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Abstract

In this paper, positive solutions of fractional differential equations with nonlinear terms depending on
lower-order derivatives on a half-line are investigated. The positive extremal solutions and iterative
schemes for approximating them are obtained by applying a monotone iterative method. An example
is presented to illustrate the main results.
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1. Introduction

Fractional calculus has gained considerable attention from both theoretical and applied
points of view in recent years. There are numerous applications in a variety of
fields such as electrical networks, chemical physics, fluid flow, economics, signal and
image processing, viscoelasticity, porous media, aerodynamics, modelling for physical
phenomena exhibiting anomalous diffusion, and so on. In contrast to integer-order
differential and integral operators, fractional-order differential operators are nonlocal
in nature and provide the means to look into hereditary properties of several materials
and processes. This aspect of fractional-order operators has helped to improve the
mathematical modelling of many real-world problems in the physical and technical
sciences. A detailed description of theory and applications of the subject can be found
in the texts [3, 8, 9, 17, 19].

Another important contribution of fractional calculus has been observed in the
investigation of backward problems. It is well known that the backward problem in
time is severely ill-posed for the parabolic problem (involving a first-order derivative
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with respect to time: that is, α = 1). This severe ill-posedness means that the stability
in the backward problem cannot be restored even by strengthening the norm within
Sobolev norms for estimating the initial value in L2 spaces. However, for a fractional
order 0 < α < 1, the backward problem is only moderately ill-posed [16]. For the
application of fractional calculus in inverse problems concerning the determination of
the fractional order, we refer the reader to the paper [5].

In this paper, we consider a nonlinear fractional boundary value problem on a half-
line given by Dαu(t) + f (t, u(t),Dα−1u(t)) = 0, 1 < α ≤ 2,

u(0) = 0, Dα−1u(∞) = βu(ξ),
(1.1)

where t ∈ J = [0,+∞), f ∈ C[J × R × R, J] and Dα is the standard Riemann–Liouville
fractional derivative of order α. Here we emphasise that the nonlinearity in problem
(1.1) depends on the unknown function and its lower-order fractional derivative.

It is imperative to note that the available literature on fractional differential
equations is mainly concerned with a finite domain rather than with the infinite
domain. For work dealing with the existence of solutions (or positive solutions) of
nonlinear fractional differential equations on infinite intervals (unbounded domains),
see [1, 2, 4, 10, 11, 20, 21, 24, 26, 30, 33]. In particular, Zhao and Ge [33] applied
the idea of the Leray–Schauder nonlinear alternative theorem to study the existence of
positive solutions for the following nonlocal fractional boundary value problem:Dαu(t) + f (t, u(t)) = 0, 1 < α ≤ 2,

u(0) = 0, lim
t→+∞

Dα−1u(t) = βu(ξ),

where t ∈ J = [0, +∞), f ∈ C(J × R, [0, +∞)), 0 ≤ ξ < ∞ and Dα is the standard
Riemann–Liouville fractional derivative. Su and Zhang [21] used Schauder’s fixed
point theorem to find the sufficient conditions for the existence of solutions for a
problem involving fractional differential equations with nonlinear term depending on
a lower-order derivative on the unbounded interval:Dαu(t) = f (t, u(t),Dα−1u(t)) = 0, 1 < α ≤ 2,

u(0) = 0, lim
t→+∞

Dα−1u(t) = u∞, u∞ ∈ R,

where t ∈ J = [0, +∞), f ∈ C(J × R × R, R) and Dα and Dα−1 are the standard
Riemann–Liouville fractional derivatives.

In the above referenced work [21, 33], only the existence of solutions for the given
problems was discussed by using the standard tools of fixed point theory. Applying
a similar procedure, one can easily show the existence of solutions for problem (1.1).
However, it is more interesting and useful to devise a strategy that not only ensures
the existence of solutions for the problem at hand but also provides means for finding
solutions. With this in mind, we seek the minimal and maximal positive solutions
for problem (1.1) by using the monotone iterative method, which is different from the
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approach employed in [1, 2, 4, 10, 11, 20, 21, 24, 26, 30, 33]. To approximate the
minimal and maximal positive solutions, we give two explicit computable iterative
sequences. For more details of the application of this method in fractional differential
equations, see [6, 7, 9, 12–15, 18, 22, 23, 25, 27–29, 31, 32].

