and in particular will be
concerned with the situation when pi and P2 are close together. Since there exists
a number p, 0 < p < 1, and a Mobius transformation M of D onto itself such that
M(pi) = p, M(p2) = —p, we can without loss of generality restrict our study to that of
the regions fip = Z?\{±p} where 0 < p < 1. We are able to obtain precise descriptions
of the behaviour of various parameters associated with the uniformisation of £lp by U
for p near 0.
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370 J.A. Hempel and S.J. Smith [2]

There are essentially three parameters whose determination is of particular concern.
Firstly, if T denotes the homotopy class in fip of a circle separating {±p} from {z :
\z\ — 1} , then J- contains a unique hyperbolic geodesic. The length L of this geodesic is
the parameter of interest, not only because of its defining geometric interpretation, but
also because it is related to trace T, the trace of the hyperbolic covering transformation
T of <f> determined by T, according to

|trace T\ = 2 cosh ( -

As a preliminary result, we remark that Theorem 1 of [2] is equivalent to

Although the inverse r = T(Z) of a universal cover of fip by U is multiple-valued,
the Schwarzian derivative {r, z} of T , defined by

is a single-valued meromorphic function given by

( 1 2 ) { > + +

m m p(mp +1) p(mp +1)
z — p z + p z - p-1 z + p-1

where m = m(p) is a real-valued constant, m is the so-called accessory parameter
at p, and is the second of the parameters we will study. Since z = e t r is a universal
cover of {z : 0 < \z\ < 1} by U, Hejhal's generalisation of the Caratheodory kernel
convergence theorem [1, Theorem 1] shows that {T, Z} —* l / (2z 2 ) as p —> 0, uniformly
on compact sets in {z : 0 < \z\ < 1} . Hence a preliminary description of m is given by

(1.3) m = Z--|-o(p-1), asp->0.

The final parameter we will consider is the quantity R = R(p) determined by the
fact that the hyperbolic density p(z) on fip satisfies

(1.4) P(*) = i /

By the symmetry of flp , p(z) = p( — z), aiid so

. . 1
log

Hence it is sufficient to study p(z) near just one of the punctures of ftp .
Our principal results are stated in the following theorem.
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[3] Uniformisation of the twice-punctured disc 371

THEOREM 1.1. Suppose A = A(p) is defined near 0 by

(1.6)
KPJ • — V r(KA) ; - 2 '

wJiere tie principal value of the argument is taken. Then if

(1.6) •W-M

(1.7) A(i)=^(a: + l) +

where 7 is Euler's constant, we have as p —> 0

(1.8) L = 4TTA + O (p 2 log i ),

V P/

(1.9) m = ^ + ^

and

(1.10) lofr2R = log(-}+A(-^ + iA) + o(p2log -V

Remark. Since

OO

where £(fc) denotes the Rieinann zeta-function ((k) = ^ "~fc, then (1.5) implicitly
n = l

defines A as an infinite power series in I/log (8p~1) . Thus, for example, m is given to
00

within O(p) terms as a series of the form ]T on/(p(log (Sp"1))") , with the first few
n=0

terms being

4p 4p(log(8p-1))2 4p(log(8p-1))5

Furthermore, since
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oo _
where a(n) — ^2 (2k — l ) ~ n , (1-10) defines R to within O(plog 1/p) terms as a series

fe=i
oo

of the form ^ (&H)/(P(1°8 (8p-1)) ) , with the first couple of terms being
n=0

8p(log(8p-1))'i

The methods employed to obtain our results are to a large extent techniques from
the theory of differential equations. The connection between the uniformisation of fip

and differential equations is provided by the observation that if T(Z) denotes the inverse
of a universal cover of ftp by U, then 1/(T'(Z))1 / 2 and (T(Z))/(T'(Z)) are linearly
independent solutions to

V" + \{T, Z}V = 0,

where {T, Z) is given by (1-2).
Conclusions (1.8) and (1.9) of Theorem 1.1 are proved in Section 3; (1-10) is proved

in Section 4.

2. PRELIMINARY RESULTS

By adapting the method described in Chapter 1 of Nevanlinna [4] for the construc-
tion of a fundamental domain for the universal cover of the n-fold punctured extended
complex plane to the construction of such a domain for the universal cover of flp by
U, the following lemma is obtained. The proof of the lemma is straightforward once it
is noted that if <j> is a universal cover of ftp by U, and if fip is symmetric with respect
to the Euclidean straight line F, then every preimage of fip fl F under <f> is a hyperbolic
geodesic in U, or a finite union of such geodesies.

