We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Neurotoxicity is an adverse effect caused by cisplatin due to inflammation and oxidative stress in the central nervous system. The present study aimed to assess the effects of vitamin E injection on the learning and memory of rats with cisplatin-induced cognitive impairment.
Methods:
Male rats were administered with cisplatin (2 mg/kg/7 day; intraperitoneally [i i.p.]) and/or vitamin E (200 mg/kg/7 day; i.p.) for 1 week, and the control group received saline solution. Spatial memory was evaluated using Morris water maze (MWM). In addition, the hippocampal concentrations of malondialdehyde (MDA), thiol, and superoxide dismutase (SOD) were measured using biochemical methods.
Results:
According to the findings, cisplatin significantly increased the escape latency, while decreasing the time spent and travelled pathway in the target quadrant on the final trial day compared to the control group. Furthermore, pre-treatment with vitamin E significantly reversed all the results in the spatial memory test. The biochemical data indicated that vitamin E could decrease MDA activity and increase thiol and SOD activity compared to the control group.
Conclusion:
According to the results, vitamin E could improve cisplatin-induced memory impairment possibly through affecting the hippocampal oxidative status.
Fat-soluble vitamins during pregnancy are important for fetal growth and development. The present study aimed at exploring the association between vitamin A, E and D status during pregnancy and birth weight. A total of 19 640 women with singleton deliveries from a retrospective study were included. Data were collected by the hospital electronic information system. Maternal serum vitamin A, E and D concentrations were measured during pregnancy. Logistic regression was performed to estimate the association between the vitamin status and low birth weight (LBW) or macrosomia. Women with excessive vitamin E were more likely to have macrosomia (OR 1·30, 95 % CI 1·07, 1·59) compared with adequate concentration. When focusing on Z scores, there was a positive association between vitamin E and macrosomia in the first (OR 1·07, 95 % CI 1·00, 1·14), second (OR 1·27, 95 % CI 1·11, 1·46) and third (OR 1·28, 95 % CI 1·06, 1·54) trimesters; vitamin A was positively associated with LBW in the first (OR 1·14, 95 % CI 1·01, 1·29), second (OR 1·31, 95 % CI 1·05, 1·63) and third (OR 2·00, 95 % CI 1·45, 2·74) trimesters and negatively associated with macrosomia in the second (OR 0·79, 95 % CI 0·70, 0·89) and third (OR 0·77, 95 % CI 0·62, 0·95) trimesters. The study identified that high concentrations of vitamin E are associated with macrosomia. Maintaining a moderate concentration of vitamin A during pregnancy might be beneficial to achieve optimal birth weight. Further studies to explore the mechanism of above associations are warranted.
The vitamin status of a child depends on many factors and most of the clinical studies do not take into account the different access to adequate nutrition of children coming from different countries and the consequent major differences in micronutrients or vitamin deficits between low-income and high-income countries. Vitamin supplements are included in the general field of dietary supplements. There is a large amount of not always factual material concerning vitamin supplements, and this may sometimes create confusion in clinicians and patients. Inadequate information may lead to the risk of attributing beneficial properties leading to their over-use or misuse in the paediatric field. Vitamin supplementation is indicated in all those conditions in which a vitamin deficiency is found, either because of a reduced intake due to reduced availability of certain foods, restrictive diets or inadequate absorption. The lack of guidelines in these fields may lead paediatricians to an improper use of vitamins, both in terms of excessive use or inadequate use. This is due to the fact that vitamin supplementation is often intended as a therapy of support rather than an essential therapeutic tool able to modify disease prognosis. In fact, various vitamins and their derivatives have therapeutic potential in the prevention and treatment of many diseases, especially in emerging conditions of paediatric age such as type 2 diabetes and the metabolic syndrome. The aim of the present article is to analyse the state of the art and consider new perspectives on the role of vitamin supplements in children.
