ON THE GROTHENDIECK RING OF
AN ABELIAN p-GOUP

TADAO OBAYASHI

Introduction

The Grothendieck ring of a finite group has been studied by Swan ([5],
[61). At the end of [6] he determined completely the structure of the Gro-
thendieck ring G(Z®) of a cyclic p-group & over the ring of rational integers
Z.

In this paper we investigate the structure of G(Z®) of an abelian p-group
8.

In the first section we consider some properties of the integral group ring
of &. The results of this section are applied in the second section to investigate
the additive structure of G(Z®). Let o be a maximal order of the group ring
Q® over the rational number field @ and let Co(o) be the reduced projective
class group of o (Rim [4]). We show that G(Z®) is isomorphic to the splitting
Z-algebra extension of Co(0) by G(Q3) (§2, §3). The latter half of the third
section is devoted to study the action of G(Q®) to Co(0). Some examples are
given in the final section.

The author wishes to express his hearty thanks to Professor A. Hattori

for his many helpful suggestions during the preparation of this paper.

§ 1. The integral group ring of a finite abelian group

Let R be the ring of integers of an algebraic number field K. The group
ring K& of a finite abelian group & over K decomposes into a direct sum of

algebraic number fields K; over K
K=K ®-+-PKs, (1.1

and Ki, ..., Ks are a full set of non-isomorphic irreducible K&-modules. This
decomposition induces the decomposition of the maximal order o of K® into a

direct sum of maximal orders o; of Kj, i.e. the ring of integers of K;. Since
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o contains R®, each projection z; of K& onto K; induces a ring homomorphism
of R® into ;. We will denote by 4; the kernel of this ring homomorphism
and we will set I'; = IT 4;.

I%i

ProrosiTiON 1.1. Let @ be a finite abelian group of order n and exponent n,
and let K= Q(Cm) be a cyclotomic field, where Cm means a primitive m-th root of 1.
Then

(1) in (1.1), each K; is also a cyclotomic field Q(Cm;) for some m; which
divides L.C.M. (m, n,),

(2) each projection m; induces a surjection of RS onto o;.

(3) for each i, Ai+T;2n* ‘RS, and

(4) there exists a positive integer | such that

N+ -+ +Ts24'RG.

Proof. Let & =G6;x --- x @ be the decomposition of @ into a direct
product of cyclic subgroups @ and let g be the fixed generator of Gs.

Then we have Ki=K(mi(g), ..., m(g)). But for each & m(gn)™=1,
which implies that K; = Q({m,) for some m; which divides L.C.M.(m, n,). This
shows (1). Each n; gives rise to the surjection of R® onto R[xi(g1), . . ., mi(g)]
=Z[Cm], which is the maximal order of Ki= Q). This proves (2).
(3) and (4) is proved by an induction on ¢. First, we suppose that @ is a
cyclic group generated by an element g. We have a ring isomorphism K&z
K[x1/(x" - 1)K[«], where fo] is the polynomial ring over K in an indeter-

minate x. If
2= 1=£(x)+ ~ - fs(x) (1.2)

is the factorization of x”—1 ini:o irreducible non-constant monic polynomials
in K[x], by the Chinese remainder theorem we have

KLxl/(x" = DKL =KLA/ ADKLAD - - - DKL/ fo(x)KL[£].  (1.3)

Obviously every root of f;(x) is a primitive #i-th root of 1 for some #; which
divides n. Let ¢ be one of these roots and let Ki=K((s). Then the map
g-%n, gives rise to the projection m; of K& onto K;. This shows that the
kernel of 7 is fi(@)K®, so that 4; is just given by RGN fi(g)K® =fi(2)RES.
By a simple calculation, we have from (1.2)

https://doi.org/10.1017/50027763000011661 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000011661

ON THE GROTHENDIECK RING OF AN ABELIAN p-GROUP 103

filx)RLx] + fi(x) RLx1 2 nR[ x] (i%7). (1.4)

Replacing x by g, we have

Ai+ A4; 2 nRS (i=7). (1.5)
This implies that 4; + ¥I 4; 2 #° 'R, which shows (3). (1.2) yields also that
J¥
AR+ « - - + TN fi(OR[xI2#R[ 1. (1.6)
J¥1 VET] .