2. Preliminaries and lemmas

First of all, we recall definitions of the Riemann–Liouville fractional derivative and
integral.

Definition 2.1 [8]. The Riemann–Liouville fractional derivative of order δ for a
continuous function f is defined by

Dδ f (t) =
1

Γ(n − δ)

( d
dt

)n ∫ t

0
(t − s)n−δ−1 f (s) ds, n = [δ] + 1,

provided the right-hand side is pointwise defined on (0,∞).

Definition 2.2 [8]. The Riemann–Liouville fractional integral of order δ for a function
f is defined as

Iδ f (t) =
1

Γ(δ)

∫ t

0
(t − s)δ−1 f (s) ds, δ > 0,

provided that the integral exists.

For the analysis below, we define two Banach spaces,

X =

{
u ∈ C(J,R) : sup

t∈J

|u(t)|
1 + tα−1 < +∞

}
,

Y =

{
u ∈ X : Dα−1u(t) ∈ C(J,R), sup

t∈J
|Dα−1u(t)| < +∞

}
,

equipped with the respective norms ‖u‖X = supt∈J(|u(t)|/(1 + tα−1)) and ‖u‖Y =

max{‖u‖X , supt∈J |D
α−1u(t)|}.

Define a cone P ⊂ Y by

P = {u ∈ Y : u(t) ≥ 0, t ∈ J}.

We now introduce the assumptions that we need in the sequel.
(H1): β, ξ > 0,Γ(α) > βξα−1.
(H2): There exist nonnegative functions a(t),b(t), c(t) defined on [0,∞) and constants
p, q ≥ 0, such that

f (t, u, v) ≤ a(t) + b(t)|u|p + c(t)|v|q

and∫ +∞

0
a(t) dt = a∗ < +∞,

∫ +∞

0
b(t)(1 + tα−1)p dt = b∗ < +∞,

∫ +∞

0
c(t) dt = c∗ < +∞.

(H3): f is nondecreasing with respect to the second and last variables.
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Lemma 2.3 [21]. Let U ⊂ X be a bounded set. Then U is relatively compact in X if the
following conditions hold:

(i) for any u(t) ∈ U, u(t)/(1 + tα−1) and Dα−1u(t) are equicontinuous on any compact
interval of J;

(ii) for any ε > 0, there exists a constant T = T (ε) > 0 such that∣∣∣∣∣ u(t1)
1 + tα−1

1

−
u(t2)

1 + tα−1
2

∣∣∣∣∣ < ε
and |Dα−1u(t1) − Dα−1u(t2)| < ε for any t1, t2 ≥ T and u ∈ U.

Lemma 2.4 [33]. Let h ∈ C([0,+∞)) with
∫ ∞

0 h(s) ds < ∞. If Γ(α) , βξα−1, then the
boundary value problemDαu(t) + h(t) = 0,

u(0) = 0, Dα−1u(∞) = βu(ξ), β, ξ > 0,

has a unique solution

u(t) =

∫ +∞

0
G(t, s)h(s) ds, (2.1)

where

G(t, s) =
1
∆


[Γ(α) − β(ξ − s)α−1]tα−1 − [Γ(α) − βξα−1](t − s)α−1, s ≤ t, s ≤ ξ,
[Γ(α) − β(ξ − s)α−1]tα−1, 0 ≤ t ≤ s ≤ ξ,
Γ(α)tα−1 − [Γ(α) − βξα−1](t − s)α−1, 0 ≤ ξ ≤ s ≤ t,
Γ(α)tα−1, s ≥ t, s ≥ ξ,

(2.2)
and ∆ = Γ(α)[Γ(α) − βξα−1].

From (2.1),

Dα−1u(t) =

∫ +∞

0
G∗(t, s)h(s) ds,

where

G∗(t, s) =
1

Γ(α) − βξα−1


βξα−1 − β(ξ − s)α−1, s ≤ t, s ≤ ξ,
Γ(α) − β(ξ − s)α−1, 0 ≤ t ≤ s ≤ ξ,
βξα−1, 0 ≤ ξ ≤ s ≤ t,
Γ(α), s ≥ t, s ≥ ξ.