Vitamin E is known to scavenge lipid peroxy radicals and has a purported role in preventing seed deterioration during storage. In our previous studies using 20 rice varieties from different variety groups, the specific ratio of vitamin E homologues rather than total vitamin E content was associated with seed longevity. To validate this result, we extended the experiment to a rice panel composed of 185 Aus (semi-wild rice) varieties. Seed longevity values were determined through storage experiments at 45°C and 10.9% seed moisture content (MC). Eight types of vitamin E homologues (α-, β-, γ- and δ-tocopherol/tocotrienol) were quantified by ultra-performance liquid chromatography. The theoretical initial viability in NED, Ki, was positively correlated with γ- and δ-tocopherols and negatively correlated with α-tocotrienol. The time for viability to fall to 50% during storage at elevated temperature and relative humidity, p50, was positively correlated with δ-tocopherol. The harvest MC was negatively correlated with all seed longevity traits. Taking this factor into account in a genome-wide association (GWA) analysis, we were able to correct false positives. A consistent major peak on chromosome 4 associated with −σ−1 was detected with a mixed linear analysis. Based on rice genome annotation and gene network ontology databases, we suggest that RNA modification, oxidation–reduction, protein–protein interactions and abscisic acid signal transduction play roles in seed longevity extension of Aus rice. Although major GWA regions were not overlapped across traits, three genetic markers, on chromosomes 1, 3 and 4, were associated with both δ-tocopherol and Ki and two markers on chromosome 1 and 8 were associated with both δ-tocopherol and p50.
We previously reported that dietary vitamin E deficiency increased anxiety-like behaviour in rats exposed to social isolation. Here, we performed a detailed investigation of this phenomenon and its underlying mechanism. First, we fed Wistar rats with a vitamin E-free diet for 3 d, 1 week or 2 weeks and found an increase in anxiety-like behaviour after 1 and 2 weeks of vitamin E deficiency based on behavioural indicators. Next, we examined the effect of a control diet (150 mg all-racemic α-tocopheryl acetate/kg) on anxiety-like behaviours in rats that received a 4-week vitamin E-free diet. We found that increased anxiety-like behaviour was reversed to control levels after refeeding vitamin E for 7 d but not for 1 or 3 d. Further, anxiety-like behaviour increased or decreased gradually based on the amount of vitamin E intake; however, it had a quicker progression than physical symptoms of vitamin E deficiency. Moreover, rats fed with excess vitamin E (500 mg all-racemic α-tocopherol/kg diet) showed less anxiety-like behaviour than control rats, indicating that vitamin E supplementation is effective for preventing anxiety increase under social isolation stress. Since plasma corticosterone levels were higher in vitamin E-deficient rats, we investigated the effect of adrenalectomy on anxiety-like behaviour and found that adrenal hormones played an essential role in the increased anxiety-like behaviour induced by vitamin E deficiency. In conclusion, increased anxiety-like behaviour is a symptom that emerges earlier than physical vitamin E deficiency and is caused by adrenal hormone-dependent mechanisms.
The hypothesis that tardive dyskinesias observed after long-term administration of neuroleptics are due to the formation of free radicals following this medication has prompted studies on the use of vitamin E (α-tocopherol), an antioxidant to treat patients suffering from such side-effects. The present study aimed at reproducing earlier encouraging results in treating 23 patients with vitamin E, using a double-blind crossover design. Inclusion criteria were: duration of tardive dyskinesia for at least 3 months, appearance of the symptoms during neuroleptic treatment or after stopping this kind of medication. The 10 subjects in the first group (Gl) were treated for 14 days with 1 200 mg vitamin E per day and then for 14 days with placebo. For the second group (G2) with 9 subjects, the treatment periods were inversed. The 2 dropouts in each group were not due to experimental problems: there was no complication due to vitamin E intake, or only negligible side-effects. Side-effects were rated on the AIM scale on days 0, 14 and 28. The results of the present study do not confirm earlier reports: there was no significant difference in the therapeutic effect between placebo and vitamin E in any of the groups. However, the fact of taking these symptoms into account in the physician-patient relationship has contributed significantly to a decrease of tardive dyskinesia in both groups, from the beginning until the end of the investigation period, during which both neuroleptic and tranquilizing treatments were kept constant. Further studies should include longer treatment periods with vitamin E or even test the preventive effect of vitamin E in the production of tardive dyskinesia by neuroleptics.
To evaluate the Child and Adult Care Food Program (CACFP) rule that allows a meat/meat alternative to replace the breakfast grain requirement three times per week.