Since II fj(g)R® =TI}, this implies (4).

InJ:};e general case, let & =@, x - - - x@t_l and let »' and »'" be the order
of & and ®&;, respectively. If x™ —1=f(x)---fs(x) is the factorization of
#™ -1 into irreducible monic polynomials in K[x] and ¢, is a root of fi(x),
the map g; —x; gives an isomorphism K®/fi( g:) K8 = K({»;,)®'. Denoting K(&n;)
by K;, we have KE=K®'® - - - § K.®'. On the other hand, (1) implies that
each K;®' is a direct sum of cyclotomic fields Kj,;:

Ki®' =Ki i+ * -+ + K5

Let R; and o;; be the rings of integers of K; and K;,j, respectively, and let
4i,; be the kernel of the surjection of R® onto 0;,;. This surjection is given
by the combined map R® - R:/®' —o;;. Since fi(g:)R® is the kernel of the
surjection R® - R;®’, we see that

4i,; 2 fi(g) RS (j=1,...,s), (1.7

and that the image A;; in Ri®' of 4;; is the kernel of R/®' -0v;;. Now for
any distinct 4;,; and A, we will show that i ; + A,z 27RS. When @ is a
cyclic group, this is given in (1.5). Then for any distinct # and %', the indu-
ction hypothesis shows that Aiz+ Aiee27'R;&'. Since »' divides #, this
implies that Air+ Aik 2 nR®. On the other hand, for any distinct 7 and 7,
we see easily that f;(g:)R® + fi-(g:)R® 2 »"R similarly as in (1.4). Since »n'
divides », (1.7) shows that A; ;+ 4, 27nR®. Let I,; be the product of all
Anx but 4; ;. Then a simple calculation shows that 4; ;+ I, 2 #**'R® from
the above result, which proves (3). Let 4; i=IE/‘i.k~ Then by the induction
hypothesis, there exists a positive integer /; such tilat din+ ++ +4i,s,2n" RS,

which shows that

din+ + ++ + di; 20" RS, (1.8)
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Since Anx+ An,r 2 nR® for any distinct &£ and &', it follows that As1- - 4ns,
P O T . NAns). But each Asr contains fx(g)R® from (1.6),
SO that Ap1+  *An s 20 V2 (gVRS. Let I'=Max. {l, ..., ) and I" =
Max. {—% ESh(Sh" 1, ..., %‘23[;(5}:_ 1)}. Then we have from (1.8)

nxs

= 24;,;‘}3 (An1* * *Aps) 2 n’"n”'E'l;If;.(gt)R(S.
t 4HJ i L h¥g

As in (1.5) we have 2}]fh(g;)R@Qn"R@. Hence !=10'+1" satisfies (4).
i h¥

This completes the proof of the proposition.

§ 2. The additive structure of G(Z@)

We are now ready to investigate the additive structure of G(Z®) of an
abelian p-group 8. Let & be of order p° and exponent p®. We denote by ¢4
a primitive p?-t% root of 1.

From Proposition 1.1, Q® is a direct sum of cyclotomic fields K;= Q(%4;)
for some d; such that 0<d;<e, and the maximal order o of Q@ is also a direct
sum of the maximal orders o; = Z[{4,] of K;. Furthermore, the surjection of

Z@® onto o; induced by =; gives a ring isomorphism
Z®/ A= 0;. 2.1)

Let M be any regular (i.e. finitely generated and Z-torsion free) Z®&-module
and let

Mi={meM : 4im=0 for any A< 4;).

