We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Under conventional solidification conditions, immiscible alloy melt would undergo large-scale composition segregation after liquid–liquid phase separation, resulting in the loss of properties and application value. In the present study, the ternary immiscible Al70Bi10Sn20 alloy was chosen to study the effect of cooling rate on its resultant microstructure by casting the melt under different cooling conditions. The results indicated that the Al–Bi–Sn alloy with a slow cooling rate exhibits a strong spatial phase separation trend during solidification. However, as the cooling rate increases, the decreasing volume fraction of the segregated Bi–Sn-rich regions indicates the efficient suppression of spatial phase separation. The relatively dispersed distribution of Bi–Sn phase in the Al-rich matrix can be obtained by quenching the melt into water. The influence mechanism of cooling rate on the microstructure of the alloy is also discussed. The present study is beneficial to further tailoring the microstructure of immiscible alloys.
Sn–Sb alloy is an ideal candidate for lead-free solder; however, its performance has been inferior to that of Sn–Pb alloy. Here, the authors used ab initio molecular dynamics simulation to investigate the interatomic interaction in Sn–Sb-based lead-free solders. By calculating the electron density distribution, bond population, and partial density of states, the authors found that the Sn–Sb bonds are a mixture of nonlocalized metal and localized covalent bonds. The covalent bond between Sn and Sb is easy to break at higher temperatures, so Sn–Sb (6.4 wt%) had better fluidity than other studied Sn–Sb alloys. Furthermore, adding Cu or Ag into Sn–Sb alloys can decrease the strength of covalent bonds and stabilize the metal bonds, which improves the metallicity and wettability of the Sn–Sb–Cu and Sn–Sb–Cu–Ag systems when the temperature increases. These results are all in good agreement with experimental findings and have significant value for the development of new solder alloys.
Tin zinc oxide (SnZnO) thin film transistors (TFTs) with different component fraction fabricated by solution process were reported. Sn chloride and Zn acetate were used as precursor and the maximum annealing temperature was 500°C. The electrical characteristics of TFTs were acutely affected by the molar ratio between Sn and Zn in the lattice, and showed the highest mobility and on-to-off ratio of about 17 cm2/Vs and 2×106, respectively. The origins of the high performance were traced through both structural and electrical aspects. Sn was generally considered to offer carrier path by superposition of s orbital, but it was found that the increase of Sn fraction only below specific value in lattice contributed to increase mobility, which could be explained by the structural distortion and the defect generation. Zn atoms introduced in the lattice were necessary to control both mobility and carrier concentration. From these results, the solution-processed SnZnO TFT with high performance was suggested.
Five scarabs and one scaraboid found in Vinha das Caliças 4 (Beja, Portugal) were analyzed using a micro-analytical methodology in order to determine their mineralogical and chemical composition. Microstructural characterization and chemical analysis revealed that all were composed of a white body of crushed feldspathic sand covered by a lead-rich, alkaline-depleted silicate blue-green glaze showing evident signs of glass deterioration. Variable pressure scanning electron microscopy with X-ray energy dispersive spectrometry, handheld X-ray fluorescence spectroscopy, and micro X-ray diffraction results show that blue-green color of the glaze was produced by using copper ions (Cu2+) in conjunction with the lead antimonate bindheimite, a yellow-colored opacifier. The introduction of small amounts of tin in the structure of bindheimite enabled the production of a ternary Pb–Sb–Sn oxide. Tin, which was most likely added with the copper source (bronze scrapings), is known to facilitate the crystallization of bindheimite. The results are consistent with the five scarabs and one scaraboid being manufactured in Egypt. This study, the first archeometric study of scarabs found in the Iberian peninsula, has greatly contributed to the understanding of the influence of the Eastern and Central Mediterranean world in the Southwestern Iberia during the first millennium B.C.
This study quantified the fatty acid profile with emphasis on the stereo-specifically numbered (sn) 2 positional distribution in TAG and the composition of main phospholipids at different lactation stages. Colostrum milk (n 70), transitional milk (n 96) and mature milk (n 82) were obtained longitudinally from healthy lactating women in Shanghai. During lactation, total fatty acid content increased, with SFA dominating in fatty acid profile. A high ratio of n-6:n-3 PUFA was observed as 11:1 over lactation due to the abundance of linoleic acid in Chinese human milk. As the main SFA, palmitic acid showed absolute sn-2 selectivity, while oleic acid, linoleic acid and α-linolenic acid, the main unsaturated fatty acids, were primarily esterified at the sn-1 and sn-3 positions. Nervonic acid and C22 PUFA including DHA were more enriched in colostrum with an sn-2 positional preference. A total of three dominant phospholipids (phosphatidylethanolamine (PE), phosphatidylcholine (PC) and sphingomyelin (SM)) were analysed in the collected samples, and each showed a decline in amount over lactation. PC was the dominant compound followed by SM and PE. With prolonged breast-feeding time, percentage of PE in total phospholipids remained constant, but PC decreased, and SM increased. Results from this study indicated a lipid profile different from Western reports and may aid the development of future infant formula more suitable for Chinese babies.