(2.3)

Lemma 2.5. For (s, t) ∈ J × J, if condition (H1) holds, then

0 ≤
G(t, s)

1 + tα−1 ≤
1

Γ(α) − βξα−1 , 0 ≤ G(t, s) ≤
tα−1

Γ(α) − βξα−1

and
0 ≤ G∗(t, s) ≤

1
Γ(α) − βξα−1 .
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Proof. The assertion is obvious from (2.2) and (2.3). �

Lemma 2.6. If condition (H2) is satisfied, then∫ +∞

0
f (s, u(s),Dα−1u(s)) ds ≤ a∗ + b∗‖u‖pY + c∗‖u‖qY , ∀u ∈ Y.

Proof. For u ∈ Y, by condition (H2),∫ +∞

0
f (s, u(s),Dα−1u(s)) ds

≤

∫ +∞

0
[a(s) + b(s)|u(s)|p + c(s)|Dα−1u(s)|q] ds

≤ a∗ +

∫ +∞

0
b(s)(1 + sα−1)p |u(s)|p

(1 + sα−1)p ds +

∫ +∞

0
c(s)|Dα−1u(s)|q ds

≤ a∗ + b∗‖u‖pY + c∗‖u‖qY . �

3. Main results

Using Lemma 2.4 with h(t) = f (t, u(t), Tu(t)), we define an integral operator Q
associated with problem (1.1) by

Qu(t) =

∫ +∞

0
G(t, s) f (s, u(s),Dα−1u(s)) ds. (3.1)

Notice that problem (1.1) has a solution if and only if the operator equation u = Qu
has a fixed point, where Q is given by (3.1).

Lemma 3.1. Assume that conditions (H1) and (H2) hold. Then the operator Q : Y → Y
is completely continuous.

Proof. The proof consists of two steps.
(a) The operator Q : Y → Y is relatively compact.
Let Ω be any bounded subset of Y . Then for any u ∈ Ω, there exists a constant

M > 0 such that ‖u‖Y ≤ M. By Lemmas 2.5 and 2.6,

‖Qu‖X = sup
t∈J

∫ ∞

0

G(t, s)
1 + tα−1 | f (s, u(s),Dα−1u(s))| ds

≤
1

Γ(α) − βξα−1

∫ +∞

0
| f (s, u(s),Dα−1u(s))| ds

≤
1

Γ(α) − βξα−1 [a∗ + b∗‖u‖pY + c∗‖u‖qY ]

≤
1

Γ(α) − βξα−1 [a∗ + Mpb∗ + Mqc∗],

which implies that QΩ is uniformly bounded.
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Next, we show that the operator Q : Y → Y is equicontinuous.
Let I ⊂ J be any compact interval and let Ω be any bounded subset of Y. Then, for

all t1, t2 ∈ I, t2 > t1 and u ∈ Ω,∣∣∣∣∣ Qu(t2)
1 + tα−1

2

−
Qu(t1)

1 + tα−1
1

∣∣∣∣∣ =

∣∣∣∣∣∫ ∞

0

( G(t2, s)
1 + tα−1

2

−
G(t1, s)
1 + tα−1

1

)
f (s, u(s),Dα−1u(s)) ds

∣∣∣∣∣
≤

∫ ∞

0

∣∣∣∣∣ G(t2, s)
1 + tα−1

2

−
G(t1, s)
1 + tα−1

1

∣∣∣∣∣ | f (s, u(s),Dα−1u(s))| ds.
(3.2)

Since G(t, s) ∈ C(J × J), for any compact set I × I, G(t, s)/(1 + tα−1) is uniformly
continuous. Note that this function only depends on t for s ≥ t. So it is uniformly
continuous on I × (J\I). Thus, for all s ∈ J and t1, t2 ∈ I,

∀ε > 0, ∃ δ(ε) such that if |t1 − t2| < δ, then
∣∣∣∣∣ G(t2, s)
1 + tα−1

2

−
G(t1, s)
1 + tα−1

1

∣∣∣∣∣ < ε. (3.3)

By Lemma 2.6, for all u ∈ Ω, we get∫ ∞

0
| f (s, u(s),Dα−1u(s))| ds <∞, ∀u ∈ Ω.

