We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Cryopreservation of male and female gametes has been long established, and nowadays low-temperature storage of human spermatozoa is a routine technique in assisted reproduction. The vitrification method uses no specially developed cooling program; it does not need to apply permeable cryoprotectants; it is much faster, simpler and cheaper; and it can also provide a high recovery of motile spermatozoa after warming as effective protection of spermatozoa against cryodamage. Higher concentrations of cryoprotectants are needed for extracellular than for intracellular vitrification. The success of Luyet's vitrification technique was supported by Shaffner applying the technique to frog spermatozoa after vitrification of fowl sperm. The advantage of programmable or non-programmable conventional slow freezing is the ability to simultaneously preserve a relatively large volume of diluted ejaculate or prepared spermatozoa. Long-term storage of frozen cells and tissues remains elusive in both theoretical and routine cryobiology, and future investigation applying nanotechnology is needed.
Sperm cryopreservation is a widely used and established method in humans, animals, fish, and insects. In humans, sperm cryopreservation is a widely used technique in assisted reproductive technologies (ART) and fertility preservation in patients with cancer. Sperm cryopreservation describes a complex multistep process for preserving male gametes. The process involves collecting a sperm sample, then gradually cooling the sample in the presence of a cryoprotective agent, followed by storage of the sample for future use. Cryoprotectants such as glycerol revolutionized cryopreservation techniques and paved the way for storing sperm samples for up to several years. As new cryoprotectants were discovered, the main issue was the degree of protection that they could provide for a sperm from damage caused by rapid freezing. Future studies are expected to concentrate on advancing technology to achieve the goal of damage-free sperm after cryopreservation.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.