LEMMA 2.1. There exists a number fj, > 1 so that the Fuchsian covering group of
ftp has the fundamental domain Rp shown in Figure 1. Apart from the straight line
segment [1, fi], the boundary of Rp consists of semi-circles orthogonal to the real axis.
The Fuchsian covering group is generated by the transformations Tj and T2 , wJiere

V2 J.1

+ 1
T2(r) + 1 T + 1 fiVa-T

If Q'p = D \ ( — 1, p], tAere exists a umvalent function T(Z) wlu'ch is a branch of
the inverse of a universal cover of Q,p by U, and which maps Q.'p onto the interior of
Rp . As z describes the boundary of il'p in the positive direction, passing successively
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[5] Uniformisation of the twice-punctured disc 373

x-olane

Figure 1. The Fundamental Domain Rp

through the points p, —p, —1, —1, — p and p, T(Z) describes the boundary of Rp,
passing successively through the points —fi1/2, —1, 1, n, — fj, and —fi1!2 , respectively.
Further, the straight hue segments (p, 1), (0, i) and (— i, 0) in the z-plane are mapped
by T(Z) to those segments of |r| = \j}l2 , |r| = /x3/4 and |T| = /z1/4 , respectively, which
lie within Rp.

The above choice of fundamental domain emphasises the parameter /x, which by a
simple geometric argument is shown to be given by fi = eL , where L is the length of
the geodesic in the homotopy class T. •

The expression (1.2) for {T, Z} is an immediate consequence of the following more
general result.

THEOREM 2.2. Let {plf... ,pn} be a Unite set of distinct points of D \ {0} , put
ft = D \ {pi, . . . , pn} , and suppose T(Z) is the (multi-valued) inverse of any universal
cover of ft by U . Then {r, z} is a single-valued meromorphic function of z given by

(2.1) {r, z} =

where the m^ are constants, depending only on ft , which satisfy

(2.2)

(2.3)

Ini ( ] P mkpk 1 = 0,
\fc=i

fc(l +mkpk) -Tnk~=
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PROOF: It follows from the standard theory of conformal universal coverings that
{T, Z} is a holomorphic function on fi U {z : \z\ = 1}, independent of the choice of
T(Z) , which near pk can be written as

where ipk(z) is holomorphic at pk. Let u = M(z) be a Mobius transformation of
{z : |z| = 1} onto {to : I m u = 0}, and define g(u>) = TOM~1(U>). From the
composition law for the Schwarzian derivative it follows that {T, Z} = {g, w}(M'(z)) .
If \z\ — 1 then {g, u>} is real, and because

arg(M'(z))2 = -2arg(ciz) = -2^argz + - J = - a rg f J,

we conclude that Z2{T, Z} is real-valued for \z\ = 1. Consequently the function

V'(z) = z2{r, z} -

is holomorphic on the closed unit disc except at 0, and is real-valued on {z : |s| = 1}.
If we define

n " /I \

A=-2_^rnk, B = - ^ I - + mkpk I,
fc=i fc=i ^ '

V>(z) = j + B + O{z).

then near z = 0, ip(z) can be written as

V>(z) =

Also, by the reflection principle, we can write

for z near oo. Thus

K(z) = V-(z) - - -34z

is holomorphic on the extended plane, and so is constant. Since K(Q) = B , K (oo) = 5 ,
we obtain (2.2). Further, from K{z) = B we have

(2.4)
A B A

{ } + +

mk

z-pk

However, {T, 2} is holomorphic at 0, and so (2.4) can be rearranged to give the identity
(2.1), as well as the relation (2.3). H
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Remark. If ft = D \ {pi = 0, p2, • • • > P?»} , the above proof can be easily modified to
show that {T, Z) is of the form

2 * 2
4-

2(z-l/pT)2
4-

where the rrik are constants which again satisfy (2.2) and (2.3).

The following lemma will enable us to determine a limiting relation as p —> 0

between the length L of the hyperbolic geodesic in T and the accessory parameter m

as defined by (1.2).

LEMMA 2.3. Let

(2.5) 0)X=^ (ii)c2=\(l + 2mp)(p-i-p*), fiii;<7 = i ( p - 2
+ p 2 ) .