This, together with (3.2) and (3.3), implies that Qu(t)/(1 + tα−1) is equicontinuous on I.
Observe that

Dα−1Qu(t) =

∫ +∞

0
G∗(t, s) f (s, u(s),Dα−1u(s)) ds

and the function G∗(t, s) ∈ C(J × J) does not depend on t. Thus it is obvious that
Dα−1Qu(t) is equicontinuous on I. Furthermore,

lim
t→∞

G(t, s)
1 + tα−1 =

1
Γ(α)[Γ(α) − βξα−1]

βξα−1 − β(ξ − s)α−1, 0 ≤ s ≤ ξ,
βξα−1, ξ ≤ s,

In view of the above argument, it is easy to verify that for any given ε > 0, there exists
a constant T ′ = T ′(ε) > 0 such that∣∣∣∣∣ G(t2, s)

1 + tα−1
2

−
G(t1, s)
1 + tα−1

1

∣∣∣∣∣ < ε
for any t1, t2 ≥ T ′ and s ∈ J. Thus, by Lemma 2.6 and (3.2), we infer that the same
property holds for QΩ, uniformly on Ω. Hence, the operator Q is equiconvergent
at ∞. As the function G∗(t, s) does not depend on t, we easily obtain that Dα−1Qu(t)
is equiconvergent at ∞. Therefore, it follows by Lemma 2.3 that QΩ is relatively
compact on J.
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(b) The operator Q : Y → Y is continuous.
Let un,u ∈ X such that un→ u (n→∞). Then ‖un‖Y <∞, ‖u‖Y <∞.By Lemmas 2.5

and 2.6,

Qun(t) =

∫ ∞

0

G(t, s)
1 + tα−1 f (s, un(s),Dα−1un(s)) ds

≤
1

Γ(α) − βξα−1

∫ ∞

0
| f (s, un(s),Dα−1un(s))| ds

≤
1

Γ(α) − βξα−1 [a∗ + b∗‖un‖
p
Y + c∗‖un‖

q
Y ] <∞

and

Dα−1Qun(t) =

∫ +∞

0
G∗(t, s) f (s, un(s),Dα−1un(s)) ds

≤
1

Γ(α) − βξα−1

∫ ∞

0
| f (s, un(s),Dα−1un(s))| ds

≤
1

Γ(α) − βξα−1 [a∗ + b∗‖un‖
p
Y + c∗‖un‖

q
Y ] <∞.

By the Lebesgue dominated convergence theorem and continuity of f , we obtain

lim
n→∞

∫ ∞

0

G(t, s)
1 + tα−1 f (s, un(s),Dα−1un(s)) ds =

∫ ∞

0

G(t, s)
1 + tα−1 f (s, u(s),Dα−1u(s)) ds

and

lim
n→∞

∫ ∞

0
G∗(t, s) f (s, un(s),Dα−1un(s)) ds =

∫ ∞

0
G∗(t, s) f (s, u(s),Dα−1u(s)) ds.

In consequence,

‖Qun − Qu‖X = sup
t∈J

∫ ∞

0

G(t, s)
1 + tα−1 | f (s, un(s),Dα−1un(s))

− f (s, u(s),Dα−1u(s))| ds→ 0 (n→∞),

and
sup
t∈J
|Dα−1Qun − Dα−1Qu| → 0 (n→∞).

This shows that the operator Q is continuous.
From the above steps, we conclude that the operator Q : Y → Y is completely

continuous. This completes the proof. �

Theorem 3.2. Let the conditions (H1), (H2) and (H3) be satisfied. Then there exists
a positive constant R such that problem (1.1) has minimal and maximal positive
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solutions v∗, u∗ respectively in (0, Rtα−1], which can be obtained by means of the
following two explicit monotone iterative sequences:

vn+1 =

∫ +∞

0
G(t, s)a(s) f (s, vn(s),Dα−1vn(s)) ds, with initial value v0(t) = 0,

un+1 =

∫ +∞

0
G(t, s)a(s) f (s, un(s),Dα−1un(s)) ds, with initial value u0(t) = Rtα−1.

(3.4)

Moreover,

v0 ≤ v1 ≤ · · · ≤ vn ≤ · · · ≤ v∗ ≤ · · · ≤ u∗ ≤ · · · ≤ un ≤ · · · ≤ u1 ≤ u0.

