The objective of the study was to evaluate the relationship of veterinary clinical assessments of lameness to probability estimates of lameness predicted from vertical kinetic measures. We hypothesized that algorithm-derived probability estimates of lameness would accurately reflect vertical measures in lame limbs even though vertical changes may not inevitably occur in all lameness. Kinetic data were collected from sound (n=179) and unilaterally lame (n=167) dairy cattle with a 1-dimensional, parallel force plate system that registered vertical ground reaction force signatures of all four limbs as cows freely exited the milking parlour. Locomotion was scored for each hind limb using a 1–5 locomotion score system (1=sound, 5=severely lame). Pain response in the interdigital space was quantified with an algometer and pain response in the claw was quantified with a hoof tester fitted with a pressure gage. Lesions were assigned severity scores (1=minimal pathology to 5=severe pathology). Lameness diminished the magnitude of peak ground reaction forces, average ground reaction forces, Fourier transformed ground reaction forces, stance times and vertical impulses in the lame limbs of unilaterally lame cows. The only effect of lameness on the opposite sound limb was increased magnitude of stance times and vertical impulses in unilaterally lame cows. Symmetry measures of the peak ground reaction forces, average ground reaction forces, Fourier transformed ground reaction forces, stance times and vertical impulses between the left and right hind limbs were also affected in unilateral lameness. Paradoxically, limbs with clinically similar lesion and locomotion scores and pain responses were associated with a broad range of load-transfer off the limb. Substantial unloading and changes in the vertical limb variables occurred in some lameness while minimal unloading and changes in vertical limb variables occurred in other lameness. Corresponding probability estimates of lameness accurately reflected changes in the vertical parameters of limbs and generated low probability estimates of lameness when minimal unloading occurred. Failure to transfer load off limbs with pain reactions, locomotion abnormalities and lesions explained much of the limited sensitivity in lameness detection with vertical limb variables.