Then there exists a non-trivial sequence ( o n ) " ^ ^ of constants which satisfy

(i) limsup|on|" ^ p2,

(2.6)
(ii) an = a_n for all n,

--\-2an[c* + a{{2n + i\)2-\}
1
4̂

+ an +i [(2n 4- 1 + iA) ] = 0 for all n.

PROOF: By the reflection principle, the univalent function T(Z) of Lemma 2.1
can be analytically continued so as to be defined on Vp = C \ ((—oo, p] U [p"1, oo)).
Further, reflection across (p, p"1) gives

(2.7) T ( f e
r(z)

while reflection across the positive imaginary axis gives

3

(2.8)

(2.7) and (2.8) then yield

(2.9)

(Z) =
(-Z)

Im z > 0.

T{Z) = fi1/2T(-z), Im z > 0.

Now, analytic continuation along a positive circuit about the origin in p < \z\ < p"1

has the effect of multiplying T(Z) by n. Hence, if we consider the principal value of
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z2ix, it follows that z2ixr(z) is single-valued in p < \z\ < p~l, and so z~2iX/\T'(Z)) is

holomorphic in this annulus. From (2.9) we deduce that z~2tX j\T'(Z)) is odd, and so

z~2tX~1 / ( r ' (z)) is anon-zero, holomorphic even function in p < \z\ < p " 1 . By requiring

that (T '(— i)) > 0 and taking the principal value in the numerator, it follows that

the square root h(z) = z~tX~1/2
 /(T'(Z))1' is holomorphic in p < \z\ < p " 1 . Also, h

is either odd or even, and since arg/j.(— i) — arg/i(t) = 7r/4, we deduce that h is even.

If the odd function Q(z) is defined by

~\(2.10) Q(z) = (z2-p2)1/2(p-2-z2)1/2, p<\z\<p

then (h(z))/(Q(z)) is an odd holomorphic function in p < \z\ < p " 1 , and so we can

write

Now 1 / ( T ' ( Z ) ) ' is a solution to the linear second order differential equation

(2.11) T1"(Z) + ±{T,Z}V(Z) = 0.

If Q{z) is defined by (2.10), the substitution 77 = Qy into (2.11) yields, because of
(1.2), the equation

(2.12) [{z2 - p2) (z2 - p->)y']> + 2(z2- c2)y = 0,

which has 1/(Q(Z)(T'(Z)))1'2 as a solution. We deduce that (2.12) has a solution
00

yo(z) = z**-1/2 ^ Anz
2n in p < \z\ < p " 1 . Substituting the power series for 1/0(2)

n = — 00

into (2.12) gives the recurrence relation

(2.13)

An-!(2n + i\- 3/2) ( 2n + iX - -

- 2An c2 + a\2n + iX- -J (2n + iX + -

+ An+1 ( 2n + iX + - ) [2n + iX + - ) = 0 , for all n.
V 2 / \ 2 /

oo

On replacing n by — n in (2.13) we see that j/i (z) = z~>A~a/2 J ] j4_nz2 n is a solution
n = — oo

to (2.12) in p < |z| < p " 1 , and, on taking conjugates throughout (2.13), we see that
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CO

y2{z) - z-iX-ll2 Y, A*z2n is a solution to (2.12) in the annulus. Thus t/i(z) and
n = —oo

y2(z) must be linearly dependent, and so there exists a j= 0 such that A_n+aAn = 0 for

all n . From this it follows that \a\ = 1, and so the function z1-*-1/2 V̂  anz
2n , where

n = —oo

an = ia~1/2An for all n, is a solution to (2.12) in p < \z\ < p~1 with the property
that the coefficients an satisfy (2.6(ii)). The relation (2.6(i)) is then immediate, while
(2.6(iii)) follows from (2.13). fl

By employing results from the elementary theory of infinite continued fractions,
we are able to use the sequence (an) of Lemma 2.3 to prove the following theorem.