Proof. For computational convenience, we set

L =
1

Γ(α) − βξα−1 .

In view of Γ(α) > βξα−1, Lemma 2.5 leads to the fact that (Qu)(t) ≥ 0 for any
u ∈ P, t ∈ J. Thus, Q(P) ⊂ P.

For 0 ≤ p, q < 1, choose

R ≥ max{3La∗, (3Lb∗)1/(1−p), (3Lc∗)1/(1−q)}

and define B = {u ∈ Y, ‖u‖Y ≤ R}. In what follows, we first show that Q(B) ⊂ B.
For any u ∈ B, by Lemmas 2.5 and 2.6,

‖Qu‖X = sup
t∈J

∫ ∞

0

G(t, s)
1 + tα−1 f (s, u(s),Dα−1u(s)) ds

≤ L
∫ +∞

0
f (s, u(s),Dα−1u(s)) ds

≤ L[a∗ + b∗‖u‖pY + c∗‖u‖qY ]
≤ L[a∗ + Rpb∗ + Rqc∗]
≤ R

and

sup
t∈J
|Dα−1Qu(t)| = sup

t∈J

∫ ∞

0
G∗(t, s) f (s, u(s),Dα−1u(s)) ds

≤ L
∫ +∞

0
f (s, u(s),Dα−1u(s)) ds

≤ R.

This implies that ‖Qu‖Y ≤ R, for all u ∈ B. Thus Q(B) ⊂ B.
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The definition of the operator Q and condition (H3) imply that the operator Q is
nondecreasing.

Denote v0(t) = 0, v1 = Q0 = Qv0, v2 = Q20 = Qv1, for all t ∈ J. Since v0(t) = 0 ∈ B
and Q : B→ B, we have v1 ∈ Q(B) ⊂ B and v2 ∈ Q(B) ⊂ B. So,

v1(t) = (Q0)(t) ≥ 0 = v0(t), ∀t ∈ J.

By the nondecreasing nature of the operator Q, we get

v2(t) = (Qv1)(t) ≥ (Qv0)(t) = v1(t), ∀t ∈ J.

By induction, we can now define a sequence vn+1 = Qvn, n = 0, 1, 2, . . . . Clearly the
sequence {vn}

∞
n=1 ⊂ Q(B) ⊂ B and satisfies

vn+1(t) ≥ vn(t), ∀t ∈ J, n = 0, 1, 2, . . . . (3.5)

By the complete continuity of the operator Q, we have that {vn}
∞
n=1 has a convergent

subsequence {vnk }
∞
k=1 and there exists a v∗ ∈ B such that vnk → v∗ as k → ∞. This,

together with (3.5), implies that limn→∞ vn = v∗.
Since Q is continuous and vn+1 = Qvn, we have Qv∗ = v∗, that is, v∗ is a fixed point

of the operator Q.
Denote u0(t) = Rtα−1, u1 = Qu0, u2 = Q2u0 = Qu1, for all t ∈ J. Since u0(t) ∈ B and

Q : B→ B, we get u1 ∈ Q(B) ⊂ B and u2 ∈ Q(B) ⊂ B. By Lemmas 2.5 and 2.6, we
obtain

u1(t) =

∫ +∞

0
G(t, s) f (s, u0(s),Dα−1u0(s)) ds

≤

∫ +∞

0
Ltα−1 f (s, u0(s),Dα−1u0(s)) ds

≤ Ltα−1(a∗ + b∗‖u0‖
p
Y + c∗‖u0‖

q
Y )

≤ Rtα−1 = u0(t), ∀t ∈ J.

Noting that Q is nondecreasing, we get

u2(t) = (Qu1)(t) ≤ (Qu0)(t) = u1(t), ∀t ∈ J.

As before, by induction, we define un+1 = Qun, n = 0, 1, 2, . . . . Then the sequence
{un}

∞
n=1 ⊂ Q(B) ⊂ B and satisfies the relation

un+1(t) ≤ un(t), ∀t ∈ J, n = 0, 1, 2, . . . . (3.6)

Similarly to earlier arguments, it can be shown that there exists a u∗ ∈ B such that
limn→∞ un = u∗.