Design:
A 5-week menu including breakfast, lunch and snack was developed with meat/meat alternative replacing the breakfast grain requirement three times per week. Menu nutrients based on the minimum requirements were compared with reference values representing the Acceptable Macronutrient Distribution Range for fat and a range of reference values representing two-thirds the Dietary Reference Intake for 3-year-olds and 4–5-year-olds. The meal pattern minimum requirements were compared with two-thirds of those recommended by the Dietary Guidelines for Americans (DGA).
Setting:
Evaluation took place between April and June 2019.
Participants:
Human subjects were not utilized.
Results:
The CACFP minimum grain requirement is well below the DGA reference value (0·5–1·5 v. 3·33 ounce-equivalents). Energy (2208·52 kJ) was below the reference values (3126·83–4362·53 kJ). Protein (34·43 g) was above the reference values (9·87–10·81 g). Carbohydrate (76·65 g), fibre (7·46 g) and vitamin E (1·69 mg) were below their reference values of 86·67 g, 10·46–14·60 g and 4–4·76 mg, respectively. Fat (22·57 %) was below the reference range (25–40 %).
Conclusions:
The CACFP rule which allows a meat/meat alternative to replace the breakfast grain requirement three times per week may result in meal patterns low in energy, carbohydrate, fat, fibre and vitamin E, while providing an excessive amount of protein.
Seeds of 15 diverse rice accessions, representing aus, indica, temperate japonica and tropical japonica subpopulations, were produced under temperate climate conditions in Korea and used for vitamin E analysis and seed storage experiments at 45°C and 10.9% seed moisture content. High γ-tocotrienol was significantly positively correlated with seed longevity. In addition, a high β-tocopherol proportion relative to δ-tocopherol was significantly negatively correlated with seed longevity. Using high-density single-nucleotide polymorphism marker data, DNA haplotype analysis showed clear allelic variations in the region of two S-adenosylmethionine synthetase genes: LOC_Os04g42095 and LOC_Os11g15410, which regulate the conversion of δ-tocopherol into β-tocopherol. Four indica accessions with rare and subpopulation-specific alleles showed a 2.3-fold lower β-/δ-tocopherol ratio compared with accessions from other subpopulations.
The role of fat-soluble vitamins in the pathology of type 2 diabetes needs further research. Possible protective effects could be expected for vitamins A and E via their antioxidant properties, vitamin K via its modulating effects on cytokines and insulin resistance and vitamin D via the enhancement of insulin sensitivity. However, the evidence on association between fat-soluble vitamins from diet and risk of diabetes is limited. Therefore, among 19 168 healthy Japanese of both sexes aged 40–79 years, we used the logistic regression analyses to examine the prospective association between FFQ-estimated dietary fat-soluble vitamins (A, K, E and D) and the risk of type 2 diabetes incident over a 5-year period. During this 5-year period, 494 new cases of diabetes were self-reported. Vitamins K and E from diet were associated with lowered risk of incident diabetes, whereas no associations with dietary intake of vitamin A or D were observed. The multivariable OR in the highest v. lowest quartiles of intakes were 0·71 (95 % CI 0·54, 0·93, Ptrend=0·01) for vitamin K and 0·72 (95 % CI 0·55, 0·95, Ptrend=0·02) for vitamin E. Mutual adjustment for dietary intake of these vitamins did not change the association. There were no interactions with sex, age, smoking status, BMI or having a family history of diabetes, P were >0·10. In conclusion, higher dietary intake of fat-soluble vitamins K and E, but not vitamin A or D, were associated with lowered risk of type 2 diabetes among Japanese population.