Then M; is a Z-pure submodule of M. Since 4; annihilates M;, we may turn
M; into an oi-module from (2.1). Clearly M; is finitely generated and torsion
free as an o;-module, so that M; is projective since o; is a Dedekind ring. Thus

M; is isomorphic to the direct sum of /; — 1 copies of o; and an ideal a of o;
Mi=0;® -« - Do;Da, (2.2)

where the o;-rank /; of M; and the ideal class C;(a) of a are complete invariants
of M; (Curtis and Reiner [3]). By Proposition 1.1, (3), we have M; N (M; +
ce o +Mioi+ My + + - - M) =0. This shows that the sum of M; is a direct
sum. Now we denote by A7 the quotient M/> P M;. Since AIi=0, M is
annihilated by 731+ -+ - +Is. Then Proposition 1.1, (4) implies that A7 may

be regarded as a module over Z/(»*)@ for some positive integer /. But the
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only irreducible Z/(p*)®-module is Z/(p) on which @ acts trivially. Hence
M has a composition series with factors Z/(p). The sequence

0—>Z—p—>Z-——>Z/ (p)—0

shows that [Z/(»)1=0 in G(Z®), where [Z/($)] means the element of G(Z®)
associated with Z/(p), sothat [V 1= 0in G(Z®). This implies that [A7]= >[M].
For any ideal a of o; we denote by af the element [a]— [o] of G(ZS&). The
map a->a; defines a homomorphism of the ideal class group of o; to G(Z®),
and from (2.2), any element x of G(Z®) may be written in the form

x = > (Lo + af) (Le2).

The uniqueness of this expression follows immediately from the following pro-

position.

ProrosiTioN 2.1. For any exact sequence of regular Z&-modules

0—>M’——~>M—¢->M“——>0, (2.3)

we have Ci(a) = Ci(a") +Ci(a"), where C;(a), Ci(a’) and C;(a") are ideal class invar-

iants of M;, M| and M}, respectively.
Proof. The sequence (2.3) induces an exact sequence
0 -»Hom,g(0;, M') >Homzg(0:;, M) ->Hom,g(0;, M") ->Extyg(o;, M').

* But Homyg(0i, M) is isomorphic to M; by the map f-f(1). Hence we have
an exact sequence

0~ M~ M;->M; -Exthg(0;, M.

Since the order p° of @ annihilates Extzg(0;, M’) (Cartan and Eilenberg [2]),

we see that

P*MicopM) My, (2.4)
where ¢(M;) is also a projective o;-module whose o;-rank is equal to that of
M!. Thus by Invariant factor theorem ([3]), there exist elements #j, . . . , Ul
of M} and ideals by, . .., b; of o; such that

M} =o0iu;@ -« - - Doju-1Pa" uy
G(MD) =byus® * + » Dby 201-1 D by, 0" uy.
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Then the inclusion (2.4) shows that each bs divides (p°). But p is a power of
the principal prirﬁe’ ideal (1 - ¢q,) of o;, which implies that b, is also a principal
ideal. Then Ci(b,- - by ,a"”) = Ci(a"”). Furthermore, M; is isomorphic to the
direct sum of M{ and ¢(M;) since ¢(M;) is projective. Therefore Ci(a) =
Ci(a’) +Ci(b; - + - bya"), which coincides with Ci(a’)+Ci(a"). This completes the

proof.

TueoreM 2.1. If @ is an abelian p-group, G(Z®) is isomorphic to the direct
sum of Co(0) and G(Q®) as an additive group

G(ZB) = Co(0) DG(QG). (2:5)

Proof. Since o is the direct sum of the 0;, Co(0) = 3P Cy(0;) and each Cy(0;)
is isomorphic to the ideal class group of o; (Rim [4]). Then the map Ci(a) —»af
defines a homomorphism ¢ : Co(0) >G(Z®), where the action of & on a is
given by setting gra =mi(gla, g€, a=a. On the other hand, [K{], ...,
[Ks] make a base for G(Q®). We define a linear map ¢ : G(Q®) -G(Z®) by
o([K;D =[o]. Then we have an additive isomorphism Co(0) BG(QR®) -G(ZB)
by (#, ¥) »>¢(x) + ¢(y) because the imége ¢(x) + ¢(y) in G(ZB®) is uniquely
determined by Proposition 2.1. This proves  Theorem 2.1.