THEOREM 2.4. If m and L are defined as in Section 1, and with A = L/(4ir),

then

.(2.14) l i m =

P-O p4 32

PROOF: The recurrence relation (2.6(iii)) can be rewritten as

where

Pn = 2 1 •(2n - 1 + iA)2 - \

Since p n —> 2<r and qn —> — 1 as n —* oo, we can apply (because of (2.6(i))) Theorem
2.46 of Perron's book [5, p.97] and obtain

(2.15)
an+l qn+2

Pn+1 +

Pn+2 +

Pn+3 H

valid for n = 0, 1, 2, . . . . Substituting n — 0 into (2.15), then rearranging, gives

a0
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where

1 +
9iPo Pi *

1 +
92 Pi P2 '

1 +
[

Now, by (1.3) c2/cr —> 1/4 as p —• 0, and by (1.1) A —> 0 as p —> 0. Hence the
quantities gnPnliPn* approach 0 uniformly in n as p —» 0, and so C'(p) —• 1 as
p —> 0 (tliis last statement follows from, for instance, Theorem 38.1 of Wall [7, p.150]).
Hence (2.16) yields

(2.17) hm c— = —.
P—o a0 32

However, putting n = 0 in (2.6(iii)) and n = 0, 1 in (2.6(ii)) leads to the relation

(2.18) Re 1
"0

= 1.

(2.17) and (2.18) then give

l ima 2

P—o

:2 1
— ,
128

or

(2.19) lim
p-0 32

(2.14) then follows from (2.19) using (1.3).

We remark that (1.1) and (2.14) can be combined to strengthen (1.3) to

- 1
m = — +4p 4p(log(8p-i))2

This result is improved considerably in the following section, where the result (2.14)
will prove to be of crucial importance.
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[11] Uniformisation of the twice-punctured disc 379

3. A LEGENDRE-TYPE EQUATION

Instead of working directly with the regions Q,p, in which the punctures depend on
p, we will find it convenient to work with the regious Bp = {£ : |£| < p~l, ( ^ ±1}-
Then if S(C) denotes the (multi-valued) inverse of any universal cover of Bp by U , and

(3.1)

= p(, we have {5, £} = {r, z} (dz/d() , where {T, Z} is given by (1.2). Hence

,„ „ 1 1 1 1
2«+p-2)2

nip mp p2(mp

C - i n - 2 +
p2(mp

We fix a single-valued branch S(Q of the inverse of a universal cover of Bp by U by
defining

(3.2)

where r(z) is the univalent function of Lemma 2.1. S(Q maps C\((—oo, 1] U [p 2, oo))

univalently onto the infinite strip —1 < Re5 < 1 from which the closed discs with diam-

eters [—1, — tauh2 (-7rA)] and [tanh2 (n\), 1] have been removed. Further, the segments

(l, p~2) and {p~1e'e : —w < 0 < n} in the ^-plane are mapped by 5(£) to the imagi-

nary axis and the line segment (— tanh2
 (TTA), tanh2

 (TA)) , respectively, in the S-plane.

With c2 defined by (2.5(ii)), the differential equation

(3.3) [(1-(*)¥'}'
1 - 2c2p2 1 - p4

- CVV
which is obtained by substituting (3.1) into 77" + l /2{5 , ^77 — 0, then transforming

the equation using 77 = (£2 — l) Y, has independent solutions

s{Q(3.4)

in C \ ((—oo, 1] U [p 2, oo)) . In this section we will be concerned only with the solution
Yi(£), useful properties of which are summarised in the following lemma.

LEMMA 3.1. The function Yi(Q as defined by (3.4) satisfies

(i) Yy(Q is hoiomorphic at £ = 1,

(3.5)

2 1 - p 2 '
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PROOF: AS £ describes a positive loop about 1, S(() is translated by 2, and so
the function exp[7ri5(£)] can be written as

(3.6) exP[7ri5(C)] = a 1 ( C - l ) + a 2 ( C - l ) 2 + o ( ( C - l ) 3 ) , a, * 0.

Thus

and so (i) holds, (ii) is trivial, so it remains to prove (iii). To this end, we note that

1 ' ; *k(C) C2 - 1 2

Now, S satisfies the symmetry conditions

and so

Differentiating this functional equation twice, then putting ( = p " 1 , gives

and then substituting C = p " 1 in (3.7) yields the required (3.5(iii)). R
1 It

The function (2/vri) ' Fi(^) is a solution to (3.3) which, in addition to satisfying
(3.5), is real-valued on [1, p~1}. We thus can, and will, assume that Yi(C) is real-valued
on [1, p " 1 ] . Now, from (2.14) we obtain 2c2p2 = A2 + l/4 + O(p4) , and so in |<| ^ p " 1 ,
the equation (3.3) can be written as

(3.8) [(i - C2)Y']' + [-A2 - 1 + o(p2)]r = o.