Synthetic α-tocopherol has eight isomeric configurations including four 2R (RSS, RRS, RSR, RRR) and four 2S (SRR, SSR, SRS, SSS). Only the RRR stereoisomer is naturally synthesised by plants. A ratio of 1·36:1 in biopotency of RRR-α-tocopheryl acetate to all-rac-α-tocopheryl acetate is generally accepted; however, studies indicate that neither biopotency of α-tocopherol stereoisomers nor bioavailability between them is constant, but depend on dose, time, animal species and organs. A total of forty growing young male mink were, after weaning, assigned one of the following treatments for 90 d: no α-tocopherol in diet (ALFA_0), 40 mg/kg RRR-α-tocopheryl acetate (NAT_40), 40 mg/kg all-rac-α-tocopheryl acetate (SYN_40) and 80 mg/kg feed all-rac-α-tocopheryl acetate (SYN_80). Mink were euthanised in CO2 and blood was collected by heart puncture. Mink were pelted and liver, heart, lungs, brain and abdominal fat were collected for α-tocopherol stereoisomer analysis. The proportion of RRR-α-tocopherol decreased in all organs and plasma with increasing amount of synthetic α-tocopherol stereoisomers in the diet (P≤0·05), whereas the proportion of all synthetic α-tocopherol stereoisomers increased with increasing amount of synthetic α-tocopherol stereoisomers in the diet (P≤0·05). The proportion of α-tocopherol stereoisomers in plasma, brain, heart, lungs and abdominal fat showed the following order: RRR>RRS, RSR, RSS>Σ2S, regardless of α-tocopherol supplement. The liver had the highest proportion of Σ2S stereoisomers, and lowest proportion of RRR-α-tocopherol. In conclusion, distribution of α-tocopherol stereoisomers differs with dose and form of α-tocopherol supplementation. The results did also reveal the liver’s role as the major organ for accumulation of Σ2S α-tocopherol stereoisomers.
Vitamin E and selenium have been reported to improve immune function across a range of species. Ewes lambing on poor-quality dry pasture in autumn in Western Australia are at risk of being deficient in vitamin E and selenium at lambing thus predisposing their lambs to deficiencies and increasing the risk of infection and disease. This study tested the hypotheses that (i) supplementation of autumn-lambing ewes with vitamin E plus selenium in late gestation will increase the concentrations of vitamin E and selenium in plasma in the ewe and lamb and (ii) that the increased concentrations of vitamin E and selenium in plasma in the lambs will improve their innate and adaptive immune responses and thus survival. Pregnant Merino ewes were divided into a control group (n=58) which received no supplementation or a group supplemented with vitamin E plus selenium (n=55). On days 111, 125 and 140 of pregnancy ewes in the vitamin E plus selenium group were given 4 g all-rac-α-tocopherol acetate orally. On day 111 the ewes were also given 60 mg of selenium as barium selenate by subcutaneous injection. The concentrations of α-tocopherol and selenium were measured in ewes and/or lambs from day 111 of pregnancy to 14 weeks of age±10 days (weaning). Immune function of the lamb was assessed by analysing the numbers and phagocytic capacities of monocytes and polymorphonuclear leucocytes and plasma IgG and anti-tetanus toxoid antibody concentrations between birth and 14 weeks of age±10 days. Maternal supplementation with vitamin E plus selenium increased the concentration of α-tocopherol in plasma (1.13 v. 0.67 mg/l; P<0.001) and selenium in whole blood (0.12 v. 0.07 mg/l; P<0.01) of the ewes at lambing compared with controls. Supplementation also increased the concentration of α-tocopherol (0.14 v. 0.08 mg/l; P<0.001) and selenium (0.08 v. 0.05 mg/l; P<0.01) in lambs at birth compared with controls. There was no significant effect of supplementation on immune function or survival in the lambs.
The objective was to evaluate the effects of dietary fish oil (FO) and vitamin E (VE) supplementation on sperm sensitivity to lipid peroxidation (LP) in dogs. Using an incomplete replicate 3 × 3 Latin square design, five dogs were allocated into three groups. One of the squares was incomplete and had two dogs that were used with three treatments. The dogs were assigned to three different treatments, fed a control diet of balanced commercial food (control group; CG), control diet supplemented with 54 mg FO/kg body weight0·75 per d (FO group; FG) and FO plus 400 mg VE per d (FO and VE group; FEG) for 60 d. Semen samples were collected on days 0 and 60 and divided into two halves, peroxidised and control, with or without ascorbate–Fe2+, respectively. LP was measured in both halves by chemiluminescence as counts per min/mg protein. Fatty acid profile was determined by GC. Data were analysed using the mixed procedure (SAS). On day 0, LP increased in all groups in the peroxidised samples (P < 0·05). However, on day 60 LP decreased in peroxidised samples of both the FG and FEG (P < 0·05), but there were no differences between the FG and FEG (P > 0·1). Additionally, on day 60 total n-3 was higher in the FG and FEG compared with the CG (P < 0·05). Supplementation with FO alone or together with VE decreased LP in peroxidised samples. These results could indicate a protective effect of n-3 on sperm. More studies are needed to understand the mechanism whereby FO and/or FO plus VE decrease LP in dogs’ sperm.