§ 3. Ring structure

We will now study the multiplicative structure of G(Z®). In (2.5), Swan
[6] showed that ¢(Ci(0))?*=0. Hence G(Z®) is a Z-algebra extension over an
abelian kernel, and is determined by the action of G(Q®) to Cy(o) and the
associated 2-cohomology class of H*(G(Q®), Cu(0)).

In this section we denote by p™ the order of a cyclic factor s of 8. As
in §2, each mi(gs) is of the form C}f.‘ for some integer ¢, such that 0 <, <e,
which satisfies ixp* =0 (mod ™). In general, given a f-tuple (&, ..., &) of
integers which satisfy that &, =0 (mod p™) for each %, we may construct
a regular ZG-module as follows. Let a be an ideal of Z[¢s]. We turn a into

a regular Z8-module by defining
groa=Cla, aca.

We denote this module by (a; &;,...,%). In particular, for the #tuple
(41, . .., @), in being as above, we denote (a; iy, - . . , ) by a;. Then the element
af of G(Z®) can be written in the form [a;]— [o;].
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ProrosiTiON 3.1. For any ideal a of Z{Ca.l, (a; &, ..., &) is reducible if
and only if every &y is divisible by p.

Proof. (a; &, ...,¢&) is reducible if and only if Q®.(a; &,...,&) is
reducible. Let Q®(a . &, ..., &) be reducible. Then this contains, as a
direct summand, K; for some j such that d;<d; and each g» acts on K; as the
multiplication of ¢i*. This shows that every & is divisible by p. Conversely
let every &; be divisible by p and let p% % be the highest power of p which
divides every &s. Set &x = £4+p*"%. Then Q® A(Z[¢Ca] : &1, . . . , £4) is obviously

a direct summand of Q®:(a ; &, ..., &). This proves the proposition.

ProposITION 3.2. Let a be any ideal of Z[Cad. If(a; &, . . ., &) is irveducible,
there exist some j and an ideal b of Z[Ca,] such that dj=d; and (a ; &, .. ., &)
=b; as Z&-modules. Otherwise, there exist some j and an ideal b of Z[Ca,] such
that di<d; and (a; Gy, ... ,8)=0;® -+ ®o;®Y; (P % summands) as ZG-

modules.

Proof. Let (a; &,...,&) be irreducible. Then this is annihilated by
only one 4;, so that this can be regarded as an oj-module as in §2. By the
irreducibility, (a ; &, ..., &) is, then, isomorphic to some b;. Hence the Z-
rank of o; is equal to that of o;, and we have d;=d;. This proves thé first
assertion.

Let (a; &5, ..., &) be reducible. Then each §; is divisible by p (Proposi-
tion 3.1.). Let p%~ % be the highest power of p which divides every & and
let £, =£},.p% % . Then each gy acts on (a; &,...,¢&) as the multiplication
of &5*=¢5%. Since a is, as a Z[¢s;]-module, finitely generated and projective,
a is isomorphic to the direct sum of p*"% —1 copies of Z[¢s;] and an ideal ¥’

of Z[¢4;]. Then we have a Z®-isomorphism

(@38,...,8)=Za 58, ...,800 - ®(ZCa, 5 81, .., 8D
SO ;e ..., e, (3.1)

where each summand is irreducible. Hence, there exist some j and ideals ¢
and b such that dj=d;, (Z[Cs, 1 81, ..., 80 =c¢ and (V' ; &1, ...,5) =b;
(the first assertion). Setting b=c?"""~1.5, we have

(@&, ...,8)=0;D - Do;DY;.
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This proves the second assertion and completes the proof of the proposition.

CoroLLARY 3.1. If (Z[&ad; &1, ..., &) is irveducible, there exists some j
such that di=d; and (ZI[&a ; &1, ..., 8) =0;. Otherwise, there exists some j
such that d,<di and (Z[Ca;1; &1,. .., E0=0;D -+ - Doj (pd"'di summands) .

