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Abstract

Production, transport and deposition of aeolian dust from land to sea closely interact with
regional environment and global climate. This Special Issue addresses transport of aeolian dust
from the Asian inland to the Loess Plateau and North Pacific Ocean and their possible links to
oceanic ecosystem, global climate and even human activity, over various timescales. The papers
in this volume are multidisciplinary in nature and include sedimentology, mineralogy,
geochemistry, environmental magnetism and climate modelling on multi-timescales from
interannual, glacial–interglacial to tectonic timescales. Based onmodern observation, geological
records and modelling, this Special Issue offers new insights especially into aeolian provenance,
dynamics controls on dust production, a novel marine aeolian proxy, as well as long-term aeo-
lian input to themarginal basins of NEAsia and its influence on oceanic productivity. This issue
provides a good example for future comprehensive studies of source-to-sink processes of Asian
dust from land to sea.

1. Introduction

Aeolian dust, defined as terrestrial materials transported by atmospheric circulation, is a major
erosional product of arid land and a significant component of deep-sea sediments (Liu, 1985;
Rea, 1994). Understanding how aeolian dust cycle interacts with the climate system has been a
frontier research topic in Earth science in recent years (Jickells et al. 2005; Martínez-Garcia et al.
2011; Jacobel et al. 2019). Modern observations, model simulations and sediment records dem-
onstrate that the production, emission and deposition of aeolian dust are closely linked to
Earth’s climate state (Ding et al. 1994; Shao et al. 2011; An, 2014; Sun et al. 2019 and references
therein). A dustier Earth during glacial periods is usually associated with greater aridity in source
regions, less vegetation and stronger winds (Lambert et al. 2008; Winckler et al. 2008; Muhs,
2013). On the other hand, dust can influence climate directly, by the reflecting and absorption
of solar radiation, or indirectly, by modifying cloud properties (Forster et al. 2007; Maher et al.
2010). Dust transported to the oceans can also affect climate via ocean fertilization, as mineral
dust containing iron can modulate the uptake of carbon in marine ecosystems and thus poten-
tially influence the atmospheric CO2 concentration and thus global climate (Martin, 1990;
Jickells et al. 2005; Boyd et al. 2007; Murray et al. 2012; Tagliabue et al. 2017). The global dis-
tribution of monthly mean total iron concentration is closely correlated to the dust flux to the
world oceans (Fig.1a, b), suggesting a dominant control over iron release to the deep sea by dust
inputs.

Asia is the second largest dust source region in the world, with ~600Mt and ~70Mt annual
dust emissions to the atmosphere and ocean, respectively (Fig. 1a) (Shao et al. 2011).
Observational evidence implies that aeolian dust originating from Asia has a significant influ-
ence over the marine and continental environment, as well as global climate (Rea, 1994;
Tanaka & Chiba, 2006; Uno et al. 2009). With the aid of atmospheric circulation (i.e. East
Asian winter monsoon and westerlies) (Fig. 1b), aeolian dust from the Asian desert regions
has been transported eastward to the Chinese Loess Plateau (Liuet al. 1985), wide areas of
the Pacific Ocean (Duce et al. 1991; Rea, 1994; Nagashima et al. 2007; Winckler et al. 2008;
Wan et al. 2012) and has reached North America (McKendry et al. 2001) and even
Greenland (Biscaye et al. 1997; Uno et al. 2009). While our knowledge of the Asian aeolian
sources, transport and deposition has greatly advanced in the last 30 years (An, 2014; Sun
et al. 2020), large uncertainties and knowledge gaps, especially about the impacts and inter-
actions of aeolian dust with the regional- and global-scale biogeochemical cycles, still exist
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(Tagliabue et al. 2017; Jacobel et al. 2019), partly because of a lack
of comprehensive studies on source-to-sink processes of Asian
dust from land to sea.