An experiment was conducted to investigate the effects of a high concentration of vitamin E supplementation in sow diet during the last week of gestation and lactation on the performance, milk composition, and vital immunological variables and antioxidative parameters in sows and piglets. The experiment started on day 107 of gestation and lasted until the piglets were weaned on day 21 of lactation. 48 sows were divided into two groups and fed either a basal diet with 44 IU/kg of vitamin E or a basal diet supplemented with additional vitamin E, total content of 250 IU/kg. Sow milk and blood samples were obtained on day 0 (farrowing) and on day 21 of lactation. One 21-day-old piglet per litter was selected to collect plasma. Results showed that supplementation of the maternal diet with 250 IU/kg vitamin E improved the average daily gain (ADG) and weaning weight of piglets (P < 0·05), and the concentrations of immunoglobulin G (IgG) and immunoglobulin A (IgA) in sow plasma, colostrum and milk. The concentrations of fat in the colostrum and milk were significantly increased by supplementation with 250 IU/kg of vitamin E (P < 0·05). The level of plasma IgG, IgA, total antioxidant capacity (T-AOC) and catalase (CAT) were all higher (P < 0·05) in piglets from sows that were fed 250 IU/kg of vitamin E than in those from the control group. The high concentration of vitamin E supplementation to the sows enhanced the concentrations of α-tocopherol in the sow milk and plasma as well as piglet plasma (P < 0·05). In conclusion, the addition to the maternal diet of vitamin E at high concentration improved the weight of piglets at weaning, and enhanced humoral immune function and antioxidant activity in sows and piglets.
This study was conducted to elucidate the effects of oxidised dietary lipids and high-dose vitamin E (VE) on growth performance and immune responses of large yellow croaker. Juvenile fish (initial average body weight of 7·82 (sem 0·68) g) were fed diets containing either fresh fish oil (fresh diet, peroxide value (POV)=1·72 mEq/kg) or fish oil oxidised to varying degrees (oxidised diets, POV=28·29–104·21 mEq/kg), with or without supplementary 600 mg VE/kg diet, for 10 weeks in floating cages. Growth was significantly lower and feed intake (g/100 g body weight per d) was higher in fish fed the oxidised diet. Supplementation with VE increased the growth of fish fed the oxidised diets, but significantly decreased the growth of fish fed the fresh diet. Hepatosomatic index increased with increasing dietary POV and decreased with VE supplementation. Hepatic catalase activity, superoxide dismutase (SOD) activity and malondialdehyde content were significantly higher in fish fed the oxidised diets, and these values decreased significantly following VE supplementation. However, hepatic SOD activity was enhanced by VE supplementation in fish fed the fresh diet. Air-exposure mortality was significantly increased by dietary POV, and this effect was inhibited by VE supplementation. These results suggest that dietary oxidised fish oil could stimulate the activities of antioxidant defence enzymes in stressed large yellow croaker. High-dose VE supplementation can alleviate oxidative stress of large yellow croaker fed oxidised fish oil, but can exert deleterious effects on fish in the absence of oxidative stress.