Proof. According to Artin [1] (D/4)" is the ideal class invariant of Z[C4,]
as a Z[¢s;]-module, where D is the discriminant of Z[¢{s,] over Z[¢4,] and 4
is the discriminant of any equation defining the extension of Q(¢4,) over Q(¢4;.).
But it is easily checked that (D/4)"* divides some power of p. Then (D/4)"
is a principal ideal. Hence, by Proposition 3.2, it is sufficient to prove that b
is a principal ideal. Let r be the isomorphism (Z[¢4;1; &1, ..., &) =b;. Since
Z[¢q.] is generated by 1, b is generated by r(1). This shows that b is a principal

ideal, which completes the proof.

ProposiTION 3.3. Let a be any ideal of Z[Ca,] and let o be a Galois automor-
phism of Q(Ca). If C3,=Cy,, then
(@58,...,80=@"; &uw, ..., &e0).
Proof. This follows immediately from the comparison of actions of & to
the both sides.
LemMma 3.1. If di=d;, then for any ideal o of Z[{a;] we have

DAled= 33 [(a : i+ hwp™ %, ..., i+ jp™ )],

C\VEGy j

where Ga; denotes the Galois group of Q(Sa,) and o, denotes an element of Ga,
such that (3} =Ci;.

Proof. Let 04,(x) be the cyclotomic polynomial of index p%. Then we
have 0, =Z[x1/®a,(x)Z[x]. This implies the isomorphism

0; ® z0; = alx1/0a,(x)a[x].

Let M = a;[x1/04,(x)a,Lx]. & operates on M by gim =Chx/*m me M. The
assumption di=d; implies that @q,(x) factorizes into I1 (x—¢3) in o[#]. Let
quGdJ

vy - - -, 0y be the elements of Gy, and let Mi= (x—¢3})+ - - (x—C})M. Then

we have a series of submodules of M
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Each quotient My-:/Mp, is ailx1/(x - ¢)a;Lx], which is isomorphic to a by the
map x-Cy. But this map carries ¢ %7 into gir ek = g FInkd™4 - Then each
M-/ My is, as a Z&-module, isomorphic to (a : i+ jiwed® Y, . . ., ie+ juwrp™ ™).
Since M is composed from these modules by forming extensions, we conclude
that

IM1= 3 [(a:i+hvp®™ %, . o, ir+ jewp® ™1

ovEGdj

This proves the lemma.

Now we will prove that Z-algebra extension (2.5) splits.

TueoreMm 3.1. The linear map ¢ defined in the proof of Theorem 2.1 is a

ring homomorphism. Hence the Z-algebra extension (2.5) splils.

Proof. Take any two generators [K;] and [K;1of G(Q®). We may assume
that di=d;. From Lemma 3.1, we have

Lodled = 3 [(Za] t a+iup™ %, oL, dr+ jeup™ D],

L ={c ) j

But each term of the right hand is equal to either [or] for some %4 such that
dr=d; or a direct sum of p% ™ copies of [or] for some &' such that dp <d;
(Corollary 3.1). Then we have
Lodlod = 30 [oed+ 5 W o]
dk';d; dk'k<di
This shows that ¢ is a ring homomorphism, and this completes the proof of
Theorem 3.1.

Lemma 3.2, If di<dj, then for any ideal a of Z[a,]

[o;1[ai] = g; L@ ap™ %t jiw, ..., ™ %+ )],
VElg,

where § denotes aZ[Ca,].

Proof. Notice that if di <dj, the cyclotomic polynomial @q,(x) factorizes
intooylt;ladi(x"d“_d" ~¢3,) in oiLx] and ¢}, is a root of #*“ ™% — ¢, Then the lemma
is proved by the same method as the proof of Lemma 3.1.