Asian topography has dramatically changed during the
Cenozoic, with the progressive uplift of the Himalaya and
Tibetan Plateau and the westward retreat of Paratethys (Prell &
Kutzbach, 1992; Ramstein et al. 1997; Wang, 2004). At the same
time global climate gradually cooled after the Eocene (Zachos
et al. 2001). Driven by both tectonic uplift and global cooling,
Asian inland areas experienced a long-term drying, eventually
resulting in development of deserts and extensive deposition of
loess in Central Asia during the Oligocene to Miocene (Guo
et al. 2002; Zheng et al. 2015; Shen et al. 2017). This general geo-
logical background determines the production, emission, transport
and deposition of Asian dust from land to sea from the geological
past to present (Fig. 2). The huge dust inputs from Asia to the
North Pacific supply large amounts of macronutrients (N, P and
Si) and micronutrients (e.g. Fe, Mn and Cd) that are essential
for phytoplankton growth (Jickells et al. 2005). The influence of
Asian dust on oceanic biogeochemical processes, global carbon
cycle and climate change is potentially significant (Fig. 2)
(Han et al. 2011), but not well understood, which was the initial
motivation for this Special Issue we have organized.

Great spatial (Asian interior to the Pacific) and temporal
(modern to the Miocene) span is the main feature of this
Special Issue (Fig. 1b). Ten papers address the transport processes
and sedimentary records of Asian aeolian dust from the arid
interior (Taklimakan Desert) to the Chinese Loess Plateau,

marginal basins of NE Asia, the west Philippine Sea and the
North Pacific, as well as their possible links to oceanic ecosystem,
global climate and even human activity. This issue involves studies
over multiple timescales (from interannual, glacial–interglacial to
tectonic timescales) of Asian aeolian dust transportation from land
to sea. New insights and the significant details from these contri-
butions are outlined below in order of timescale.

2. Modern Asian dust from land to sea

In their contribution Yuko et al. (2020) study the origin of aeolian
dust emitted from the Tarim Basin, which is considered to be one
of the main sources of fine-grained dust in the northern hemi-
sphere. However, it is unclear whether the source of dust emitted
from the Tarim Basin is the Taklimakan or the Gobi Desert and
mountain rivers around the basin, as the Gobi and fluvial sources
produce more fine-grained detritus than the Taklimakan Desert.
They analyse the electron spin resonance (ESR) signal intensity
and Crystallinity Index (CI) of quartz from sediment samples of
the potential sources surrounding the Tarim Basin. The converged
values of the ESR intensity (7.2 ± 5.5) and CI (8.8 ± 0.2) of the fine
silt of sediments from the rivers draining the Kunlun and Altyn
mountains are similar to those of the aeolian dust emitted from
the Tarim Basin, confirming their major contribution to that depo-
centre. This study highlights the importance of repeated cycling by
fluvial and wind processes within the basin to produce homo-
geneous aeolian dust, which can be further transported to the
Loess Plateau and North Pacific.

