We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter introduces the main concepts and the problems to be investigated by the book. In particular, the chapter defines the Largest Suslin Axiom (LSA) and the minimal model of LSA. The chapter summarizes the main theorems to be proved in the book: HOD of the minimal model of LSA satisfies the Generalized Continuum Hypothesis, the Mouse Set Conjecture holds in the minimal model of LSA, the consistency of LSA from large cardinals, the consistency of LSA from strong forcing axioms like PFA.
Developing the theory up to the current state-of-the art, this book studies the minimal model of the Largest Suslin Axiom (LSA), which is one of the most important determinacy axioms and features prominently in Hugh Woodin's foundational framework known as the Ultimate L. The authors establish the consistency of LSA relative to large cardinals and develop methods for building models of LSA from other foundational frameworks such as Forcing Axioms. The book significantly advances the Core Model Induction method, which is the most successful method for building canonical inner models from various hypotheses. Also featured is a proof of the Mouse Set Conjecture in the minimal model of the LSA. It will be indispensable for graduate students as well as researchers in mathematics and philosophy of mathematics who are interested in set theory and in particular, in descriptive inner model theory.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.