This study reports a high-performance tin (Sn)-coated vertically aligned carbon nanofiber array anode for lithium-ion batteries. The array electrodes have been prepared by coaxial sputter-coating of tin (Sn) shells on vertically aligned carbon nanofiber (VACNF) cores. The robust brush-like highly conductive VACNFs effectively connect high-capacity Sn shells for lithium-ion storage. A high specific capacity of 815 mAh g-1 of Sn was obtained at C/20 rate, reaching toward the maximum value of Sn. However, the electrode shows poor cycling performance with conventional LiPF6 based organic electrolyte. The addition of fluoroethylene carbonate (FEC) improve the performance significantly and the Sn-coated VACNFs anode shows stable cycling performance. The Sn-coated VACNF array anodes exhibit outstanding capacity retention in the half-cell tests with electrolyte containing 10 wt.% FEC and could deliver a reversible capacity of 480 mAh g-1 after 50 cycles at C/3 rate.
Monosized spherical Cu–20% Sn (wt%) alloy particles with diameter ranging from 70.6 to 334.0 μm were prepared by the pulsated orifice ejection method (termed “POEM”). Fully dense without pores and bulk inclusions, the cross-sectional micrographs of the spherical alloy particles indicate an even distribution of Cu and Sn. These spherical Cu–Sn alloy particles exhibit a good spherical shape and a narrow size distribution, suggesting that the liquid Cu–Sn alloy can completely break the balance between the surface tension and the liquid static pressure in the crucible micropores and accurately control the volume of the droplets. Furthermore, the cooling rate of spherical Cu–20% Sn alloy particles is estimated by a Newton’s cooling model. The cooling rate of the Cu–20% Sn alloy particle decreases gradually with the particle diameter increasing. Smaller particles have higher cooling rates and when the particle diameter is less than 70 μm, the cooling rate of particles can reach more than 3.3 × 104 K/s. The secondary dendrite arm spacing has strong dependence on particle diameter which increases gradually with the increase of particle diameter. The results demonstrate that POEM is an effective route for fabrication of high-quality monosized Cu–20% Sn alloy particles.
In this work, a very high, locally applied electric field was used to induce whisker nucleation on an Sn film. The field was generated by using a conductive AFM tip and applying a voltage bias between the sample and the conductive cantilever. The tip-sample separation distance was thus controllable, and any dielectric breakdown could be avoided. At locations where the AFM tip was positioned for an extended period, minuscule whiskers were observed, whose growth direction matched vertical orientation of the field.
Gas detecting and sensing is a largely studied field of knowledge, but total understanding is not yet achieved and the ideal device is still far in the future. Many experimental efforts have been devoted to find the minimum optimal temperature and operational conditions for SnO2 to sense hydrocarbons; different methods to build gas-detecting devices keep being developed all around the world, from paste-based bulk devices to nanostructured thick and thin films, but little effort has been aim to characterize the reactions by calculating their related enthalpies. Computational methods have been widely used to characterize, understand and model many physicochemical interactions. In this regard, three main courses can be followed: Ab initio (first principles of quantum mechanics), DFT (Density Functional Theory) and MD (Molecular Dynamics) simulation. In this research, DFT modelling tool is employed to understand and characterize the gas-sensing reactions of Tin Oxide when exposed to an atmosphere with Methane. In CASTEP, a robust DFT module of the Materials Studio suite, one SnO2 (110) crystal plane is exposed to CH4 and the structure is optimized many times for each possible step of the reaction, recording the energies related with each optimization stage, in sum giving us the Transition State (TS) of the reaction. Based on the data, a promising reaction-path is proposed and analyzed for the (110) surface.
This paper presented very early, high-cadence photometric observations of the nearby Type Ia SN 2017cbv. The light-curve is unique in that during the first five days of observations it has a blue bump in the U, B, and g bands which is clearly resolved by virtue of our photometric cadence of 5.7 hr during that time span. We modelled the light-curve as the combination of an early shock of the supernova ejecta against a non-degenerate companion star plus a standard Type Ia supernova component. Our best-fit model suggested the presence of a subgiant star 56 R⊙ from the exploding white dwarf, although that number is highly model-dependent. While the model matches the optical light-curve well, it over-predicts the flux expected in the ultraviolet bands. That may indicate that the shock is not a blackbody, perhaps because of line blanketing in the UV. Alternatively, it could point to another physical explanation for the optical blue bump, such as interaction with circumstellar material or an unusual distribution of the element Ni. Early optical spectra of SN 2017cbv show strong carbon absorption as far as day –13 with respect to maximum light, suggesting that the progenitor system contained a significant amount of unburnt material. These results for SN 2017cbv illustrate the power of early discovery and intense follow-up of nearby supernovæ for resolving standing questions about the progenitor systems and explosion mechanisms of Type Ia supernovæ.