Since Q is continuous and un+1 = Qun, we have Qu∗ = u∗ which, in turn, implies
that u∗ is a fixed point of the operator Q.

We are now in a position to show that u∗ and v∗ are the maximal and minimal
positive solutions of (1.1) respectively in (0, Rtα−1]. We first establish that if
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w ∈ [0,btα−1] is any solution of (1.1), then v0(t) = 0 ≤ w(t) ≤ Rtα−1 = u0(t) and Qw = w.
Using the monotone nature of Q, we have that v1(t) = Qv0(t) ≤ w(t) ≤ Qu0(t) = u1(t),
for all t ∈ J.

Repeating the above process several times, we obtain

vn(t) ≤ w(t) ≤ un(t), ∀t ∈ J, n = 0, 1, 2, . . . . (3.7)

In view of u∗ = limn→∞ un and v∗ = limn→∞ vn, it follows from (3.5)–(3.7) that

v0 ≤ v1 ≤ · · · ≤ vn · · · ≤ v∗ ≤ w ≤ u∗ · · · ≤ un ≤ · · · ≤ u1 ≤ u0. (3.8)

Since f (t, 0) . 0, for all t ∈ J, it follows that 0 is not a solution of problem (1.1).
It follows from (3.8) that u∗ and v∗ are the maximal and minimal positive solutions of
(1.1) respectively in (0,Rtα−1], which can be obtained by the corresponding iterative
sequences in (3.4).

With regard to the range of p and q, the method is similar, so we omit the details.
This completes the proof. �

4. Example

Consider the following nonlocal fractional boundary value problem for a nonlinear
fractional differential equation on a half-line:D1.25u(t) +

2
(5 + t)2 +

e−3t |u(t)|p

(1 +
4√t)p

+
2 ln(1 + t)|D0.25u(t)|q

(2 + t2)2 = 0, t ∈ [0,+∞),

u(0) = 0, D0.25u(∞) = 0.5u(1),
(4.1)

where α = 1.25, β = 0.5, ξ = 1 and

f (t, u, v) =
2

(5 + t)2 +
e−3t |u|p

(1 +
4√t)p

+
2 ln(1 + t)|v|q

(2 + t2)2 , 0 ≤ p, q < 1.

Obviously Γ(1.25) ≈ 0.913 15, βξα−1 = 0.5. Thus (H1) holds.
Next, taking

a(t) =
2

(5 + t)2 , b(t) =
e−3t

(1 +
4√t)p

, c(t) =
2t

(2 + t2)2 ,

we have

| f (t, u, v)| =
2

(5 + t)2 +
e−3t |u|p

(1 +
4√t)p

+
2 ln(1 + t)|v|q

(2 + t2)2

≤
2

(5 + t)2 +
e−3t |u|p

(1 +
4√t)p

+
2t|v|q

(2 + t2)2

, a(t) + b(t)|u|p + c(t)|v|q,
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and

a∗ =

∫ +∞

0
a(t) dt =

∫ +∞

0

2
(5 + t)2 dt =

2
5
< +∞,

b∗ =

∫ +∞

0
b(t)(1 + tα−1)p dt =

∫ +∞

0

e−3t

(1 +
4√t)p

(1 +
4√t)p dt =

∫ +∞

0
e−3t dt =

1
3
< +∞,

c∗ =

∫ +∞

0
c(t) dt =

∫ +∞

0

2t
(2 + t2)2 dt =

1
2
< +∞,

implying that (H2) holds.
From the expression for f , it is easy to see that f is nondecreasing with respect to

the second and last variables. This means that (H3) holds.
Hence, by Theorem 3.2, it follows that there exists a positive constant R such that

the fractional boundary value problem (4.1) has the minimal and maximal positive
solutions v∗, u∗ respectively in (0,Rtα−1], which can be approximated by the following
iterative sequences:

vn+1 =

∫ +∞

0
G(t, s)a(s) f (s, vn(s),Dα−1vn(s)) ds, with initial value v0(t) = 0,

un+1 =

∫ +∞

0
G(t, s)a(s) f (s, un(s),Dα−1un(s)) ds, with initial value u0(t) = Rtα−1.
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