Let a be any ideal of Z[¢s,] and (%, ..., &) be any #tuple of integers
such that £,p* =0 (mod p™). We denote the element [(a; &, ..., &)1~

[(Z[¢a,T 5 81, ..., 20]by (a; &1, ...,8)*% Then(a; &, ...,&)"is obviously
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contained in ¢(Co(0)).

THEOREM 3.2. For any af of ¢(Ce(0y)), each generator LK;1 of G(Q®) acts on
af as follows.

2 (a: 4y +].1Dpdi—dj, R +]'tvj)di—dj)* if di=d;.

Ko} =725 . g . deds s e s
o > (@: led‘l i 41V e, ztp"f d‘+]tv)"’ lf di<d;.

ayEGni

Proof. The action of [K;j] on ¢(Cy(0)) is given by the multiplication of
¢(LK;D =[o;]. Then this theorem follows immediately from preceding two

lemmas.

§ 4. Example

Let @ be an abelian group of type (p, p°), that is, ® be a direct product
of cyclic groups ®; =(g:) and &, = (g») of order p‘and jf, respectively. In
this case we can describe more explicitiy the action of G(Q8) to (Co(0)). In
this section we denote by ¢; a primitive p™-th root of 1 for any integer ¢ such
that 1<i<e.

Let a be ariy idéal of Z tCi] and let » be any integer such that 0<»<p— 1.
We denote (a : p* ™'y, 1) by ai.. Pui: 0i,v= (Z[¢ Dy and K,-,‘=Q®zo,-,\..
Furthermore; for any ideal a of Z[{,] we denote (a : 1, 0) by a. Put 0o=
(Z[¢ Do and Ko=Q®z00. Then we see that -

Q6 = Q& Ko® ., S05IK; .
and that | |
Col0) = Cal00) @ S S Ca(03,).
1. [Q] acts on ¢(Co(0)) trivially.
2. The action of [Ky] on ¢(Co(0o)).

For any element a; of ¢(Co(0o)) it follows immediately from Theorem 3.2 and
Proposition 3.3 that

[Kdof = 33 (o5 1+p 0)F

opEa
-1 -
= 3 @5 L 0% @50, 0= 3 (@)
[ ouEQ
Mf—’lL(lnuc:dp) . y.;-—lf(m(:dp)

since (a : 0, 0)*=(Z : 0, 0)* =0 by Proposition 3.2. On the other hand, s},
such that u3 —1 (mod p) ranges over all elements of 'G; but s;. Then
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-1 - .
O a%t+e = Nyelada™, where N;, means the norm of Z[¢;] over Z. Since
CLEG
}li—l(m:)dp)

Nip(a) is a principal ideal, (Nio(a))s =0. Hence we conclude that
[Ko:lask = - G;k .

3. The action of [K;] on ¢(Co(0i)).

It follows immediately from Theorem 3.2 that

[KJdafy = ; (a:p My +p, DF
=

where » + ¢ ranges over 0,1, ...,»—1, v+1,...,p—1 mod p. Hence,
* i *
[Ko]‘li,v= 2 g, pe
w=0, pv

4. The action of [K;.] on ¢(Co(0)).
Let x. be an integer such that ux, =1 (mod pi). Then Theorem 3.2 and
Proposition 3.3 imply that

[Ki ok = 3 @5 07 A +on), w*= ) (@ ;pi“f(xu+u), D*

=T =T

But we can easily check that x.+ » rangesover 0,1, ...,p—1 mod p. Hence

we have

[Ki,v]a(;k= 2 (Eau)?fwu-

ouEGL
5. The action of [Kj,,] on ¢(Co(0:,+)).

The case :>j. Let y, be an integer such that (1+p"7u)y, =1 (mod p’). Then
Theorem 3.2 and Proposition 3.3 imply that

[Kidof v = 3 (a5 "7 0 + o), 1477 0)*

SuEG,

= GE@j(a“”" ;07 o), DF
because y, =1 (modp). In general we denote by Gi; the Galois group of Q(¢;)
over Q(¢;). Then Gj= iQ:Gj/"m and »'+ vz =2+ 24 (mod p) for any element
g, of Gjun*ox. This shows that

1
230 0T ).