This study was conducted to verify whether vitamin (Vit) E or natural clay as feed additives has the potential to modulate the deleterious effects resulting from exposure to cadmium (Cd) in growing Japanese quail. 648 Japanese quail chicks (1 week old) were used to evaluate the effects of dietary Cd (0, 40, 80 and 120 mg/kg diet) and two levels of Vit E (0, 250 mg/kg diet) or two levels of natural clay (0 and 100 mg/kg diet) to study the influences of Cd, Vit E, clay or their different combinations on growth performance, carcass traits, some blood biochemical components and Cd residues in muscles and liver. Live BW and weight gain of quails were linearly decreased with increasing dietary Cd levels. Moreover, feed conversion was significantly worsened with increasing Cd level. Mortality percentage was linearly increased as dietary Cd level increased up to 120 mg/kg diet. Carcass percentage was linearly decreased as dietary Cd level increased. While, giblets percentage were linearly and quadratically differed as dietary Cd level increased. Cd caused significant changes in total plasma protein, albumin, globulin, A/G ratio, creatinine, urea-N and uric acid concentrations as well as ALT, AST and ALP activities. Increasing dietary Cd level was associated with its increase in the muscles and liver. Dietary supplementation with 250 mg of Vit E/kg diet or 100 mg clay/kg improved live BW, BW gain and feed conversion when compared with the un-supplemented diet. Quails fed diet contained 250 mg Vit E/kg and those fed 100 mg clay/kg had the highest percentages of carcass and dressing than those fed the un-supplemented diet. Blood plasma biochemical components studied were better when birds received 250 mg of Vit E/kg diet and those received 100 mg clay/kg. Cd residues in the muscles and liver were significantly less in the birds had 250 mg of Vit E/kg or those received 100 mg clay/kg diet than those un-supplemented with Vit E. Growth performance traits and blood plasma biochemical components studied were significantly affected linearly by the interactions among Cd and each of Vit E and clay levels. In conclusion, the present results indicate that the deleterious effects induced by Cd plays a role in decreasing the performance of Japanese quail and that dietary supplementation with natural clay or Vit E may be useful in partly alleviating the adverse effects of Cd.
Previous studies have suggested that vitamin E (VE) may affect bone health, but the findings have been inconclusive. We examined the relationship between VE status (in both diet and serum) and bone mineral density (BMD) among Chinese adults. This community-based study included 3203 adults (2178 women and 1025 men) aged 40–75 years from Guangzhou, People’s Republic of China. General and dietary intake information were collected using structured questionnaire interviews. The serum α-tocopherol (TF) level was quantified by reversed-phase HPLC. The BMD of the whole body, the lumbar spine and left hip sites (total, neck, trochanter, intertrochanter and Ward’s triangle) were measured using dual-energy X-ray absorptiometry. In women, the dietary intake of VE was significantly and positively associated with BMD at the lumbar spine, total hip, intertrochanter and femur neck sites after adjusting for covariates (Ptrend: 0·001–0·017). Women in quartile 3 of VE intake typically had the highest BMD; the covariate-adjusted mean BMD were 2·5, 3·06, 3·41 and 3·54 % higher, respectively, in quartile 3 (v. 1) at the four above-mentioned sites. Similar positive associations were observed between cholesterol-adjusted serum α-TF levels and BMD at each of the studied bone sites (Ptrend: 0·001–0·022). The covariate-adjusted mean BMD were 1·24–4·83 % greater in quartile 4 (v. 1) in women. However, no significant associations were seen between the VE levels (dietary or serum) and the BMD at any site in men. In conclusion, greater consumption and higher serum levels of VE are associated with greater BMD in Chinese women but not in Chinese men.
Vitamin E (α-tocopherol) is recognised as a key essential lipophilic antioxidant in humans protecting lipoproteins, PUFA, cellular and intra-cellular membranes from damage. The aim of this review was to evaluate the relevant published data about vitamin E requirements in relation to dietary PUFA intake. Evidence in animals and humans indicates a minimal basal requirement of 4–5 mg/d of RRR-α-tocopherol when the diet is very low in PUFA. The vitamin E requirement will increase with an increase in PUFA consumption and with the degree of unsaturation of the PUFA in the diet. The vitamin E requirement related to dietary linoleic acid, which is globally the major dietary PUFA in humans, was calculated to be 0·4–0·6 mg of RRR-α-tocopherol/g of linoleic acid. Animal studies show that for fatty acids with a higher degree of unsaturation, the vitamin E requirement increases almost linearly with the degree of unsaturation of the PUFA in the relative ratios of 0·3, 2, 3, 4, 5 and 6 for mono-, di-, tri-, tetra-, penta- and hexaenoic fatty acids, respectively. Assuming a typical intake of dietary PUFA, a vitamin E requirement ranging from 12 to 20 mg of RRR-α-tocopherol/d can be calculated. A number of guidelines recommend to increase PUFA intake as they have well-established health benefits. It will be prudent to assure an adequate vitamin E intake to match the increased PUFA intake, especially as vitamin E intake is already below recommendations in many populations worldwide.