Fig 1. (a) Global distribution of the world’smajor deserts and
dust emissions. The magnitudes of dust emission from differ-
ent regions are given in Mt and indicated by bars (Tanaka &
Chiba, 2006; Shao et al. 2011). The main routes of dust trans-
port are indicated by black arrows. The global distribution of
monthly mean total iron concentration (μg m−3) (colour spec-
trum) and the dust flux (g cm−2 a−1) (dotted line) to the world
oceans are from Hamilton et al. (2019) and Jickells et al.
(2005), respectively. Note the major contribution of Asian dust
to the North Pacific. (b) Location map showing major geogra-
phy of Asia-Pacific and the studied sites in this issue. The
sediment sites and aerosol dust sites are indicated by blue
dots and open black circles, respectively. Some important
sites mentioned in this issue are also shown. The legends of
iron concentration and dust flux are the same as in (a).
Abbreviations: TK, Taklimakan Desert; Q, Qaidam basin; Or,
Ordos Desert; CLP, Chinese Loess Plateau; JS, Japan Sea;
SCS, South China Sea; WPS, West Philippine Sea; EAWM,
East Asian winter monsoon; EASM, East Asian summer mon-
soon. The red, white and blue arrows indicate general wind
directions of westerlies, EAWM and EASM, respectively.
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The west Philippine Sea has been suggested as one of the impor-
tant sinks of dust transported from the Asian interior by winds.
This is largely based on provenance analysis of mixed sediments
(i.e. dust, volcanic and authigenic materials) deposited in the deep
sea (e.g. Kolla et al. 1980; Wan et al. 2012; Xu et al. 2015), rather
than pure dust collected in the air and/or water column by sedi-
ment traps, although the latter provides more reliable information
on dust. Wang et al. (2020, this issue) investigate the microscopic
mineralogy, trace elements and Sr–Nd isotopic compositions of
modern dust samples collected in the air and seawater of the west
Philippine Sea in 2014–15. The detrital minerals quartz, feldspar
and gypsum show similar microscopic characteristics indicative
of wind erosion (subangular to sub-round). Provenance analysis
based on trace element and Sr–Nd isotopic compositions demon-
strates that themodern aeolian dust deposited in the Philippine Sea
mainly originates from the Ordos Desert (>80%), with minor sup-
ply from the Taklimakan Desert (<20%). Wind back-trajectories
suggest that the dust was transported by the East Asian winter
monsoon to the sea in 1 week. This result improves our under-
standing of modern Asian dust source-to-sink processes from land
to sea.

Asian dust aerosols carried during some severe spring dust
storms can be transported over long distances, even around the
globe in a few days (Uno et al. 2009). However, the dominant fac-
tors that lead to abrupt changes of dust storm frequency on decadal
timescale are not fully understood. Shang & Liu (2020, this issue)
examine the spatial and temporal variations of East Asian dust
storm frequency and Arctic sea-ice concentration during 1961–
2015 and their possible links. Their results show that the spring
dust storm frequency is highly correlated with the preceding winter
Arctic sea-ice concentration and both of them experienced a
remarkable fluctuating decrease in the past half-century. They fur-
ther propose a mechanism whereby the Arctic sea-ice loss gener-
ates the hemispherical-scale atmospheric teleconnection pattern,
including regional-scale circulation anomalies over East Asia
and thus results in a reduction in dust storm frequency. This study
provides an excellent example how high-latitude climate strongly
influences the emission of modern Asian dust.

As an essential micronutrient for marine photosynthetic organ-
isms, iron (Fe) transport to the open ocean primarily originates
from terrestrial mineral dust derived from arid regions (Jickells
et al. 2005; Murray et al. 2012). Due to increased human activity,

however, pyrogenic Fe-containing aerosols are another possible
source of dissolved iron (DFe) to open ocean (Mahowald et al.
2009). Ito et al. (2020, this issue) use one atmospheric chemistry
transport model and two ocean biogeochemistry models to inves-
tigate the effects of atmospheric deposition of DFe from mineral
dust and combustion aerosols on ocean biogeochemistry. The
results show a higher sensitivity of net primary production in
the North Pacific and North Atlantic to the change in combustion-
generated aerosols than to mineral dust, regardless of the
relative sedimentary source inputs. This study highlights the influ-
ence of the underestimated anthropogenic Fe-containing aerosols
on the marine ecosystem in the context of increasing human
perturbations.