=1 Oy EG,/ 10\

[Kj, v]az:‘: Vo=

p—
A

The case i=j. For each x such that x% —1 (mod p), let x, be an integer
such that (1+ )%, =1 (modp'). Then Theorem 3.2 and Proposition 3.3 imply
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that
LK, ».]a;: v= > (% p TN 4 ) 1, DF

SUEG;
rf—1(modp)

+ 3 (aipTU e, 14+ 0% (4.1)
SuEG;
w=-1(mod p)

p—-1
In the first term of the right hand side, ¢., ranges over UGi;*ox and
A=2

(v +r)%.= (' —2)A+ v (mod p) for any sy, of Giyi*ar. Then the first term of
(4.1) is equal to
r—1

r—1
2( H ac)?:(y'—y))&\« = A}?;(Ni/l(a)n)‘)?:(»'-v))wu-

A=2 O0EG{/10\
In particular, if »’ = », this is equal to — (N (a)){,. In the second term of (4.1),

let p* be the highest power of p which divides 1+ and set 1+ u = us-p"
Then (3.1) implies that

(a; P +op), 1+ %= (Nigi—u(a) ; 710 = »), un)™

since the ideal class of a as a Z[¢;-s]-module is the norm Nj;-x(a) of a from
Z[¢] to ZI[¢i-»1 ([11). When o, ranges over elements of G; suchthat 1+ =0
(mod p") and 1+ p#0 (mod p"“) s, obviously ranges over the elements of

Gi-p = UG, mpcax and (o' —v)‘r-—(v’—v)l (mod p) for any or of Gi-pn*ar.

Hence the second term of (4.1) is equal to

—
..-

p-1

( 11 Nx/x—h(a) )x h, (w-\.)x'*' (Nx/x((l) y v —w, 0)*
h=1A=1 OEGi=n[1°0\
= lv 1
P I(Mll(d)"")i-h,(v-w)\f‘*‘ (Nin(a) 5 o' =, 0¥,
,.=1 = :

where if %, (N,,l(a) ;v —p, 0 = (N;/1(0)°“'-")o and if »' = », (N;j1(a) ; »'
v, 00*=0 and E(Nul(a)”), By (v —uin = (N,,o(a)), no=0 since Njpo(a) is a prin-

cipal ideal. The case i<j. From Theorem 3.2 we have
[Kj, oy = 2@ G P77+ o), PP+ O
ULEG;

Let x. be an integer such that (p7"*+ p)x. =1 (mod p7). Then (F; p" '+
w), PP W = (@*)} vizu+v by Proposition 3.3, sx, ranges over the elements of
Gi, and »'x, +v =12+ » (mod p) for any o, of Gi,*s». This shows that

p—1 v=1 ~_
[Kf.»]a;.:»’= 2( 11 E");‘»‘l')d-\a: }‘E(Nill(a)ﬂ)‘)j,v)+»-
=1

A=1 O0EG;i/1-0)\
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Summalizing, we have

ProrosiTION 4.1. Let & be an abelian group of type (p, p°). Then G(QS)
acts on B(Co(0)) as follows.

1. [Q] acts trivially.
2. [Kolaf = —af.
r—-1
3. [Kdofy= > af,.
p=0, %v
nel
4. [Ki,\«]a(;k: }‘El(an)i,\w}u
5- [I(j,y]a;':\.'
p—-1
( IT qu“’);f\,'+w, where oy, = ”l_lrl”jl'- (@>7).
A=1 OuEGi 1%\
r—1 i-1p—1 -
= £ Z(M/l(a)”‘);":(u'—\)k-w + g)z(M'Il(a)q}‘)?—-h,(\’—v))\‘*' (M’/l(a)”"'l_“):(, (V,#D)
= = =1Ai=1
~ (Nin(a))iy, (' =) (i=7).
p=1
(Nin@)™) 5 viaey (<),
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