The effect of intramuscular injections of vitamin E on growth, carcass traits, intramuscular collagen (IMC) characteristics and decorin of growing lambs was studied. A total of 24 15-day-old Ile de France suckling male lambs were divided into two groups and weekly intramuscular injections of DL-α-tocopheryl acetate (control group, 0 IU; Vitamin E treatment, 150 IU) were given until the lambs were 64 days old. Lambs were individually weighted at 15, 29, 43, 57 days of age and at slaughter (71 days old). Dry matter intake and average daily weight gain were recorded. Hot and cold carcass weights were recorded and dressing percentages were calculated after dressing and chilling (2°C to 4°C for 24 h). Carcass shrink losses were calculated as well. Longissimus muscle (LM) pH and area were measured. The pelvic limb was removed and its percentage was calculated based on cold carcass weight. IMC and decorin analyses were assessed on LM and semimembranosus muscle (SM). DL-α-tocopheryl acetate treatment reduced (P<0.05) collagen maturity and increased (P<0.05) decorin in both LM and SM muscles of growing lambs, while it did not affect IMC content. In addition, vitamin E did not influence growth, carcass weight, dressing percentage, carcass shrink losses and area of LM but decreased (P<0.05) the pelvic limb percentage. The LM pH values were higher (P<0.05) in vitamin group than in control group. Furthermore, different IMC characteristics between the muscles (P<0.01) were apparent. Multiple intramuscular injections of DL-α-tocopheryl acetate influence extracellular matrix in lambs, which could affect meat tenderness.
Toxoplasma gondii (T. gondii) infects one-third of the world population, but its association with cognitive functions in school-aged children is unclear. We examined the relationship between Toxoplasma seropositivity and neuropsychological tests scores (including math, reading, visuospatial reasoning and verbal memory) in 1755 school-aged children 12–16 years old who participated to the Third National Health and Nutrition Examination Survey, using multiple linear regressions adjusted for covariates. Toxoplasma seroprevalence was 7·7% and seropositivity to the parasite was associated with lower reading skills (regression coefficient [β] = −5·86, 95% confidence interval [CI]: −11·11, −0·61, P = 0·029) and memory capacities (β = −0·86, 95% CI: −1·58, −0·15, P = 0·017). The interaction between T. gondii seropositivity and vitamin E significantly correlated with memory scores. In subgroup analysis, Toxoplasma-associated memory impairment was worse in children with lower serum vitamin E concentrations (β = −1·61, 95% CI: −2·44, −0·77, P < 0·001) than in those with higher values (β = −0·12, 95% CI: −1·23, 0·99, P = 0·83). In conclusion, Toxoplasma seropositivity may be associated with reading and memory impairments in school-aged children. Serum vitamin E seems to modify the relationship between the parasitic infection and memory deficiency.
Pancreatic insufficiency cystic fibrosis (CF) patients receive vitamin E supplementation according to CF-specific recommendations in order to prevent deficiencies. It has been suggested that higher serum α-tocopherol levels could have protective effects on pulmonary function (PF) in patients with CF. Whether current recommendations are indeed optimal for preventing deficiency and whether vitamin E has therapeutic benefits are subjects of debate. Therefore, we studied vitamin E intake as well as the long-term effects of vitamin E intake, the coefficient of fat absorption (CFA) and IgG on α-tocopherol levels. We also examined the long-term effects of serum α-tocopherol and serum IgG on forced expiratory volume in 1 s expressed as percentage of predicted (FEV1% pred.) in paediatric CF patients during a 7-year follow-up period. We found that CF patients failed to meet the CF-specific vitamin E recommendations, but serum α-tocopherol below the 2·5th percentile was found in only twenty-three of the 1022 measurements (2 %). Furthermore, no clear effect of vitamin E intake or the CFA on serum α-tocopherol was found (both P≥ 0·103). FEV1% pred. was longitudinally inversely associated with age (P< 0·001) and serum IgG (P= 0·003), but it was not related to serum α-tocopherol levels. We concluded that in the present large sample of children and adolescents with CF, vitamin E intake was lower than recommended, but serum α-tocopherol deficiency was rare. We found no evidence that higher serum α-tocopherol levels had protective effects on PF. Adjustment of the recommendations to the real-life intake of these patients may be considered.