3. Glacial–interglacial cycles of Asian dust from
land to sea

Aeolian flux is widely accepted as a quantitative proxy for assessing
the aridity of the dust source region (Rea et al. 1998;Winckler et al.
2008; An, 2014). However, the reconstruction of temporal–spatial
dust flux variability across the Chinese Loess Plateau on glacial–
interglacial timescales is rare because of poor constraints on loess
age model and bulk density. Liu et al. (2020, this issue) are the first
to present aeolian flux variations from eight loess–palaeosol
sequences dating from 150 ka along two N–S-aligned transects
on the Chinese Loess Plateau, based on a uniform age model of
high-resolution optically stimulated luminescence (OSL) dating
and pedostratigraphic correlation and reliable bulk density data.
The aeolian flux results show consistent fluctuations, with higher
and more variable values during glacial compared to interglacial
periods. There is also a clear spatial increase from the southeastern
Chinese Loess Plateau to its northwestern part. The high-
resolution stacked aeolian flux records of the Loess Plateau since
the Last Glacial Maximum (LGM) not only confirm the dominant
control of global ice volume on dust production on glacial–
interglacial timescales, but also provide a key curve for refining
other dust flux datasets and improve models of past dust–climate
interactions.

Sr–Nd isotopes, as robust indicators of sedimentary prov-
enance, have been extensively used to constrain the signal of dust
contribution to North Pacific sediments (Ziegler et al. 2007; Shen
et al. 2017). Due to high cost and the time-consuming character of

Fig. 2. Schematic representation of processes and effects of
aeolian dust from Asian land to the North Pacific in the con-
text of Cenozoic uplift of Himalaya and Tibetan Plateau and
general drying of the Asian interior. The possible influence of
dust iron on oceanic biogeochemical cycle is modified from
Martínez-García & Winckler (2014). Note the significant role of
iron fertilization in the carbon cycle through stimulating oce-
anic primary productivity, CO2 uptake and burial of organic
carbon in deep-sea sediments.
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the analyses however, there are few high-resolution Sr–Nd isotopes
records that can reveal how dust input to the deep sea on orbital
timescales covaried with global climate. Zhang et al. (2020b, this
issue) analyse Sr–Nd isotopes, trace elements and the grain-size
of the silicate fraction extracted from sediments at high resolution
fromOceanDrilling Program (ODP) Site 1209 in the North Pacific
since 500 ka. The results show that a two-end-member mixing
model between aeolian dust and dispersed volcanic ash accounts
for the provenance. Variations of Nd isotopes mimic global
deep-sea oxygen isotopes (LR04 stack) over the past five glacial–
interglacial cycles, with lower (higher) ϵNd values during cooling
(warm) periods. They propose that the relative contributions of
Asian dust to volcanic ash during the glacial–interglacial cycles
are the dominant factor controlling the sawtooth patterns of Nd
and Sr isotopes. This study provides a potentially useful chrono-
stratigraphy tool by analysing Nd isotope variations in detrital
sediment in the North Pacific, especially for deep-sea sediments
deposited below the lysocline (~3000 m) with no or limited
amounts of calcareous microfossils.

Geological records from land to sea indicate that dust fluxes
during glacial stages were globally two to five times higher than
during interglacials (Maher et al. 2010). However, the relative con-
tributions of different forcing factors (i.e. ice volume, sea level,
CO2, orbital parameters and underlying surface character) on
the dust cycle are not well quantified. Li et al. (2020, this issue) con-
ducted a series of sensitivity experiments with an Earth system
model to evaluate the effects of various factors on Asian dust emis-
sion during the LGM. The simulation results show that the high-
latitude ice-sheet extent and abnormal surface erosion in the dust
source region were the two main forcing factors, which can cause
Asian dust emissions to increase 3.77-fold and 1.25-fold compared
to those of the present day, respectively. In contrast, the green-
house gas content and orbital parameters were relatively weak.
This study emphasizes the importance of accurate reconstructions
of abnormal surface erosion in addition to considering ice-sheet
extent during glacial–interglacial cycles.