(3.8) is very similar to the Legendre equation

a.(a.+ l )F = 0

with parameter a = —1/2 + iX. It is the similarity of (3.8) to a Legendre equation
which we will exploit. To do this we consider a singular Sturm-Liouville boundary
value problem which is suggested by (3.8) and the properties (3.5). The boundary
value problem is introduced in the following lemma, where properties of its eigenvalue
are also discussed.
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[13] Uniformisation of the twice-punctured disc 381

LEMMA 3.2. Consider the Legendre equation

(3.9) [ ( l -(2)<f>']' - - = A 2 < £ ,

wiiere A2 is determined by the condition that (3.9) has a real-valued solution </>i(()

wJiicii satisfies the conditions

(3.10)

(i) 4>i(£) is holomorphic at £ = 1,

J ^ ( p - 1 ) 2 1 - p 2 '

Then, if A is given by (2.5(i)), we can write

(3.11) A2 = A2 + O(p2)

as p —> 0 .

PROOF: For convenience, denote the coefficient of Y in (3.3) by F(Q . Then from
(3.3) and (3.9) we obtain

[(1 - C)Y{}'<t>i + F ( C ) Y K A I = 0

and

Subtracting one equation from the other, then integrating from 1 to p 1 , gives (because
of the boundary conditions (3.5) and (3.10))

J
Since Y\<f>i is of constant sign on [1, p 1], there exists £o G (l , p 1) so that
A 2 + l / 4 = 0. As mentioned before, F((o) = -A2 - l / 4 + O(p2) , and so (3.11) holds. H

Note that by Lemma 3.2 we can assume A > 0. Furthermore, by (1.1) and (3.11)
we have

~ 2 l o g ( 8 p - » ) + ° J2log(8p-») +°\(log(8p-1))2J

as p —» 0. We are now in a position to prove the key result of this section.
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THEOREM 3.3. Supppose A > 0 is the parameter defined in the statement of
Lemma 3.2. Then as p —> 0 we have

wJiere the principal value of the argument is taken.

PROOF: We begin by noting some properties of solutions to the Legendre equation

(3.14) [( l-C2)w'] ' + a(a + l)w = 0.

If F(a, 6, c; £) denotes the standard hypergeometric function

where
(a)n = a(a + l)(a + 2) . . . (a + n - 1),

then the solution to (3.14) which is holomorpliic at £ = 1 is

(3.15) Pa(Q = F(a + 1, - a , 1; i ( l - <)) •

Pa(C) c a n l*e analytically continued to C \ (—oo, —1]. Further, provided that 2a is
not an integer, in the part of C \ (—oo, —1] for which |£| > 1, Pa(() satisfies

where

p f n , a ( o - l ) >-2 , a ( a - l ) ( a - 2 ) ( q - 3 ) 4(3.17)
2 .4 (2a - l ) (2a -3)

Details of these properties can be found in, for example, Sections 15.4 and 16.1 of

Sansone and Gerretsen [6].

It follows from the above comments that we can assume the function <̂ i(C) which
satisfies (3.9) and (3.10) to be P-i/2-i\{C)- T h e boundary condition (3.10(iii)) and
the transition formula (3.16) then yield

jlTTX = 0.
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[15] Uniformisation of the twice-punctured disc 383

From the duplication formula for the gamma function we have

r(*A) 22iA~1 (r(iA))
fi r(2tA) '

and so (3.18) can be written as

(3.19) Ir.

where

(3.20)

Now, from (3.12) and (3.17) it follows that F_1f2+iA(p~1) = 1 + O(p2) and
(P"1) = (-3)/8p3 + O (P

3/log(l/p)) , so (3.19) becomes

Im = 0,

or

8A Mi).
= Op ' log I)}

Finally, by (3.12) and (3.20) we note that 0 —» TT/2 as p —• 0, and upon using the
inequality jcot"1 x — TT/2| < |a;|, which is valid for all real x, we obtain

which is (3.13). R

From (3.13) we can now establish the results (1.8) and (1.9) of Theorem 1.1. Indeed,
from (3.11) we have

and since the solutions for A to (1.5) and (3.13) agree to within O{jp2) terms, (1.8)
follows immediately. (1.9) is then a consequence of (2.14).
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4. THE HYPERBOLIC DENSITY

Let S(Q denote the single-valued branch of the inverse of a universal cover of
BP = {C, : |C| < p'1, C £ ±1} by U which was defined by (3.2), and let p*{Q be the
hyperbolic density on Bp. In (3.6) we note that oi > 0, and so near £ = 1 we can
write

Since p*(p~1z) — pp(z), where p(z) is the hyperbolic density on fip, then

(4.1) R = p-1a1,

where R is the "proximity parameter" defined by (1.4). In this section we use the
function 1^(0 °f (3-4) to study a,\ , and hence obtain results for R.