The effects of shape and thickness of a tin surface layer and of the energy of a 170 ps neodymium:yttrium-aluminum-garnet laser pulse on the conversion efficiency (CE) into extreme ultraviolet emission in the 13.5 nm region is investigated. Whereas a CE of up to 1.16% into the 2% reflection band of multilayer Mo/Si optics was measured for a bulk Sn target at a laser energy of 25 mJ, significant CE enhancement up to 1.49% is demonstrated for a 200-nm-thick Sn layer on a microstructured porous alumina substrate.
Antimony doped tin oxide (ATO) is an ideal material for thermal insulation. To obtain the stable performance of ATO nanodispersions and measure the transparent and thermal insulation properties of the ATO coatings, we investigated how a dispersant and sand milling affect the stability of ATO dispersion, which has come to the results that adding an appropriate dispersant and sand milling for 2.0 h were beneficial to the ATO dispersion. We characterized the morphology, nanostructure, particle size distribution, zeta potential, and optical properties of the ATO dispersions by a transmission electron microscope (TEM), a laser particle size analyzer, and a spectrometer. The results show that the average particle size of the dispersions is about 50 nm and their absolute values of all zeta potentials are more than 40 mV. We coated the thermal insulation water-based coatings on quartz glasses by spin coating method, the effect of thermal insulation is evident with the increase of the ATO content, and there exists approximately 10 °C difference between the ATO sample and blank sample with the condition for maintaining high transmittance of visual light.
Using in situ transmission electron microscopy, we report the observation of the melting behavior of one-dimensional nanostructures of Sn with different length/width aspect ratios. The melting of small aspect-ratio nanowires (nanorods) results in the expansion of liquid Sn along both axial and radial directions with the tendency to form an isometric or spherical particle, thereby minimizing the total surface area. For nanowires with the length/width aspect ratio of ∼10.5, perturbation along the liquid stream causes an unstable necking phenomenon and the whole wire tends to shrink into a spherical particle. In contrast, Rayleigh instability sets in for the melting of the nanowires with the length/width aspect ratio as large as ∼21, which gives rise to necking and fragmentation of the wire into particles. The amorphous native surface oxide (SnOx) layer serves as a confinement tube and plays an important role in the melting induced morphological evolution of Sn nanowires. A thin SnOx layer is flexible with the ability to shrink or expand upon the flow of molten Sn. The increased rigidity for a thick SnOx surface layer kinetically suppresses bulging and necking formation in molten Sn nanowires.
Two-dimensional group IV layers beyond graphene, as silicene, germanene and the Sn-based stanene, have been recently synthesized by molecular beam epitaxy. Density Functional Theyory (DFT) calculations predict low-buckled structures for these 2D nanosheets, with a hexagonal honeycomb conformation, typical of the graphene-like surfaces. The buckling parameter δ increases from Si to Sn-based layers, with a maximum predicted of 0.92 Å for stanene. High-buckled structures for these materials resulted to be unstable. We have previously shown that for silicene and germanene, the origin of the buckled structure resides on the pseudo Jahn-Teller puckering distortion, resulting from non-adiabatic effects. It has been shown that hexagermabenzene, the single hexagonal unit of germanene, is subject to a strong vibronic coupling whose origin is the pseudo Jahn-Teller effect. This coupling resulted to be around ten times larger than the one obtained for hexasilabenzene. For stanene, an additional effect needs to be considered to understand the origin of buckling: the spin-orbit coupling (SOC). This SOC contributes to open an electronic band gap, enabling the use of these layers as nanoelectronic components. In this work, we present an analysis based on DFT in the Zeroth-Order Regular Approximation (ZORA) for both scalar relativistic and spin-orbit versions that quantify the influence of the spin-orbit coupling in the puckering of Sn6H6. Also, under the linear vibronic coupling model between the ground and the lowest excited states, we present the pseudo Jahn-Teller contribution. The scalar ZORA approximation is used to perform time-dependent DFT calculations to incorporate the low-energy excitations contributions. Our model leads to the determination of the coupling constants and predicts simultaneously the Adiabatic Potential Energy Surface behavior for the ground and excited states around the maximum symmetry point. These values allow us to compare the Jahn-Teller relevance in buckling with the other group IV layers.