4. Tectonic timescale Asian dust input to the Pacific

Effective extraction of an aeolian signal from marine sediment is
crucial for further aeolian study. In addition to the conventional
mineralogical and geochemical proxies, magnetic parameters
(i.e. magnetic susceptibility, hard isothermal remanent magnetiza-
tion (HIRM)) were also commonly used as indicators of long-term
aeolian input to deep-sea sediment (Doh et al. 1988; Rea, 1994).
However, these proxies usually comprise mixed information
derived from all the magnetic particles, including dust, volcanic
and biogenic components. Zhang et al. (2020a, this issue) review
the study progress onmineral magnetism-related aeolian dust dep-
osition in the North Pacific. They summarize the various magnetic
minerals (iron sulphides, ferrimagnetic and antiferromagnetic
minerals) with different origins in marine sediments and recom-
mend a novel parameter RelHmþGt to infer the relative concentra-
tion of hematite and goethite, both of which have aeolian origin.
The consistent variation of this new magnetic proxy with the
chemically extracted aeolian content of sediments at ODP Site
885 in the North Pacific since 2.8 Ma confirm its reliability as a
discriminator of aeolian provenance.

Long-term evolution of Asian aeolian dust input to the North
Pacific has been investigated for nearly half a century (Rea et al.
1998 and references therein). However, there are very few similar
studies from the marginal basins of NE Asia, which are major

sediment sinks on the transport path for Asian dust from land
to the North Pacific (Shen et al. 2017) (Fig. 1). Benefiting from
samples recovered by Integrated Ocean Drilling Program
(IODP) Expedition 346 with good age controls, Anderson et al.
(2020, this issue) analyse the major and trace element contents
of sediments from IODP Site U1430 located on the southern upper
slope of the eastern Korean Plateau (Fig. 1) to reconstruct varia-
tions in aeolian flux since ~13Ma. Multivariate partitioning analy-
sis indicates that the Taklimakan Desert was the major sediment
source of aeolian dust to the marginal basin, especially before
the late Miocene (~12‒8Ma), while the contribution and flux from
the Chinese Loess Plateau and Gobi Desert rapidly increased in the
Plio-Pleistocene (since ~3Ma). The provenance and flux trend at
Site U1430 broadly agree with records elsewhere in the North
Pacific. This study suggests that variation in dust source regions
appears to track step-wise Asian aridification influenced by
Cenozoic global cooling and periods of Tibetan uplift.

Both modern observations and glacial–interglacial-scale deep-
sea records have demonstrated the significant influence of aeolian
dust on oceanic biogeochemical cycles (Boyd et al. 2007;Murray et al.
2012). However, how this mechanism might operate on million-
years timescales andhow it would respond to climate change remains
unclear (Martínez-Garcia et al. 2011). Zhai et al. (2020, this issue)
examine the evolution of palaeoproductity in the marginal basins
of NE Asia and its possible links to Asian dust input using bulk ele-
ments geochemistry and the total organic carbon (TOC) content of
sediments at IODP Site U1430 (Fig. 1) since 4Ma, during which the
Earth experienced dramatic Northern Hemisphere Glaciation and
global cooling. The results show that palaeoproductivity in the basin
was greatly enhanced, especially at 3–2Ma, consistent with rapidly
increasing aeolian iron input from the Asian interior to the basin
and growth of high-latitude ice sheets. Thus, in turn they propose
that the enhanced efficiency of organic carbon burial in the marginal
basin might contribute to the coeval decrease of atmospheric pCO2

level and global cooling in the late Pliocene.

5. Conclusion

This Special Issue provides new insights about aeolian provenance,
dynamic controls on dust production, novel marine aeolian
proxies, as well as long-term aeolian inputs to the marginal seas
of NE Asia and its influence on oceanic productivity. In the future,
it is suggested that continuous in situ observations of aeolian dust
transport and deposition processes from land to sea should be con-
ducted, in order to quantitatively reconstruct long-term evolution
of aeolian dust to theWest Pacific, and to address any biogeochem-
ical links to the carbon cycle and global Cenozoic cooling. Further
data–model comparison would provide robust assessment of
dust–climate interactions at different timescales.
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