We begin by noting that (27rt) ' Y2K) > which we will henceforth write as just
, is a solution to (3.3) which is real-valued on (l, p"1} and satisfies

(i)ya(0-iog«-i)-»iogo,,

(4.2)

Guided by this, we consider the Legendre equation

(4.3) [(1 - C2)^']' - - = AV,
4

where A2 is determined by the condition that (4.3) has a solution 02(0 > real-valued on
(l, p~1] , which satisfies the same three properties (4.2) as does Y2(Q. As in Lemma
3.2, we obtain

and so A is given to within O(p2 log (l/p)) terms as the solution to (1.5).
We need to further discuss properties of solutions to the Legendre equation (3.14).

If we use the notation of Hille [3, pp.307-311], then a solution at ( = 1 to (3.14),
independent of the function Pa(C) given by (3.15), is the function .Pa,i(C) defined by

(4.4) pOil«) = po«)iogi(i - 0 + f; ( f l | ' }" (~a )"
n = l
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where the principal branch of the logarithm is used. Pa,i(C) is initially defined in
{\( - 1| < 2} \ (1, 3), but can be analytically continued to C \ ( ( -oo, -1] U [1, oo)).
Our purposes require a continuation of Pa,i(C) which is defined on (1, oo), and for this
reason we define P'^iC) to be the right-hand side of (4.4), where the logarithm is given
by 0 < a rg l /2 ( l - <) < 27r- T n e n Pa,ii0 is initially defined on { « - l | < 2 } \ ( - l , 1),
but can be continued to C \ (— oo, 1]. At ( = oo, (3.14) has linearly independent
solutions Qa(Q and Q-i-a((), where

Qa(0
 a n ( i Q-i-a(C) can be continued so as to be single-valued on C \ (—oo, 1]. We

will need a formula for P^iiO in terms of Qa{() and Q_i_ a (£) . Such a formula can
be gleaned from Hille - the details are presented in the following lemma.

LEMMA 4.1 . With P*A{(), Qa(0 and <?_!_„«) definedin C \ ( - o o , 1] according
to the above discussion, then

(4-6) P:A(Q = [-1 - ^

. . .tanvra , _ , >.
+ [-1 + A(a) t taii7ro]Q_i_a(C),

7T

provided that 2a is not an integer. Here A(a) is defined by (1-6) and (1.7).

PROOF: From (4.5) we have

(4.7) Qo(-C) = -eia"Qa(O, I m < > 0 ,

and from the definitions of Pa,i(C) and Pa,i(C) it follows that

(4.8) Pa*1(C) = P a , 1 (0 + 2vriPo(C), I m C > 0 .

Now by Hille [3, p.309] we have

Pa,i(C) = -^—Pa(-0 - A(a)Pa(C),
sin Tra

and so by (4.8) we deduce

(4.9) P:A(Q = -^—Pa{-Q + (2ni - A(a))Pa(C), Im( > 0.
sin Tra

However, by Hille [3, p.310] we have

(4-10) Pa(Q =
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and then (4.6) follows for Im< > 0 (and hence for ( € C \ (-oo, 1]) by substituting
for Pa{-() and Pa{() in (4.9) using (4.10), and then applying (4.7). |

We can now describe the behaviour of aj as p —> 0.

PROOF OF (1.10): The function <fo(C)> which is a solution to (3.14) with a =
— 1/2 + iA , satisfies <f>2{Q — log (C — 1) -> logoi as ( —v 1, and so

MO = P^+iAtl(O-

Because ^ ( p " 1 ) = 0, we can use the transition formulae (4.6) and (4.10) to obtain

(4.11) Iog2aj = Al h iA ) — iTrtanliTrA
V 2 /

Now, Qa{0 c a u ^ e written as

TF r ( o + l ) 1

where Fa(() is defined by (3.17) (see Sansone and Gerretsen [6, pp.555-6]). Thus, by

using the duplication formula for the gamma function, (4.11) becomes

( \ \
V 2 /

- + t A ) -TTtanliTrA ^
2 / Im[e-e

JF_(i/2)_iA(p-1)]

where

\ r(2.-A)

Since A = A + O(p2 log (1/p)) , we conclude from (1.8) that

and so

(1.10) then follows from (4.1).
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