In their final stages, massive stars can show large eruptions which can resemble core-collapse IIn SNe. Here we present SN 2015bh in NGC 2770, a IIn/impostor, where archival data show variabilities for at least 21 years before the main event in 2015. Serendipitous spectra during an outburst are the only SN progenitor spectra available since SN 1987A and show an LBV with a fast, dense outflow. Analogues to SN 2015bh are SN 2009ip and SNhunt 248 while the SN 2000ch impostor could be equivalent to the outburst phase of SN 2015bh. It is currently unclear whether SN 2015bh (and SN 2009ip) were final core-collapse events. Alternatively, they might be large outbursts shedding the outer envelope and creating a Wolf-Rayet star in only a matter of decades. Future large-scale high-cadence surveys such as LSST will detect many more of these events and allow us a unique insight into the largely unknown late stages of massive stellar evolution.
We investigate the relation between the emission properties of supernova shock breakout in the circumstellar matter (CSM) and the behavior of the shock. Using a Monte-Carlo method, we examine how the light curve and spectrum depends on the asphericity of the shock and bulk-Compton scattering, and compare the results with the observed properties of X-ray outburst (XRO) 080109/SN 2008D. We found that the rise and decay time of the X-ray light curve do not significantly depend on the degree of shock asphericity and the viewing angle in a steady and spherically symmetric CSM. The observed X-light curve and spectrum of XRO 080109 can be reproduced by considering the shock with a radial velocity of 60% of the speed of light, and the wind mass loss rate is about 5 × 10−4M⊙.
Supernova remnants (SNRs) are powerful particle accelerators. As a supernova (SN) blast wave propagates through the circumstellar medium (CSM), electrons and protons scatter across the shock and gain energy by entrapment in the magnetic field. The accelerated particles generate further magnetic field fluctuations and local amplification, leading to cosmic ray production. The wealth of data from Supernova 1987A is providing a template of the SN-CSM interaction, and an important guide to the radio detection and identification of core-collapse SNe based on their spectral properties. Thirty years after the explosion, radio observations of SNR 1987A span from 70 MHz to 700 GHz. We review extensive observing campaigns with the Australia Telescope Compact Array (ATCA) and the Atacama Large Millimeter/submillimeter Array (ALMA), and follow-ups with other radio telescopes. Observations across the radio spectrum indicate rapid changes in the remnant morphology, while current ATCA and ALMA observations show that the SNR has entered a new evolutionary phase.
Supernova 1986J is almost the same age as SN 1987A, but was Type IIn, and likely had a massive progenitor. Located at 10 Mpc in NGC 891, it is one of the few supernovae whose radio emission can be resolved using VLBI. We present a new 5-GHz global-VLBI image of SN 1986J from 2014 as well as broadband VLA flux-density measurements. SN 1986J is unusual in that a compact synchrotron radio-emitting component appeared in the centre of the expanding shell of ejecta ~14 yr after the explosion, which now dominates the VLBI image. The central component is stationary to within the uncertainties (<570 km s−1), and it has a marginally resolved HWHM radius of (6.7−3.7+0.7) × 1016 cm. The shell has expanded with average v ≃ 5400 km s−1. The central component’s 5-GHz flux density is still increasing with time, and at present it has a 5-GHz νLν luminosity of ~4 × 1035 erg s−1, ~20 times that of the Crab Nebula. The central component may be due to a newly formed pulsar wind nebula, or an accreting black hole, or it may be due to interaction of the supernova shock with a highly structured environment left over from a progenitor which was in a close binary system. We discuss the newest observations and the constraints on its nature.
SN 1987A has been observed with the Chandra X-ray Observatory over the entire course of the mission. We have re-analyzed the archival data by constructing an empirical point spread function and reconstructing high-resolution images using a Bayesian multi-scale image reconstruction algorithm. We are able to resolve structure in the equatorial ring of SN 1987A with unprecedented detail, at scales of
$\approx \frac{1}{4}$
arcsec. We describe how the point spread function is constructed, and the reconstruction method, and explore the evolution of the inner ring at different epochs and passbands.
The radio non-detection of two Type Ia supernovae (SNe) SN 2011fe and SN 2014J has been modeled considering synchrotron radiation from shock accelerated electrons in the SN shock fronts. With 10% each of the bulk kinetic energy in electric and magnetic fields, a very low density of the medium around both the SNe has been estimated from the null detection of radio emission, around 1 and 4 years after the explosion of SNe 2014J and 2011fe, respectively. Keeping the fraction of energy in electrons fixed at 10%, a medium with particle density ~ 1cm−3 is found when 1% of the post shock energy is in magnetic fields. In case of a wind medium, the former predicts the mass loss rate Ṁ to be <10−9M⊙ yr−1, and the latter gives an upper limit ~10−9M⊙ yr−1, for wind velocity of 100 kms−1, for both the SNe. The tenuous media obtained from this study favor the double degenerate as well as a spin up/down model for both SNe 2011fe and 2014J.